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Abstract:
A Brain‐Computer Interface (BCI) is an instrument capa‐
ble of commanding machine with brain signal. The mul‐
tiple types of signals allow designing many applications
like the Oddball Paradigms with P300 signal. We propose
an EEG classification system applied to BCI using the con‐
volutional neural network (ConvNet) for P300 problem.
The system consists of three stages. The first stage is a
Spatiotemporal convolutional layer which is a succession
of temporal and spatial convolutions. The second stage
contains 5 standard convolutional layers. Finally, a lo‐
gistic regression is applied to classify the input EEG sig‐
nal. The model includes Batch Normalization, Dropout,
and Pooling. Also, It uses Exponential Linear Unit (ELU)
function and L1‐L2 regularization to improve the lear‐
ning. For experiments, we use the database Dataset II of
the BCI Competition III. As a result, we get an F1‐score of
53.26% which is higher than the BN3 model.

Keywords:Deep Learning, Convolutional neural network,
Brain Computer Interface, P300, Classification

1. Introduction
A Brain‑Computer Interface (BCI) is a mean of

communication between the brain and the machine
[16]. It consists of translating neural activity to in‑
struction using machine learning algorithms and neu‑
roscience. Such interface can give an improvement in
the health �ield like neurological diseases detection or
prosthesis control [2, 15]. Besides, many non‑medical
applications are possible such as those applied in se‑
curity and educational �ields [10,21].

Mainly, the Electroencephalography is used to re‑
cord the brain’s waves from the scalp, giving a multi‑
channel signal called Electroencephalogram (EEG)
signal [23]. There are many types of EEG signals; each
one has its own frequency band, shape, and a related
zone in the brain. The most common signals are Mo‑
tor Imagery and P300 [9]. For the P300 ones, it is an
Event‑Related Potential (ERP) signal occurred 300ms
after a visual or an acoustic stimulus, that is characte‑
rized by a low signal‑to‑noise ratio.

The BCI follows the same steps as those of clas‑
sic pattern recognition and consists in three impor‑
tant steps. Firstly, it begins with data acquisition using
the EEG or other techniques. Secondly, a preproces‑
sing step where the data is �iltred and cleaned. Thi‑
rdly, the extraction of the most discriminating featu‑
res. Fourthly, the classi�ication step where a classi�ier
is trained with the data to recognize the pattern. Fi‑

nally, the translation step where the decision of the
classi�ier is translated into a command. In this work,
we are only interested in the feature extraction and the
classi�ication steps.

Several techniques have been proposed in the lite‑
rature. For the feature extraction, the most used are
the parametric modeling ones like the Autoregressive
model [17], the Time‑Frequency domain transforma‑
tion like the Short‑Time Fourier Transform (STFT),
Wavelet Transform (WT) and the Filter‑Bank Com‑
mon Space Pattern (FBCSP) [12]. For the classi�ica‑
tion stage, the Linear Discriminant Analysis (LDA), the
Support Vector Machine (SVM) and the Neural Net‑
work (NN) are widely used in several schemes [13].

Deep Learning is a new approach mainly used in
computer vision and natural language processing, it
has also been exploited in BCI [20]. There are many
advantages to use the Deep Learning to solve BCI pro‑
blems ; it allows tomerge feature extraction and classi‑
�ication step in a same step. Also, it allows to visualize
the learned feature to understand more about brain
function [19]. In many studies, we observe that all of
them begin with a consecutive convolution that are si‑
milar to a spatial �ilter and a temporal one; this block
is called “Space‑Time Convolutional Layer” (STCL). [3]
used for a P300 problem 4‑layers ConvNet, the two
�irst were the STCL and the others are two dense lay‑
ers, The architecture outperforms the SVMbasedmet‑
hod of [18]. In the same logic, [11] improved the per‑
formance of the previous model by using three dense
layers, the recti�ied linear unit (ReL�) activation was
applied. The Batch Normalization was used in STCL
and theDropout between the dense layers. Both archi‑
tectures used tanh and sigmoid functions which can
cause a vanishing gradient problem and slow compu‑
tation [6]. Also, they are shallow and they do not use
more convolutional layers for visualization of the hid‑
den layers in example [19].

