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Abstract: In this paper, we will discuss some algorithms 
in order to better optimize the problems of redundancy 
allocation in multi-state systems. The goal is to find the 
optimal configuration of the system that maximizes the 
availability and minimizes the investment cost. The avail-
ability will be evaluated using the universal generating 
function. In first step, our contribution consists in improv-
ing the genetic algorithm. In a second step, in the frame-
work of the Constraint Programming, we propose a new 
method of optimization based on the Forward Checking 
as solver. Finally, we used the top-k method in our choice 
that helps us to get the best k elements from all possible 
values with highest availability. In comparison with the 
chosen study, our methods yield better results that sat-
isfy the constraints of the problem in a shorter time.

Keywords: Redundancy Allocation Problem, Constraint 
Programming, Forward Checking, Optimization, Genetic 
Algorithm, Top_k

1.	 Introduction 
We will treat in our study the electrical network 

whose structure is multi states. In addition, this struc-
ture is serie-parallel. The primary function of a power 
grid is to provide electricity to its customers at opti-
mal operating costs with the assurance of quality and 
reasonable continuity at all times [1]. To plan an elec-
trical system, it is imperative to identify the variables 
and the constraints to model it [2]. Because of their 
sensitivity to defects, these systems have increasing 
complexity. So it is necessary to improve their reliabil-
ity and install redundant components in parallel [3]. 
As we know, the energy supply process is a high-level 
complex installation (production, transport distribu-
tion and consumption). The process requires several 
interconnected subsystems to achieve the high level 
objectives expected.

The components used in each step often work in 
essentially different operating modes, characterized 
by varying loads and performance, demand manage-
ment of a different nature, or different environmental 
conditions [4]. These modes result in different failure 
rates and life distributions. However, in terms of reli-
ability analysis, this is a problem that is not officially 
solved without quantifying the effect of multiple loads 
on systemic reliability [5]. The architecture of these 

systems is a series-parallel structure consisting of 
several components whose performance states vary 
from nominal to full failure, so the state of the global 
system is described by the state of its components and 
such systems are called (multi-state systems MSS). 
The most efficient tool for this study is the universal 
generating function UGF [6].

Fig. 1. Architecture of an electrical parallel-series 
system [6]

In the next section, we will describe the mathe-
matical formulation of the problem; our new methods 
(and the various parameters associated) are report-
ed in Section III, followed by the experimental results 
and their comparison with those of the literature. Dis-
cussion and a conclusion complete the text.

2.	 Mathematical Formulation of the Problem
In this paper, we will adopt the mathematical tool 

detailed by the authors in [7, 8, 9, 10]. A serial-paral-
lel multi-state system is often made up of n subsys-
tems in series. Each subsystem i (1 ≤ i ≤ n) contains 
ki parallel components with versions Vi. The version 
of each component is v such that (1 ≤ v ≤ Vi). All these 
components are characterized by their availability Aiv, 
their performance Giv, their cost Civ in the market. The 
structure of each subsystem i, is defined by the num-
ber Kiv of parallel components for each version [10].

Fig. 2. Series-parallel system composed of n subsystems 
each with ki components
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Let n be the number of discrete and independent 
random variables X1, …, Xn and let us assume that each 
variable Xi can be represented by vectors xi and pi, 
such as:
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The 𝒵 Transform of the variable X i is defined by the 
distribution function of the polynomial form:
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Let ⊗f be a multiplicative operator, this operator acts 
differently on the function ui(z), on the one hand:
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If the random variable is identical to a given perfor-
mance as is the case in our study Xi = Gi , and accord-
ing to (9), the resulting 𝒰-function from the combina-
tion of a set of m components is:
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Note that f(G1, G2, …, Gm) represents the equivalent 
productivity of m components. When these compo-
nents are connected in series, the function takes the 
following form:

	 f (G1, G2, …, Gm) = min (G1, G2, …, Gm)	 (11)

And in the case where the m components are connect-
ed in parallel, the function becomes:

	 ( ) m
1 2 m ii 1
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To satisfy a  requested performance state, we intro-
duce a satisfaction operator defined as the following:
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This operator also checks the following property:
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The objective of this operator is to eliminate all the 
terms not satisfying the given performance demand: 
Gi < G0 .

