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Abstract:

A new class of 2D fractional linear systems is intro-
duced. A notion of o order 2D difference is proposed.
Fractional 2D state equations of linear system are given
and their solutions are derived using 2D Z transform. The
classical Cayley-Hamilton theorem is extended for the 2D
fractional systems. Necessary and sufficient conditions for
the reachability and controllability to zero of 2D fractional
systems are established.
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1. Introduction

The most popular models of two-dimensional (2D)
linear systems are the models introduced by Roesser [23],
Fornasini-Marchesini [4, 5] and Kurek [22]. The models
have been extended for positive systems in [10, 24, 13,
9]. An overview of 2D linear system theory is given in [1,
2, 7, 8] and some recent result in positive systems has
been given in the monographs [3, 9] and in paper [24].
Reachability and minimum energy control of positive 2D
systems with one delay in states have been considered in
[13]. The notion of internally positive 2D system (model)
with delay in states and in inputs has been introduced
and necessary and sufficient conditions for the internal
positivity, reachability, controllability, observability and
the minimum energy control problem have been esta-
blished in [13]. The notions of positive fractional
discrete-time and continuous-time linear systems have
been introduced in [14, 15]. The notion for 2D positive
fractional linear systems has been extended in [11].

In this paper a new class of 2D fractional linear
systems will be introduced. The paper is organized as
follows. In section 2 the fractional 2D state equations are
proposed and their solutions are derived. The classical
Cayley-Hamilton theorem is extended for 2D fractional
systems. In section 3 necessary and sufficient conditions
for the reachability and controllability to zero of the 2D
fractional systems are established. Concluding remarks
are givenin section 4.

2. Fractional 2D state equations and their
solutions
Let R™™ be the set of real n X m matrices and
R" =R"™", The set of nonnegative integers will be deno-
ted by Z, and the n x m identity matrix will be denoted
byl,.

Definition 1. The o order 2D fractional difference ofx; is
defined by the formula

i

Aaxii:zzca(k’l)xi—k,/—l’ O<a<l (1a)
© k=0 1=0

where

1 fork=0 or/and/=0 (1b)
kD)= (_1);“,OL(OL—1)...((1—k+1)OL(0L—1)...(OL—l+1)

aldl
fork+[>0

The justification of Definition 1 is given in
Appendix A. In Appendix A it is also shown that if
O<a<1 then c,(k,/)>0 for k+I>1.

Consider the o order 2D fractional linear system,
described by the state equations

(2a)
o
A Xivt a1 = onij + Alxi+1,j + A2xi,j+l + Bou[j + Bl“m,; + Bz“i,j+1
y; = Cx; + Du, (2b)

where x; eR",u, eR",y, €R” are the state, input
and output vectors and 4, e R, B, e R"", k=0,12,
CeR”,DeR".

Using Definition 1 we may write the equation (2a) in

the form

_ _ o i+l j+l (3)
Xist ja1 = onij + Alxi+l,j + Azxi,j+l - Z z Co (kﬂl)xi—k+l‘j—l+l +
k=0 1=0
k+1>1
+Byu; + By, ; + By,

where A4 =4, -10a°, A, =4, +10, k=12.

From (1b) it follows that the coefficients (1b) in (1a)
strongly decrease when k and [ increase. Therefore, in
practical problems it is assumed that i andj are bounded
by some natural numbers L, and L,. In this case (3) takes
the form

(3a)

+

L+l L+

+ A2xi,j+1 -
=

Xigtje1 = onij + Alxm,j ¢, (k, l)xi—k+1,j—1+1

=

1=0

+ Bou” + BluM’j + Bzut.’j+1

Note that the fractional systems are 2D linear systems
with delays increasing with i andj.

The boundary conditions for the equation (3) and
(3a) are given in the form

Xgi€Z, andx,;, jeZ, (4)
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Theorem 1. The solution of equation (3) with boundary
conditions (4) is given by
(5)

X, _ZT o I(Axp0+Bup0)+z g (Ao, + Boug,)) +

gq=1

-1
thljl() +z l/qlAO‘qu :1,1Au00+
q=1
i—1 1

J—
zz -p=L.j-q— IB‘>uﬁq+zz( i=p=l.j-q- lB +Tl Paj=q- IBZ)uﬂq

7=04=0 p=0 g=0

where the transition matrices T, are defined by the
formula

(6)
I, forp=q=0
_ _ _ p-1 g-1
T o= AOTp—l.q—l + A]Tp.z]—l + AZTp—l,q - z zca (p—k,q-DT,
rqg k=0 [=0
for p+g>0 fet<pra=2
0 (zero matrix) for p <0 or/and ¢ <0

and 4, =4, —I,o fork=0,1,2.