In this paper, we suggest to create a ConvNet ar‑
chitecture, fully data‑driven, capable of understanding
the P300 signal used in the P300 Speller. The choice
is motivated by its ability to overcome the main pro‑
blems of the standard methods like the over�itting or
the curse of dimensionality. Moreover, ConvNets are
compatible with the nature of the EEG signals. Also,
it needs a minimum of preprocessing and it does not
need a handcrafted feature extraction step because of
its high complexity (cost of processing, choose of the
method,...). Hence, we create a ConvNet with 7 lay‑
ers unlike the existing architectureswhich are shallow
[3,11]. The �irst stage is dedicated to a space‑time con‑
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Fig. 1. The P300 Speller matrix [3]

volution, we choose to follow the suggestion of [9] for
the design of the STCL which is simulating the FBCSP.
The second stage is a 5 standard convolutional layers
instead of the dense layers. The third stage is a logistic
regression. Obviously, Dropout and Batch Normaliza‑
tion are used. Furthermore, our model is designed to
avoid over�itting by the use of the �L� [4].

The paper is organized as the following: In section
2, we provide details about the P300 speller and the
ConvNet. In section 3, we introduce the proposed mo‑
del and justify its hyperparameters. The obtained re‑
sults are discussed in section 4. The section 5 contains
the conclusion.

2. Background
2.1. P300 Speller

The P300 Speller, based on P300waves, is the neu‑
ral response for an event that manifests itself in the
form of a positive peak of a voltage appearing 300 ms
after the event essentially in the occipital and parietal
lobes.

The speller is based on the Oddball Paradigm,
where a row or a column of a 6X6 character matrix as
illustrated in Fig. 1, is randomly �lashed.When the sub‑
ject is aiming a character, a P300 wave is detected 300
ms after the �lashing of the column and the row cor‑
responding to the selected character. Hence, the pro‑
blem will be transposed to a binary one : detecting a
P300 wave or not. In the binary case, the speller para‑
digm generates an unbalanced size of P300/non‑P300
signal.

2.2. ConvNet
TheConvNets are the hierarchical neural networks

inspired by the architecture of the visual �ield to pro‑
cess the matrix‑like data such signal but essentially
image and video [7]. It can learn from raw data the
most imminent features automatically with multiple
levels of abstraction. Also, it is characterized by the
sparse interactions, parameter sharing, and equivari‑
ant representations. It is based on many layers such :
‑ Convolution layer: Applies the convolution to extract
the essential features.

‑ Pooling layer: Down‑samples the data to reduce the
hyper‑parameters in the network.

Fig. 2. The EEG montage for the P300 data set [3]

‑ Activation layer: Increases the non‑linearity of the
network.

‑ Regularization layer: Penalizes any non‑pertinent
information, prevents the network from over�itting.

‑ Fully connected layer: Classi�ies the extracted fea‑
ture in the previous stages.

3. Methods
3.1. Dataset and Preprocessing

For the dataset, we choose the “BCI Competition III
Dataset II”. The speller follows the paradigm descri‑
bed previously for 2 subject. The signal is composed
of 64 channels schematized in Fig. 2, initially sampled
at 240 Hz and �iltered with a bandpass �ilter between
0.1‑60 Hz.

We adopt the same preprocessing protocol as in
[11]. So,weextract the segment0‑667msafter the end
of the �lashing and as resultweget an��� signalwith a
dimension of 64×160where the �ist dimension repre‑
sents space and the second one the time (S×T ). Then,
we apply a 0.1‑20Hz 8th‑order Bandpass Butterworth
�ilter to the obtained ��� signals. To overcome the un‑
balanced sizebetween theP300andnon‑P300 signals,
we replicate the signal with an offset of {‑2;‑1;0;1;2} in
the training dataset. We choose to use only the subject
’B’. For the validation dataset, we use a validation data‑
set with a proportion of 6.66% from the train dataset
after the balancing.
3.2. Architecture

The proposed ConvNet will be composed of three
parts: STCL, multiple convolutional layers and regres‑
sion.