2.4. Application of the UGF on the MSS
To assess the availability of a MSS, the 𝒮 operator 

is introduced for the series composition and the op-
erator 𝒫 for the parallel one. These operators deter-
mine the polynomial U(z) for a group of elements.

2.1. Cost
Since the cost function is linear, the global cost of 

the whole system is defined by the vector:

{ }ii ivk k   with 
i
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1 v V
≤ ≤

 ≤ ≤
	

Given the set of vectors {ki =k1, k2, ..., kn}, the cost of 
the entire system is given by the formula:

	
in v
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2.2. Availability and Demand
We define the availability of a component as its 

ability to be operational at a given time t. It can be 
formulated mathematically by the following formula:

	 a (t) = p [s functioning at time t].	 (2) 

The system must provide a g0 demand predicted 
by a cumulative curve distributed often over four pe-
riods. so to meet this demand the availability of the 
system must be greater than or equal to this demand 
[11]. If a(t) represents the instantaneous availability 
of the system, g(t) its performance and g0 its required 
demand for a period tm, we can write using (2):

	 a = prob [g(t) ≥ g0].	 (3)

The demand described above, is used to divide the 
operation period t in m time intervals tm (1 ≤ m ≤ m), 
the availability of the mss can be written as follows:
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In engineering and for a given system S, the availa-
bility A is related to the index of load loss probability 
(LOLP) and is defined by [12,13]: LOLP= Prob(G < G0)

This allows us to write: 

	 LOLP = 1 – A.	 (5)

LOLP represents the probability that the system 
cannot provide the given demand G0. In the case of 
components with total failure that we consider in this 
study, each component j is characterized by its nom-
inal performance Gj and availability Aj. Thus we can 
write:

	
j 0 j

j j
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Pr G   0   1  A

  = =  


 = = −  
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2.3. Universal Generating Function UGF
The authors in [10] have largely represented the 

UGF technique that we will describe below:
UGF were introduced by I. Ushakov in 1986, and 

since then many scientists have proved the effective-
ness of the method such as G. Levitin and A. Lisnianski 
[14–16].
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for each i component containing ki version of com-
ponents vi, having the nominal performance Giv and 
availability Aiv according to equation (8) we can write:

	 ( )
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The 𝒰-function of each component will contain only 
two terms, which gives:
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So the 𝒰-function of a component i is:	

	 ( ) ( ) ii iv
kk G*

i i iv ivu z u z 1 A A Z  = = − +    	

Therefore, for a  system consisting of n subsystems in 
series, for each subsystem i and for each version of com-
ponents v, the subsystem is modeled as the following:
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The whole system contains n subsystems, thus, intro-
ducing the operator 𝒮 we obtain:
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par par paru z ,u z , u z …  	 (17)

Once user(z) is determined, we will need to assess the 
probability to meet the given demand required for w0, 
for this, using equation (15) we have:
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2.5. Formulation of the Problem
The problem can be summarized as the following:

–	 Maximize the availability resulting from:
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3.	E ffective Genetic Algorithm EGA
Genetic algorithms attempt to simulate the process 

of natural evolution following the Darwinian model in 

Parallel components. When the performance 
G is linked to productivity or the system capacity, 
the overall performance of the parallel components 
of the system is the sum of performances according 
to equation (12). Therefore the 𝒰-function upar(z) of 
a component i containing X i elements in parallel can 
be obtained by using the operator 𝒫:
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Thus, by using property’s 𝒰-functions of  equations 
(8), (10) and (14) we find two parallel components:
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ai are bj physically interpreted as the successive per-
formances of two elements and n and m are the num-
bers of levels of these performances. pi et qj represent 
the probabilities equilibrium of each level. We can see 
that the operator 𝒫 performs a simple multiplication 
of individual

𝒰-functions of each component:

	 ( ) ( )iX
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U z  u z
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Series components. In the case of s elements 
in series, the functionality of such system is provid-
ed by the element with the lowest performance, it 
acts as a bottleneck for the system. In this case, the 
𝒰-function user(z) is given using the operator 𝒮 which 
also performs simple multiplications of the individual 
𝒰-functions of each component. Considering n cardi-
nal levels, equations (9) and (10) allow to write the 
following equation:

	 user(z) = 𝒮{u1(z),u2(z)}	

with:

	  𝒮(G1,G2,...Gn) = min{G1,G2,...Gn}

So for two elements in series and using equations (8), 
(9) and (14) we obtain the following: 
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Series-parallel systems. The 𝒰-function of the 
entire parallel-series system is given, using consec-
utively, operators 𝒫 and 𝒮. In addition, in the case 
of systems with total failure as cited in section 3(ii), 
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a given environment. The individual is represented by 
a chromosome consisting of genes that contain the he-
reditary characteristics of the individual. The principles 
of selection, crossing, mutation are inspired by natural 
processes of the same name. It is associated with the 
value of the criterion to be optimized, its adaptation. 
We then generate iteratively populations of individuals 
on which we apply processes of selection, crossing and 
mutation. We start by generating a random population 
of individuals. To go from generation k to generation 
k + 1, the following operations are performed. At first, 
the population is reproduced by selection where the 
good individuals reproduce better than the bad ones. 
Then, a cross is applied to the pairs of individuals (the 
parents) of a certain proportion of the population to 
produce new ones (the children). A mutation operator 
is also applied to a certain proportion of the popula-
tion. Finally, new individuals are evaluated and inte-
grated into the population of the next generation2.

Several criteria for stopping the algorithm are pos-
sible: the number of generations can be fixed a priori 
(constant time) or the algorithm can be stopped when 
the population does not evolve sufficiently quickly.

Genetic Algorithm (EGA), on a MSS with the objec-
tives of minimizing the cost and maximizing the avail-
ability of the given system. The algorithm for EGA is 
the following:

 EGA (imputs: file)
  Number_generation←0;
 Population←Init_population(P[NUMINDIVIDUAL]);
   Evalpopulation(P[Number_generation]);
    While(Number_generation<MAXNUMBER); 
     PS ← selection(Population);
      PC ← crossover(PS);
    mutation(PC);

 Population←addnewindividualsIFDosentExist 
 (Population,PC);
  Population ← RemoveWeakestIndividuals 
 (Population);
      Number_generation++;
   End While
  Return best;
 End 

3.1. Encoding of Solutions
Our solutions are in the form of a set of strings that 

represents the set of the sub-systems of our system, 
and each string is a set of integers where the length 
of the set is equal to the number of devices of the sub-
system, and each integer reflects the id of the device.

3.2. Evaluation of Each Solution
Each time an individual is created, a fitness value is 

associated to it. This value is used by the selection pro-
cess to favor the most suitable solutions, as it reflects the 
performances of such individual towards our problem.

We proposed two fitness functions to evaluate the 
solutions, the first one included in the EGA1, and the 
second one in the EGA2.

The evaluation function of the EGA1 to calculate 
the fitness, in order to satisfy the objectives of, maxi-
mizing availability and minimizing the cost is the fol-
lowing: 

 	 Fitness_function1(System) = max S 0

S

A C
C

 ×
  

	

where:
Cs : is the cost of the individual component.
As: is the availability of the individual component.
C0: is the initial cost which is used as an upper bound 
as shown in the constraint

The evaluation function of the EGA2 to calculate 
the fitness, in order to satisfy the objectives of, max-
imizing availability and minimizing the cost where is 
the following: 

	 Fitness_function1 (System) = max(α × As + β × Cs) 	

where: 
α and β are respectively the given weights for avail-
ability, cost of the system and that verified : α + β=1.

3.3. Initial Population
The choice of the initial population is based on 

a totally random solutions design, meaning that 
each subsystem of the given system has initially 
a random number of devices where these random 
solutions respect the constraints: A ≥ A0; G ≥ G0 et 
C ≥ C0. G is the system’s performance, and G0 the 
energy demand.

3.4. Selection
The selection process defines how many times an 

individual is involved in the re-production process, 
the individuals with the best performances (best fit-
ness values) are selected more often than the others 
and are used in the following step which is the re-
production. Selection has done using roulette wheel 
scheme.