Proof. Let X(z,, z,) be the 2D z-transform of x; defined
by

X(ZI’ZZ):Z[xij]:iixijzl_izz_j (7)

i=0 j=0

Taking into account that
(8)

Z[x,

i+, /+l]

7,2,[X(2,,2,) — X (2,,0) = X (0, 2,) + X, ]

Zlxq,;1= 7[X(z,2,) - X(0,2,)], X(0,z,)= ixoj'zz_j

=0
Z[x[,jﬂ] =2,[X(z,2,) - X(5.,0)], X(z.,0)= Zx[ozfi
=0

Z[xi—k,j—l] = zl_kzz'lX(zl,zz)

then from (3) with (4) we obtain

9)
X(z,z,)= G (21522){(B0 + Bz +B,z,)U(z,,2,) -
— X(0,z,) — X(z,,0)
z,[4,B,] 27|~ z,[4,B,] RS
U(0,z,) U(z,,0)
+zzzz[X(zl,O)+X(O,zz)—x00]}
where
(10)
G(z,z2,) =
Li+1 Ly+1 o o o
=\1,zz, +z Zlnca (k, l)z_(k b _(' D —Ay,— A4z, - 4,z, |,
=005
and U(z,z,)= Zlu;}
Let
G (Zl»Zz) ZZT Z*(pH) *(t1+1) (11)
p=0g¢=0
Articles

From the equality
G(z,,2,)G(z,,2,) = G(z,,2,)G '(z,,z,) = 1, it follows
that
[ZZ T,z,""z <4*”JG(Zl ,2,) = (12)
p=0g=0
=G(z,,z2, )(ZZT “’*”zz“’*”j =1,
p=0 g=0

Comparison of the coefficients at the same powers
of z,and z, of (12) yields the formula (6).
Substituting (11) into (9) we obtain

X(z),2,) = (13)

= (iiquzl(””)22“’”)]{(30 + Bz, +B,z,)U(z,,z,) —
4817 O a1 0 G0+

—z,[4,B,] U©,z,) —-z,[4,B,] U(z,,0) 2,7,[X(z,,

+X(0,22)—x00]}

Using the 2D inverse Z transform to (13) we obtain
the desired formula (5). H

From (10) we have
G(z,,z,) = zlzzé(z],zz) (14)
where

L+

Li+1L,+1
G(z,2,)=1,+Y. > Ic,(k)z "z - (15)
k=0

1=0

i T R B
—Az7z, —Azy — A,z
Let

N N,
detG(ZnZz):Zzazvlfk,zvzftz;kz; (16)

k=0 1=0

It is assumed that i and j are bounded by some
natural numbers L,, L, that determine the degrees N,,
N.,.

From (14) and (11) it follows that

G (z,2,) =z Zz]G (21’22)_21 z ZZ pa” 2! (17)

p=04¢=0

and

G (z,2,)= ZZ 2,721 (18)

where T, is defined by (6).

Theorem 2. Let (16) be the characteristic polynomial
of the system (2). Then the matrices T, satisfy the
equation

N, N,
ZZaHTk, =0 (19)

k=0 1=0
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Proof. From the definition of inverse matrix and (16),
(18) we have

(20)
o N, N, o ®
AdjG(z,,z,) :[ZZaN,k,NZ,zlkzz’J(ZZT,,qzl”z;’J
k=0 =0 p=0¢=0

where AdjG(z,,z,) is the adjoint matrix G(z,,z,).

Comparison of the coefficients at the same power
Mz ™ of the equality (20) yields (19) since the
degrees of AdjG(z,,z,) are less than N, and N,. i

Theorem 2 is an extension of the well-known clas-
sical Cayley-Hamilton theorem for the 2D fractional
system (2).

3. Reachability and controllability to zero

Definition 2. The 2D fractional system (2) is called
reachable at the point (h,k) e Z, xZ, if and only if for
zero boundary conditions (4)(x=0,i€ Z,, x,,=0, j€ Z,)
and every vector x, € R” there exists a sequence of inputs
u, € R" for

(21)
(i,j)eD, ={(i,j) e Z,xZ.:0<i<h0< j<k,i+j#h+k}

such that x,, =x;

Theorem 3. The 2D fractional system (2) is reachable at
the point (4, k) if and only if the reachability matrix

R,=[M, M, .M, M. .M M,..,M,M,.,..,M,]
has full row rank, i.e.
rank R, =n (22)

where
(23)
M, = Th—l,k—le Mil =T, 4B +Th—i—1,k—1B07 i=L...h

M/2 = Th—l,k—lBZ + Th—l.k—j—lBO’ j=L..k
Mij =T, B, +T, B +T,

h—ik—j-1 h—i—1,k—1

e By, i=l.h, j=1,..k
Proof. Using the solution (5) for i=h, j=k and zero
boundary conditions we obtain

X, =Ry u(h,k) (24)

where
(25)

T T T T T T T T T T
U, J) = [Uggs Ui seees U Uy seves Uy s Uy senes Uy s Uy seens Uy 4]
and 7T'denotes the transpose.