The �irst stage is STCL, which is composed of two
convolution supposed to simulate a temporal �ilter
(convolution across time axis) by using a convolution
in the temporal axis (1×nt) and a spatial �ilter byusing
a convolution across the spatial axis (C×1)whereC is
the number of the channels. This approach is inspired
by the Filter Bank Common Spatial Pattern (FBCSP)
and used in many studies [3, 9, 19]. For [19], splitting
the two convolutions is better than merge them into
one convolution (e.g. ns × nt) like proved [22]. Also,
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A Brain‑Computer Interface (BCI) is a mean of

communication between the brain and the machine
[16]. It consists of translating neural activity to in‑
struction using machine learning algorithms and neu‑
roscience. Such interface can give an improvement in
the health �ield like neurological diseases detection or
prosthesis control [2, 15]. Besides, many non‑medical
applications are possible such as those applied in se‑
curity and educational �ields [10,21].

Mainly, the Electroencephalography is used to re‑
cord the brain’s waves from the scalp, giving a multi‑
channel signal called Electroencephalogram (EEG)
signal [23]. There are many types of EEG signals; each
one has its own frequency band, shape, and a related
zone in the brain. The most common signals are Mo‑
tor Imagery and P300 [9]. For the P300 ones, it is an
Event‑Related Potential (ERP) signal occurred 300ms
after a visual or an acoustic stimulus, that is characte‑
rized by a low signal‑to‑noise ratio.

The BCI follows the same steps as those of clas‑
sic pattern recognition and consists in three impor‑
tant steps. Firstly, it begins with data acquisition using
the EEG or other techniques. Secondly, a preproces‑
sing step where the data is �iltred and cleaned. Thi‑
rdly, the extraction of the most discriminating featu‑
res. Fourthly, the classi�ication step where a classi�ier
is trained with the data to recognize the pattern. Fi‑

nally, the translation step where the decision of the
classi�ier is translated into a command. In this work,
we are only interested in the feature extraction and the
classi�ication steps.

Several techniques have been proposed in the lite‑
rature. For the feature extraction, the most used are
the parametric modeling ones like the Autoregressive
model [17], the Time‑Frequency domain transforma‑
tion like the Short‑Time Fourier Transform (STFT),
Wavelet Transform (WT) and the Filter‑Bank Com‑
mon Space Pattern (FBCSP) [12]. For the classi�ica‑
tion stage, the Linear Discriminant Analysis (LDA), the
Support Vector Machine (SVM) and the Neural Net‑
work (NN) are widely used in several schemes [13].

Deep Learning is a new approach mainly used in
computer vision and natural language processing, it
has also been exploited in BCI [20]. There are many
advantages to use the Deep Learning to solve BCI pro‑
blems ; it allows tomerge feature extraction and classi‑
�ication step in a same step. Also, it allows to visualize
the learned feature to understand more about brain
function [19]. In many studies, we observe that all of
them begin with a consecutive convolution that are si‑
milar to a spatial �ilter and a temporal one; this block
is called “Space‑Time Convolutional Layer” (STCL). [3]
used for a P300 problem 4‑layers ConvNet, the two
�irst were the STCL and the others are two dense lay‑
ers, The architecture outperforms the SVMbasedmet‑
hod of [18]. In the same logic, [11] improved the per‑
formance of the previous model by using three dense
layers, the recti�ied linear unit (ReL�) activation was
applied. The Batch Normalization was used in STCL
and theDropout between the dense layers. Both archi‑
tectures used tanh and sigmoid functions which can
cause a vanishing gradient problem and slow compu‑
tation [6]. Also, they are shallow and they do not use
more convolutional layers for visualization of the hid‑
den layers in example [19].