3.5. Reproduction
The reproduction or variation helps to find better 

individuals, by producing individuals based on the 
best solutions of the current population. It is carried 
out using two main operators: Crossover and muta-
tion. We first create the set A of the common genes in 
the both selected somes P1 and P2 , then we create the 
set B and C which contains respectively P1 – A and P2 
– A. Then we add to Z1 and Z2 all elements of A, and we 
choose randomly in which set we will take the next 
element, if it’s the set B, we add the element to Z1 and 
we add the element to Z2, else we do the same with 
choosing the unchosen set.
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Fig. 3. An example of the crossover operator

After the crossover, the mutations must occur with 
a low probability Pm. For EGA, mutations occur with 
a probability is the length of the individual encoding. 
And it uses the Swap mutation, since, as mentioned 
before, changing the order of integers for a system 
does not change anything. Evaluation and selection 
for replacement.

3.6. Termination
The termination criterion we chose for EGA is the 

number of generations. Once this number is reached 
EGA return the best solution found.

4.		 Constraint Satisfaction Problem in the 
Four Algorithms: EFC1, EFC2, TopK-FC and 
GenGA-FC

4.1. Constraint Satisfaction Problem
We consider here a CSP defined by a triplet (X, D, 

C) where X is a set of n variables (X1, X2, ..., Xn) their 
respective finite domains (D(X1), D(X2), ..., D(Xn)) and 
C a set of relations or constraints between these var-
iables (a constraint on Xi1

, Xi2
, ..., Xi k

 is a subset of the 
Cartesian product D(X1) × D(X2) × ... × D(Xk)). For an op-
timization problem (here of maximizing a function), 
we also consider a cost function f and a constraint on 
this cost f (X1, X2, ... , Xn) ≤ C where C is a constant that 
the optimization strategy makes evolve. We express 
our problem in constraint logic programming (CLP) 
[17] and use the  ECLiPS e system [18] which imple-
ments all the constraints classical, linear (# = , # ≤ , ...) 
and others (alldistinct, element, ...), and also allows 
to simply define new ones (direct operations on do-
mains, precise control of coroutining, ...). The min_max  
predicate (minimize, maximize, ...) optimizes a lin-
ear expression by integrating the resolution goal of 
the problem (usually variable instantiation, labeling) 
within a Branch & Bound (i.e. search tree path with 
pruning by limitation of the cost function).

4.2. �Modeling the Problem of RAP Applied to 
a Series-Parallel System as a VCSP

As explained above, we will propose a modelling 
for the redundancy allocation problem as a VCSP. For 
that, we have to define variables, domains of varia-
bles, constraints and objective functions.

i. Variables:
X = {X1, ... , Xn} = 
{subsystem1, ..., subsystemn , ji , Dev};

ii. Domains:

D = {Dx1, ... , Dxn}; = Dsubsystem i = {(Ciji , Aiji , Giji )},

DDev = {Deviji } = {1, ... , Devi,max}; et Dji = {1, ..., ki};

where:
–	 n is the number of subsystems, i is a  number of 

a subsystem 
–	 ji is the number of devices for each subsystem i
–	 {Ciji } is the set of costs that are floats, where Ciji is the 

cost of a device ji of a subsystem i
–	 Aiji is the set of availability values that are floats, where 

Aiji is the availability of a device ji of a subsystem i
–	 {Giji } is the set of performance values that are floats, 

where Giji is the performance of a device ji of a sub-
system i

–	 {Deviji } is the number of devices that can be cho-
sen, where Deviji is the number of devices ji  , we can 
choose for a subsystem i

iii. Constraints:

–	 1
ik

i=∑  Deviji ≤ Devi,max  

	 this constraint assures that the choice of devices re-
spects the given required number of devices for each 
subsystem of the system

–	 UFG(SG  ≥  G0) ≥ A0 , this constraint assures that the so-
lution S must be available for a  performance that 
respects a  given demand. This is calculated using 
the UGF.

iv. Objective functions:
–	 Maximize the availability A, st A ≥ A0 under the con-

straint: G ≥ G0

–	 Minimize the cost C, st. C ≤ C0

The problem here is to conceive the configuration 
of a system by making a choice of components and by 
allocating an appropriate level of redundancy. 