From (24) it follows that there exists a sequence
u; e R" for (i,j) € D), for every x, e R" if and only if
the matrix R, contains n linearly independent columns
equivalently the condition (22) is satisfied. H

Example. Consider the 2D fractional system (2) with

0 1 1 0 1 0
4, = A = 4, = > (26)
1 0 0 1 11
1 0 1
BO: 3B1: ,BZ:
0 1 1

To check the reachability at the point (4,k)=(1,1) of
the system we use Theorem 3. From (23) and (22) we
obtain

1, 0], 1
My=By=| LM/ =B=| | M=B= | M, =0

fori>1,j2>1

. 5 1 01
Ry =[M,,M,,M[]= 01 1 (27)

The matrix (27) has full row rank and by Theorem 3 the
2D fractional system (2) with (26) is reachable at the
point (1,1). The sequence of inputs steering the state of
the system from zero boundary conditions to an arbitrary

state x, e R at the point (1,1) is given by {u‘m} =x,and
-0 u '
u, =0. 10

Note that the system is reachable at the point (1,1)
for any fractional order o, O<o< 1.

Definition 3. The 2D fractional system (2) is called
controllable to zero at the point (/,k) if and only if for any
nonzero boundary conditions (4) there exists a sequence
of inputsu,, € R" for (i,j) € D, such that x,,=0.

Theorem 4. The 2D fractional system (2) is controllable to
zero at the point (A,k) if and only if the condition (22) is
satisfied.

Proof. From (5) fori=h, j=k and x,,=0 we obtain
Ryu(h,k)=—x,,(h,k) (28)

where
x,.(i,))= z(]‘i—p,j—lzl + ]:'—p—l,/—] Z())xp() +
p=1

j _ _
+ z(ﬂ—l,j—qAZ + T;'—],j—q—lA(])x()q + Ti—l‘j—] Ayxg =0
q=1
The equation (28) has a solution u(h,k) for arbitrary
nonzero boundary conditions (4) if and only if the
condition (22) is satisfied.
The considerations can be extended for n-1<o<n,
n=12,..

4. Concluding remarks

A new class of 2D fractional linear systems has been
introduced. The notion of a order (o, 0<o<1) 2D
fractional difference has been proposed. The fractional
2D state equations of linear systems have been given and
their solutions have been derived using the 2D Z trans-
form. The classical Cayley-Hamilton theorem has been
extended for the 2D fractional systems. Necessary and
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sufficient conditions have been established for the
reachability and controllability to zero of the 2D frac-
tional linear systems.

The considerations can be easily extended for fractio-
nal 2D linear systems with delays.

An extension of these considerations for fractional
2D continuous-time linear systems is an open problem.
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Appendix.

Justification of the definition 1.

It is well known that for a discrete function x, the
n-order difference is given by

Apx, =Ky, = A, = Z(—l)k[l}jxi_k (A1)
k=0
neN={2,.}, i=Z{0]l,.}
where
n 1 fork=0
(kj P (A.2)
k! (n-k)!

Using (A.1) for an 2D discrete function x; we obtain

oA, A AT _ : k n 1y _
AV x, = AN X, =D (<) (k)A,. X, =

k=0

for n,,n, e N and i,jeZ,

If n,=n,=n then from (A.3) we obtain

L fn\n
Nx, = KA x, = > (-1 ’( j( Jm‘ o (A.4)
k=0 j=0 kNI
Note that
1 for k=0 or/and /=0 (A.5)
(L)
kM1 n(n—1)..(n—k+Dnn-1)..(n—1+1) for k4150

K

is also well defined for n=o where o is any real
number. Thus (A.4) can be used for defining the o
order 2D fractional difference (1a).

Lemma. If o, 0<o<1 then

c,(kl) >0 for k+I>1(k>0,/>0) (A.6)
Proof. The proof will be accomplished by induction.
The hypothesis is true for k=2, [=1 since

3 az(a -1)

¢, 2)=-1)————=>0  for

o o, 0<a<1

Articles

The hypothesis is also true for k=2, [=1 since

3 az(a -1
112!

Assuming that the hypothesis is true for k, [, k+[>3

we shall show that the hypothesis is also valid for the pair
(k+1,/)and (k,[+1).

¢, (1,2)=(=1) >0  for o,0<o<1

¢, (k+1,1)=
e (@ =1).(o —k+2)a(o —1)..(a =/ +1)
(k+D'
c e D22 00 foro<a <l
[+1

=(=D

Similarly,

¢, (k1+1)=

(Dt a( —1)..(a—k+Do(a—1)..(a—-1+2)
K+
c e D22 00 foro<a <l
I+1

This completes the proof. H
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