In this paper, we suggest to create a ConvNet ar‑
chitecture, fully data‑driven, capable of understanding
the P300 signal used in the P300 Speller. The choice
is motivated by its ability to overcome the main pro‑
blems of the standard methods like the over�itting or
the curse of dimensionality. Moreover, ConvNets are
compatible with the nature of the EEG signals. Also,
it needs a minimum of preprocessing and it does not
need a handcrafted feature extraction step because of
its high complexity (cost of processing, choose of the
method,...). Hence, we create a ConvNet with 7 lay‑
ers unlike the existing architectureswhich are shallow
[3,11]. The �irst stage is dedicated to a space‑time con‑
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Fig. 1. The P300 Speller matrix [3]
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tion are used. Furthermore, our model is designed to
avoid over�itting by the use of the �L� [4].

The paper is organized as the following: In section
2, we provide details about the P300 speller and the
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del and justify its hyperparameters. The obtained re‑
sults are discussed in section 4. The section 5 contains
the conclusion.
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The P300 Speller, based on P300waves, is the neu‑
ral response for an event that manifests itself in the
form of a positive peak of a voltage appearing 300 ms
after the event essentially in the occipital and parietal
lobes.

The speller is based on the Oddball Paradigm,
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ject is aiming a character, a P300 wave is detected 300
ms after the �lashing of the column and the row cor‑
responding to the selected character. Hence, the pro‑
blem will be transposed to a binary one : detecting a
P300 wave or not. In the binary case, the speller para‑
digm generates an unbalanced size of P300/non‑P300
signal.

2.2. ConvNet
TheConvNets are the hierarchical neural networks

inspired by the architecture of the visual �ield to pro‑
cess the matrix‑like data such signal but essentially
image and video [7]. It can learn from raw data the
most imminent features automatically with multiple
levels of abstraction. Also, it is characterized by the
sparse interactions, parameter sharing, and equivari‑
ant representations. It is based on many layers such :
‑ Convolution layer: Applies the convolution to extract
the essential features.

‑ Pooling layer: Down‑samples the data to reduce the
hyper‑parameters in the network.

Fig. 2. The EEG montage for the P300 data set [3]

‑ Activation layer: Increases the non‑linearity of the
network.

‑ Regularization layer: Penalizes any non‑pertinent
information, prevents the network from over�itting.

‑ Fully connected layer: Classi�ies the extracted fea‑
ture in the previous stages.

3. Methods
3.1. Dataset and Preprocessing

For the dataset, we choose the “BCI Competition III
Dataset II”. The speller follows the paradigm descri‑
bed previously for 2 subject. The signal is composed
of 64 channels schematized in Fig. 2, initially sampled
at 240 Hz and �iltered with a bandpass �ilter between
0.1‑60 Hz.

We adopt the same preprocessing protocol as in
[11]. So,weextract the segment0‑667msafter the end
of the �lashing and as resultweget an��� signalwith a
dimension of 64×160where the �ist dimension repre‑
sents space and the second one the time (S×T ). Then,
we apply a 0.1‑20Hz 8th‑order Bandpass Butterworth
�ilter to the obtained ��� signals. To overcome the un‑
balanced sizebetween theP300andnon‑P300 signals,
we replicate the signal with an offset of {‑2;‑1;0;1;2} in
the training dataset. We choose to use only the subject
’B’. For the validation dataset, we use a validation data‑
set with a proportion of 6.66% from the train dataset
after the balancing.
3.2. Architecture

The proposed ConvNet will be composed of three
parts: STCL, multiple convolutional layers and regres‑
sion.

The �irst stage is STCL, which is composed of two
convolution supposed to simulate a temporal �ilter
(convolution across time axis) by using a convolution
in the temporal axis (1×nt) and a spatial �ilter byusing
a convolution across the spatial axis (C×1)whereC is
the number of the channels. This approach is inspired
by the Filter Bank Common Spatial Pattern (FBCSP)
and used in many studies [3, 9, 19]. For [19], splitting
the two convolutions is better than merge them into
one convolution (e.g. ns × nt) like proved [22]. Also,
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the Batch Normalization will be used after the convo‑
lutions. The linear activation is used for the both con‑
volutions because non‑linear activation does not give
an improvement. The non‑linear activation function is
used after the third Batch Normalization [9]. The L1

and L2 regularizations are used for the convolutions
with Dropout at the end of the block.