4.3. �Solver Based on Forward Checking Algorithm
To solve our problem using the VCSP model and 

the UGF introduced above and compare it with the 
previous approaches, we adapted and extended the 
forward checking algorithm [19], which consists of 
constructing a solution, by considering assignments 
to variables in a particular order; an order where the 
constraints are satisfied. The vector in our case is a set 
of assignments of devices to subsystems. A solution 
vector is a set where the devices choice satisfied the 
constraints (Cost, Availability, and Performance). The 
forward checking examines partial solutions, which 
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are assignments to a sub-set of the variables, and try 
to extend those partial solutions until all variables are 
assigned; it prevents assignments that guarantee lat-
er failure. When we are considering a possible value 
vil for the current variable Vi it is sufficient to look for 
a zero in Domain i. Hence, we do not need to do the 
backwards consistency checks that are characteristic 
of backtracking. The price, of course, is that when we 
make a successful assignment to the current variable, 
we must check it against all outstanding values of the 
future variables, updating Domain as necessary.

After initialization, the call of Forward Checking (i) 
will print all solutions. An assignment to fails if there 
is a domain wipe-out‖ (DWO), which means that we 
have discovered that every value of some future vari-
able is inconsistent with our choices so far. 

In our case, the set s = s1, ... , Sn is the set of devices 
that leads to a solution that respects the objectives 
of performance and cost. The availability and cost of 
that solution will help us to compare our method with 
some of the most relieving works of the literature.

In the EFC1, EFC2, topK-FC, we added a third con-
straint which is:

	 i

ji jii

n k
i i , i , 0I 1 j

rDev C C
=

≤∑ ∑ 	

This constraint allows optimizing each subsystem 
depending on its number of devices that constitute 
the system. It also allows respecting a given maxi-
mum value of cost for a system. 

Note that: 

	

ji

i

jii

i
i k

ij

Dev
r

Dev
=
∑ 	

The forward checking method, which is in com-
mon between all our algorithms, can be resumed in 
the following algorithm:

 Forward-Checking (i)
 �% loop on each value of the domain of and checks the 

constraints in order to find a solution 
 For each (Ciji,Aiji,Giji) ∊ Dsubsystemi

     si ← (Ciji,Aiji,Giji)I;

  If 0

,

 
ji

ji

i
i i

C
C

r Dev

 
< 

 
 then

  If I=n then
    If (UGF(S1, ..., Sn)G > G0 ≥ A0 then
       Print S1, ..., Sn;
     Else 
    If Check-Forward(i) then
     Forward-checking(i+1);
     Restor(i);
    End If
   End If
  End If
 End If
 End for each
  End

4.4. Extended Forword Checking 1: EFC1
As we added in the constraints, the partial cost 

which has to be taken in consideration, the number of 
possible values is still high, so we developed a specific 
method to respond to that need. The domain initiali-
zation method is detailed in the following algorithm:

 Domain-Initialization (Devi,ji, ki)
 Result : list;
    i, i1, j, k: intenewger;
    temp, temp1: string ;
      For i1 from 0 to Devi,ji – 1 do
       temp ← i1 ; // empty string
       k ← 0;
       While (k < ki) do
        temp ← i1;
        k++;
       end while
       result.add(temp);
       j ← temp.length();
        for i from i1 + 1 to ki – 1 do
       temp1 ← temp.substring(0, j/i)
        for z from j/i to temp.length() do
         if z mod Devi,ji = 0 then
         temp1 ← temp1 + 1
         else
 temp1 ← temp1 + (z mod (Devi,ji –1))
       End if
      End for
      Result.add(temp1);
      temp ← temp1

     End for
    End for
   Return result;
  End

4.5. Extended Forword Checking 2: EFC2
The domain initialization method in this algorithm 

was implemented by getting all the possible values re-
specting the participative cost and returning domains 
chosen randomly from the previous list not exceeding 
a given limit. The domain initialization method is de-
tailed in the following algorithm:

 Domain-Initialization (i, Devi,ji, ki, Ci, limit)
 % is the number of the subsystem
 % is the partial cost
 % is the limit for the returned list where the number of
  possible value ≤ limit * Devi,ji
  result : list;
  result Possible-Values(0, result, ki, Ci, i);
   if result.size() > limit * Devi,ji then
    result ← make-to-limit(result, limit * Devi,ji);
   end if
   return result;
 End
    Possible-Values (j, lst, ki, Ci, i)
    newlist : list;
    e, temp : string;
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    k : integer;
    cost : float;
     if j = ki then
      return lst;
     end if
      for each e ∊ lst do
       for k from 0 to ki – 1 
        temp ← e + k
        Cost ← cost(temp);
         If 
  !newlist.contains(temp)&&cost ≤ Ci then
          newlist.add(temp);
         End if
        End for 
       End for
      Return Possible-values(j+1, newlist, ki, Ci, i);
     End
    Make-to-limit(list, limit)
     �%choose randomly limit number of the list 

and return the new list
    End

4.6. Top-K Forword Checking 1: TopK-FC
The result of the ranking queries is therefore a set 

of objects (n-tuples in the relational databases) sort-
ed by score. Each object is represented by an identifi-
er and a score to measure its relevance and similarity 
to the request. The result of a ranking query is usually 
all the top k objects, most often those with the highest 
scores, this set is called top-k, and the query is simply 
called top-k query. We find a detailed study on this al-
gorithm in [20].

In this method, we used the top-K method in our 
choice which helps us to get the best K elements from 
all possible values with highest availability. The do-
main initialization method is detailed in the following 
algorithm:

  Domain-Initialization (i, Devi,ji, ki, Ci, limit)
  % is the number of the subsystem
  % is the partial cost
  � % is the limit for the returned list where the num-

ber of possible value
  result : list;
  result ← Possible-Values (0, result, ki, Ci, i);
   if result.size() > limiti * Devi,ji then
    result ← make-to-limit 
(result, limiti, Devi,ji);
   end if
  return result;
  end
  Possible-values(j, lst, ki, Ci, i)
   newlist :string ;
   e,temp :string ;
   k :integer;
   cost :float;

    if j=ki then
     return lst;
    end if
    for each e ∊ lst
     for k from 0 to ki – 1 do
      temp ← e+ k;
      cost ← cost(temp);
      if !newlist.contain(temp&&cost ≤ Ci then
        newlist.add(temp);
      end if
     end for
    end for
   return Possible-values(j+1, newlist, ki, Ci, i);
  End
  Make-to-limit(list, limiti)
   �% choose limiti number of the list with the highest 

availability and return the new list
  End

4.7. �Generating GA Forword Checking 1: 
GenGA-FC

In this case, we observed that subsystems can 
compensate each other for the cost, so it can be that 
there are subsystems which exceed their partial cost, 
and others with too low cost, and the sum coincides 
with the perfect constrained cost, this helps to get 
solutions with the greatest availability. So we used 
an algorithm inspired from the step of generation of 
the initial population in the genetic algorithm. We de-
composed the method into two procedures, the first 
one, gets all possible values for each subsystem under 
the constraint of the cost C. And the second one, takes 
the result list of the previous method and for a certain 
number of iteration, we choose randomly in the do-
mains generated, check if they respect the constraint, 
if it‘s true, we add them to the result list.

5.	E xperimental Results
In this section, we will present and discuss the re-

sults found using each method described above.

5.1. Experimentation
We implemented the algorithms above using Java 

8 and we run them on an i7 laptop. As inputs, we 
choose two tables given in the literature in order to 
be able to compare our results and to prove the per-
formance of our proposed methods.

5.2. Comparisons
To demonstrate this efficiency, we will conduct 

a comparative study with the best results obtained in 
the literature [21–22].
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Tab. 1. Data of available different power components 
technologies [21–22]

Subsys-
tems

Device 
Num-

ber

Avail-
ability Cost(Mln$)

Perfor-
mance
 (MW)

()