The stage follows the following equations :

a(0) = BN(X) (1)

a(t)Nt
= BN(padsame(a0) ∗W (t)

Nt
) (2)

a(s)Ns
= g(BN((as) ∗W (s)

Ns
)) (3)

x(1)N1
= r ∗ a(s)Ns

(4)

where xi
Ni

is the output of the layer i with Ni fea‑
ture map, g(x) the activation function, padsame(x) a
function that applies padding to get the same dimen‑
sion in the output of a convolution, BN(x) the Batch
normalization function, and w

(i)
Ni

the weight of layer i
with Ni feature map. As input of the layer, we give a
matrix with C × T . The �irst convolutional kernel has
a size of 1 × fs

2
where fs is the sampling frequency

as in [9]. The second convolutional kernel size has a
shape of C × 1 where C is the number of electrodes.
As output, we get a matrix of F × T where F is the
number of feature map that we unify for the convolu‑
tional.

The second stage is composed ofmultiple convolu‑
tional layers based on EEGNet and DeepConvNet. Un‑
like the BN3, our con�iguration contains 5 layerswhich
is deeper than the others. The convolutional kernels
follow the same paradigmof DeepConvNetwhich gave
good performance in our tests. Also, we follow the
same disposition of the layers of the EEGNet.

So, the actual stage begins with a convolutional
layer where the kernel size follows the pattern like
in Tab. 1 with no padding and we use a high number
of feature map for better performance. Then, the con‑
volutional layers are followed by Batch Normalization
and an activationwith a non‑linear function. For redu‑
cing the number of parameters, a pooling is performed
with themaxpooling which gave better scores. Finally,
the layer is regularized by only a Dropout.

The equations bellow describes a single layer
where k represent it the number :

a(k)Nk
= g(BN(padsame(xk−1) ∗W (k)

Nt
)) (5)

x(k)Nk
= r ∗ pool(a(k)Nk

) (6)

The third stage is a layer of regression where the
features are classi�ied into their corresponding clas‑
ses. According to the nature of the problem, the cho‑
sen activation function is a sigmoid. We omit the fully

connected layer to reduce any risk of over�itting un‑
like BN3 which can lead to over�itting and increase the
complexity of the network.

To be more speci�ic, the goal of the Batch Normali‑
zation is to reduce the internal covariate shift in the
neural network. The data shift to the saturation of
some activation function like tanh or sigmoid causing
a decrease of the gradient. Such a phenomenon slows
the training when the network is deep. The solution is
to Normalize every Batch to avoid the saturation. The
formula is as below :

ŷi(j) =
yi(j)− µ(j)

σ2(j) + ϵ
(7)

where µ is the mean of the batch, σ the variance and ϵ
a small constant for numerical stability.

Also, the dropout [1] is a technique allowing to de‑
crease the complex co‑adaptation between neurons
on the training data. It adds a noise by giving to every
neuron a probability of 1 − p to be set to 0 in the for‑
ward propagation. Thatmeans it gives an average neu‑
ral network frommany possibilities.
3.3. Training Setting

For the implementation,we use the frameworkKe‑
ras andTensor�low as backend and aN�IDIAK80GPU.
We choose to use the Adam optimizer with default
setting, and a binary cross‑entropy loss function. We
choose the hyperparameters as follows:
‑ We use Adam optimizer because it is the most used,
also it is faster and need low computational power
compared to the other techniques, we use the de‑
fault value for the parameters [8].

‑ For the parameter F introduced previously, we use
a cross validation with the proportion described
above, we compare between 4, 16, 32 and 64.

‑ We use the ELU function rather than the sigmoid or
tanh function because it has proven its superiority
in terms of accuracy and speed.

‑ For the dropout, we choose the value 0.5 as in [1].
‑ From our test, the epoch around 100 are the best
choice, so we choose it.

‑ Batch size should be small and we choose 32 follo‑
wing the recommendation in [14].

‑ Glorot Uniformmethod is used to initialize the para‑
meters [5].

‑ We omit the use of the biais like in [9] but just in con‑
volutional layers.

4. Result and Discussion
The goal of our work is to build a P300 speller sy‑

stem, which is capable of translating the P300 signals
in a small amount of time, this is why we design our
model �irst by its architecture based on convolutional
neural network. To evaluate the performance of our
method. We use Recognition, Precision, Recall and F1‑
score as metrics:

Recognition =
TP + TN

TP + TN + FP + FN
(8)
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The third stage is a layer of regression where the
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sen activation function is a sigmoid. We omit the fully
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in terms of accuracy and speed.

‑ For the dropout, we choose the value 0.5 as in [1].
‑ From our test, the epoch around 100 are the best
choice, so we choose it.

‑ Batch size should be small and we choose 32 follo‑
wing the recommendation in [14].

‑ Glorot Uniformmethod is used to initialize the para‑
meters [5].

‑ We omit the use of the biais like in [9] but just in con‑
volutional layers.

4. Result and Discussion
The goal of our work is to build a P300 speller sy‑

stem, which is capable of translating the P300 signals
in a small amount of time, this is why we design our
model �irst by its architecture based on convolutional
neural network. To evaluate the performance of our
method. We use Recognition, Precision, Recall and F1‑
score as metrics:

Recognition =
TP + TN

TP + TN + FP + FN
(8)
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Tab. 1. The details of the proposed model in Keras codification

Block Layers # �ilters size # params Output Activation Option
0 input (T,C)

Reshape
permute
BatchNormalization 4

1 Conv2D F (1, 120) 120 ∗ F Linear mode = same, l1 = l2 = 0.001
BatchNormalization 4 ∗ F
Conv2D F (64, 1) 64 ∗ F 2 Linear mode = valid, l1 = l2 = 0.001
BatchNormalization
Activation ELU
Dropout p = 0.5
Permute (2, 1, 3)

2 Conv2D F (F, 12) 12 ∗ F 2 Linear mode = valid
BatchNormalization 4 ∗ F
Activation ELU
MaxPooling2D (2, 2)
Dropout p = 0.5
Permute (2, 1, 3)

3 Conv2D 2 ∗ F (
F

2
, 6) 6 ∗ F 2 Linear mode = valid

BatchNormalization 8 ∗ F
Activation ELU
MaxPooling2D (2, 2)
Dropout p = 0.5
Permute (2, 1, 3)

4 Conv2D 4 ∗ F (F, 3) 12 ∗ F 2 Linear mode = valid
BatchNormalization 16 ∗ F
Activation ELU
MaxPooling2D (2, 2)
Dropout p = 0.5
Permute (2, 1, 3)

5 Conv2D 8 ∗ F (2 ∗ F, 3) 48 ∗ F 2 Linear mode = valid
BatchNormalization 32 ∗ F
Activation ELU
MaxPooling2D (2, 2)
Dropout p = 0.5
Permute (2, 1, 3)

6 Conv2D 16 ∗ F (4 ∗ F, 3) 192 ∗ F 2 Linear mode = valid
BatchNormalization 32 ∗ F
Activation ELU
MaxPooling2D (2, 2)
Dropout p = 0.5
Permute (2, 1, 3)

7 Dense 1 Sigmoid (2, 1, 3)

Recall =
TP

TP + TN
(9)

Precision =
TP

TP + FP
(10)

F1‑score = 2.
Recall.Precision

Recall + Precision
(11)

with true positive (TP), false positive (FP), true nega‑
tive (TN) and false negative (FN).