Po
w

er
 U

ni
ts

1 0.980 0,590 120

2 0.977 0.535 100

3 0.977 0.535 100

4 0.977 0.535 100

5 0.977 0.535 100

6 0.977 0.535 100

7 0.977 0.535 100

H
T

Tr
an

sf
or

m
er

1 0.995 0.205 100

2 0.996 0.189 92

3 0.997 0.091 53

4 0.997 0,056 28

5 0,998 0,042 21

H
T 

Li
ne

1 0,971 7,525 100

2 0.973 4,720 60

3 0,971 3,590 40

4 0.976 2.42 20

M
T 

Tr
an

sf
or

m
er

1 0.977 0,180 115

2 0.978 0,160 100

3 0,978 0,150 91

4 0.983 0.121 72

5 0.981 0,102 72

6 0,971 0.096 72

7 0.983 0,071 55

8 0.982 0.049 25

9 0.977 0.044 25

M
T 

Li
ne

s

1 0.984 0,986 128

2 0.983 8,25 100

3 0.987 0.490 60

4 0.981 0,475 51

Tab. 2. Parameters of power demand curve [21–22]

Power Demand 
Level (%)

100 80  50  20

Duration (Hour) 4203 788  1228 2536 
Probability 0.480 0.09  0.14 0,290 

We will present in table 3 the results of our exper-
imentation.

Tab. 3. Optimal solutions obtained by HS, AC, GA and 
our approaches EGA1, EGA2, EFC1, EFC2, topK-FC and 
GenGA-FC

D
em

an
d 

(%
)

To
po

Lo
gy

O
pt

im
al

e
To

po
lo

gy
 

M
et

ho
d

Co
st

 C
(m

$) A

99
%

Sub1 4,4,6,7 Har-
mony
Search 
HS
[21]

13,75 0,992
Sub2 4,4,4,4, 4,4,4 
Sub3 1,4
Sub4 7,7,7,9
Sub5 4,4,4

99
%

Sub1 3,4,4,6,7
Ant 
colony
[22]

14,302 0,9906
Sub2 5,5,5,5,5,5,4
Sub3 1,4
Sub4 7,7,7,8,8,9
Sub5 3,4,4,4

99
%

Sub1 4,4,6
Geneti 
Algo-
rithm
[21,22]

15,87 0,992
Sub2 3,3
Sub3 2,2,3
Sub4 7,7,7
Sub5 4,4,4

99
%

Sub1 7,7,6,6

EGA1 10,165 0,999154
Sub2 5,5,5,5,5,3,3
Sub3 3,3
Sub4 9,6,6,5
Sub5 4,3,3

99
%

Sub1 6,6,6,6

EGA2 10,322 0,999116
Sub2 5,5,4,4,3,3,1
Sub3 3,3
Sub4 8,8,4,3
Sub5 3,3,3

99
%

Sub1 6,6,6,6

EFC1 9,795 0,999111
Sub2 5,5,5,5,5,5,5
Sub3 3,3
Sub4 9,9,9,9
Sub5 4,4,4

99
%

Sub1 7,7,6,6

EFC2 10,009 0,99915
Sub2 5,5,5,5,5,4,4
Sub3 3,3
Sub4 9,9,9,3
Sub5 4,4,4

99
%

Sub1 7,7,5,1

TOP-K 
-FC

11,148 0,999154
Sub2 5,5,4,3,2,1,1
Sub3 3,3
Sub4 8,8,8, 4
Sub5 4,4,3
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D
em

an
d 

(%
)

To
po

Lo
gy

O
pt

im
al

e
To

po
lo

gy
 

M
et

ho
d

Co
st

 C
(m

$) A

99
%

Sub1 6,6,6,6

GA-FC 9,819 0,999111
Sub2 5,5,5,5,5,5,4
Sub3 3,3
Sub4 9,9,8,8
Sub5 4,4,4

5.3. Discussion 
As shown in Table 3, our methods are better re-

garding the availability and cost. The topologies ob-
tained through the methods offer more flexibility to 
the system. In addition, these configurations have an 
identical choice of components in each subsystem 
which is a great advantage for designers of compo-
nents.

6.	 Conclusion
We presented in this paper different methods for 

solving optimization problems of redundancy in mul-
ti-state systems, those methods based on genetic al-
gorithm and constraints satisfaction including the ex-
tensions of the Forward checking algorithm gave the 
best results in the comparative case we studied, it also 
allows the verification of the results of the cost and 
availability obtained. The configurations obtained are 
simple and homogeneous and rarely varied, the ori-
entation of the selection according to the application 
is a strong point of those methods. Our work has also 
helped proving that constraints oriented research 
improves complexity on one side and allows finding 
various and high quality solutions. 
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