We focus only on the F1‑score because [11] results
suggest that it is the most convenient to be an indica‑
tor of performance. We use cross validation to choose

Tab. 2. Cross validation result

F Recognition Precision Recall F1‑score
64 0.9029 0.8751 0.94 0.9064
32 0.9035 0.8744 0.9423 0.9071
16 0.7882 0.9209 0.6305 0.7486
4 0.5211 0.9500 0.044 0.085

the right value of F . The obtained results are presen‑
ted in Tab. 2.Weobserve that the best recognition rate,
recall and F1‑score are obtained by the value 32. Also,
the best precision is for value 4. Moreover, the other
values did not get important result. So, the value 32 is
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Tab. 3. Compared metrics for multiple methods

Architecture TP TN FP FN Recognition Precision Recall F1‑score
MCNN‑3 [3] 2077 11997 3003 923 0.7819 0.409 0.692 0.514
BN3 [11] 2084 12139 2861 916 0.7902 0.4214 0.6947 0.5246

Proposed with Max pooling 1996 12501 2499 1004 0.7992 0.4440 0.6653 0.5326
Proposed with Average pooling 1952 12343 2657 1048 0.7941 0.4235 0.6506 0.5130

Tab. 4. Compared metrics for different deep of the second part of the proposed method

Number of Layers TP TN FP FN Recognition Precision Recall F1‑score
0 1960 12273 2727 1040 0.7907 0.4181 0.6533 0.5099
1 1797 12674 2326 1203 0.8039 0.4358 0.599 0.5045
2 1911 12398 2602 1089 0.7949 0.4234 0.637 0.5087
3 1840 12622 2378 1160 0.8034 0.4362 0.6133 0.5098
4 1595 13257 1743 1405 0.8251 0.4778 0.5316 0.5033
5 1996 12501 2499 1004 0.7992 0.4440 0.6653 0.5326

the validated.
Tab. 3 shows the results for the test dataset and

we comparewith the BN3 one [11] andMCNN‑3 of [3].
Also,we train twoversions of ourmodel onewithMax‑
pooling, and the other with AveragePooling. We ob‑
serve that our model with MaxPooling outperforms
the BN3 model. Our model has higher recognition, the
precision and the F1‑score. Beside, themainmetrics is
higher with 0.008 for our model that make our model
more satisfying than the BN3.

This paper is based on the argument that a deeper
network is better than a shallow one. It takes origin
from computer vision improvement on the last years.
To demonstrate the effect of the deep on the BCI case,
we train multiple versions of our model with different
number of layer in the second part. We add progressi‑
vely one layer following the architecture of the propo‑
sed model and we test all the generated model on the
test dataset. The result are in Tab. 4, as expected the
deepermodel get better performance for the F1‑score
and the recall, the 4 layers model get the best recogni‑
tion and precision.

There are many factor behind those result. First,
ourmodel is deeper than the others by usingmore lay‑
ers which implies a great number of parameters. Se‑
condly, we omit the use of fully connected layer and re‑
place them by multiple convolutional layers allowing
them to learnmore accurate features and decrease the
risk of over�itting and complexity of the computation.
For the pooling, the MaxPooling seems to be the ap‑
propriate method for our model compared with Aver‑
agePooling. But, our model contains more parameters
than the other making the learning time longer.Also, it
has a high loss at the end. Furthermore, the architec‑
ture is created for of�line classi�ication.

5. Conclusion
We presented a new ConvNet Architecture for a

P300 speller application by the translation of the P300
signal. The proposed model is based on EEGNet and
Deep ConvNet. The model contains 7 convolutional
layers with batch normalization and dropout that im‑

proved the performance. Themodel is composed of an
STCL simulating the FBCSP which is one of the main
traditional techni�ue. Then, �ive standard convolutio‑
nal layers follow the same logic of DeepConvNet. Fi‑
nally, a logistic regression is applied to get �inal deci‑
sion.The model is capable of outperforming the exis‑
ting models which lead to a new important architec‑
ture. Also, the design allows the visualizing of the lear‑
ned features. Moreover, we tried to justify our hyper‑
parameter based on previews work. Furthermore, we
experimentally justify the necessity of a deep neural
network rather than a shallow neural network. Furt‑
her works will focus on designing lighter architecture
with better performance. Also, we will introduce a hy‑
brid neural network based on ConvNet and recurrent
neural network.
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Tab. 3. Compared metrics for multiple methods

Architecture TP TN FP FN Recognition Precision Recall F1‑score
MCNN‑3 [3] 2077 11997 3003 923 0.7819 0.409 0.692 0.514
BN3 [11] 2084 12139 2861 916 0.7902 0.4214 0.6947 0.5246

Proposed with Max pooling 1996 12501 2499 1004 0.7992 0.4440 0.6653 0.5326
Proposed with Average pooling 1952 12343 2657 1048 0.7941 0.4235 0.6506 0.5130

Tab. 4. Compared metrics for different deep of the second part of the proposed method

Number of Layers TP TN FP FN Recognition Precision Recall F1‑score
0 1960 12273 2727 1040 0.7907 0.4181 0.6533 0.5099
1 1797 12674 2326 1203 0.8039 0.4358 0.599 0.5045
2 1911 12398 2602 1089 0.7949 0.4234 0.637 0.5087
3 1840 12622 2378 1160 0.8034 0.4362 0.6133 0.5098
4 1595 13257 1743 1405 0.8251 0.4778 0.5316 0.5033
5 1996 12501 2499 1004 0.7992 0.4440 0.6653 0.5326

the validated.
Tab. 3 shows the results for the test dataset and

we comparewith the BN3 one [11] andMCNN‑3 of [3].
Also,we train twoversions of ourmodel onewithMax‑
pooling, and the other with AveragePooling. We ob‑
serve that our model with MaxPooling outperforms
the BN3 model. Our model has higher recognition, the
precision and the F1‑score. Beside, themainmetrics is
higher with 0.008 for our model that make our model
more satisfying than the BN3.

This paper is based on the argument that a deeper
network is better than a shallow one. It takes origin
from computer vision improvement on the last years.
To demonstrate the effect of the deep on the BCI case,
we train multiple versions of our model with different
number of layer in the second part. We add progressi‑
vely one layer following the architecture of the propo‑
sed model and we test all the generated model on the
test dataset. The result are in Tab. 4, as expected the
deepermodel get better performance for the F1‑score
and the recall, the 4 layers model get the best recogni‑
tion and precision.

There are many factor behind those result. First,
ourmodel is deeper than the others by usingmore lay‑
ers which implies a great number of parameters. Se‑
condly, we omit the use of fully connected layer and re‑
place them by multiple convolutional layers allowing
them to learnmore accurate features and decrease the
risk of over�itting and complexity of the computation.
For the pooling, the MaxPooling seems to be the ap‑
propriate method for our model compared with Aver‑
agePooling. But, our model contains more parameters
than the other making the learning time longer.Also, it
has a high loss at the end. Furthermore, the architec‑
ture is created for of�line classi�ication.

5. Conclusion
We presented a new ConvNet Architecture for a

P300 speller application by the translation of the P300
signal. The proposed model is based on EEGNet and
Deep ConvNet. The model contains 7 convolutional
layers with batch normalization and dropout that im‑

proved the performance. Themodel is composed of an
STCL simulating the FBCSP which is one of the main
traditional techni�ue. Then, �ive standard convolutio‑
nal layers follow the same logic of DeepConvNet. Fi‑
nally, a logistic regression is applied to get �inal deci‑
sion.The model is capable of outperforming the exis‑
ting models which lead to a new important architec‑
ture. Also, the design allows the visualizing of the lear‑
ned features. Moreover, we tried to justify our hyper‑
parameter based on previews work. Furthermore, we
experimentally justify the necessity of a deep neural
network rather than a shallow neural network. Furt‑
her works will focus on designing lighter architecture
with better performance. Also, we will introduce a hy‑
brid neural network based on ConvNet and recurrent
neural network.
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