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Abstract:
In recent decades, the airline industry has become very
competitive. With the advent of large aircraft in service,
unit load devices (ULD) have become an essential ele‐
ment for efficient air transport. They can load a large
amount of baggage, cargo or mail using only one unit.
Since this results in fewer units to load, saving time and
efforts of ground crews and helping to avoid delayed flig‐
hts. However, a deficient loading of the units causes ope‐
rating irregularities, costing the company and contribu‐
ting to the dissatisfaction of the customers. In contrast,
an excess load of containers is at the expense of cargo.
In this paper we propose an approach to predict the de‐
mand for baggage in order to optimize the management
of its ULD flow. Specifically, we build prediction models:
ARIMA following the BOX‐JENKINS approach and expo‐
nential smoothingmethods, in order to obtainmore accu‐
rate forecasts. The approach is tested using the operatio‐
nal data of flight processing and the results are compared
with four benchmarkmethod (SES, DES, Holt‐Winters and
Naive prediction) using different performance indicators:
MAE,MSE,MAPE ,WAPE, RMSE, SMPE. The results obtai‐
nedwith the exponential smoothingmethods surpass the
benchmarks by providing more accurate forecasts.

Keywords: Air Transport, ULD, Machine Learning,
ARIMA, Exponential Smoothing

1. Introduction
With the increasing importance of air cargo [1],

many traditional airlines have shifted from simple
passenger carriers to ”combined” carriers (cargo
and passengers). Although passenger traf�ic remains
the main source of revenue for mixed carriers, air
cargo transport has become an increasingly important
source of revenue for these companies.

Usually, airlines use the bunkers of their passenger
plane to transport goods. Thus, the delivery of freight
for these carriers is strongly in�luenced by several fac‑
tors, as the number of the passengers, the �light sche‑
dule, the routing and the amount of baggage each pas‑
senger can bring.

For these companies, it is very common to only
load freight into the space remaining in thebunkers af‑
ter the total loading of all the passenger baggage. The‑
refore, there is no guarantee that a shipment will be
sent in a speci�ic �light. For large aircraft, the transport
of cargo and baggage is carried out by means of load
units (ULD): pallets or containers, which allows rapid
loading and unloading of freight and baggage and a

gain in terms of time and effort.
Luggage demand forecasting is required to deter‑

mine the number of ULDs that are required to load
baggage on planes and leave enough space to load
cargo. Thereby, optimal use of ULDs for passenger
baggagewill improvepassenger service and freight for
maximum pro�it and service.

Currently, ULD allocation to a �light is very empi‑
rical. It is therefore necessary to estimate the demand
for �light baggage, to provide a scienti�ic basis for this
allocation of ULDs for the passenger baggage to be em‑
barked and to improve the ef�iciency of the service.

In this context, our research aims to use supervi‑
sed learning methods to predict short‑term (7 days)
demand for baggage. The objective of this study is to
build a prediction based on the ARIMA model and to
compare its accuracy with the exponential smoothing
models.

The remainder of this paper is organized as fol‑
low: in Section II we present the background of for‑
castings models, section III presents relevant related
works, section IV introduces our work and its motiva‑
tion, V presents the application of the forcasting mo‑
dels, and �inally, section VI gives a summary and re‑
commendations.

2. Motivation: ULD Management
2.1. ULD and Baggage Typology

Cargo units are pallets or containers used to load
baggage, cargo andmail on containerized planes. They
can load a large amount of baggage or freight or mail
in one unit. Each ULD has its own packing list (or ma‑
nifest) so that its content can be tracked.

In our case, there is 4 types of containers that can
be loaded according to the types of machines:
‑ AKE: These types of containers are used on machi‑
nes B747‑400, B787‑800 and B767‑300;

‑ DQF: These types of containers are only used on
B767‑300 machines;

‑ AAK: These types of containers are used on machi‑
nes B747‑400, B787‑800 and B767‑300;

‑ DPE: These types of containers are only used on
B767‑300 machines, they are rarely used;
Below (Fig. 1) is an illustrating example of an AKE

ULD.
ULDs are identi�ied by these types of baggage,

which facilitates their management. However, the lack
of a suf�icient number of ULDs at the level of stopovers
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Fig. 1. Example of ULD specification [2]

generates a mixed load of baggage making their treat‑
ment heavier, which can lead to delayed baggage and
passenger complaints.

2.2. Provision of Stopovers and One‐Off Events
A minimum number of ULDs is allocated at the le‑

vel of each stopover based on the types of machines
used during the season for �lights to the stopover con‑
cerned, the �illing of �lights (number of passengers de‑
parting from the stopover concerned ), as well as the
operational constraint of the stopover (example: Non‑
use of AA� type ULDs for �lights to Montreal).

During periods of high traf�ic (such as weekends,
holiday periods ..), the stopover time allocated to �light
processing does not allow the repatriation of all ULDs
unloaded at the stopover making stock rebuilding at
the local HUB dif�icult. It is necessary to wait for the
next �lights to these stopovers to repatriate the ULD,
which is not always the case as it happens times that
no jumbo jet is programmed at the level of this stopo‑
ver.

To ensure that all baggage at a destination will be
transported and delivered to their owners in the same
�light, the planner checks eachmorning themovement
of the ULDs, the stock status of each destination and
the passenger forecasts of the �lights of the day. To
then send instructions to the station managers on the
number of ULDs containing the baggage, and empty (if
necessary) to be loaded on board the aircraft for ope‑
rational �lights of the day.

2.3. Motivation
The existing system allows for effective manage‑

ment andplanning ofULDson the company’s network,
with real‑time visibility of the location and status of
the ULD, and inventory control at the stations to ens‑
ure availability.

However, the anomalies present at the level of sen‑
ding and processing of messages, the management of
stopover stock as well as the irregularities related to
the management of occasional events (with high traf‑
�ic), make the dynamic management of ULDs dif�icult,
which leads sometimes to overstock or under‑stock at
stopovers and generates delayed baggage.

This makes predictive planning to send the right
number of ULDs even more dif�icult and delicate.

The purpose of this paper is:
‑ Analyze baggage behavior during different periods
for a transatlantic air route.

‑ Construct a predictive method for forecasting bag‑
gage demand.

‑ Develop a short‑term baggage forecast, delivering
reliable and credible results for decision‑making re‑
garding the number of ULDs to be loaded for each
�light.
Baggage demand forecasting was required to de‑

termine the fair number of ULDs required to load air‑
craft baggage for each �light and leave enough space to
load cargo.

3. Context and Background: Econometrics and
Forecasting Model

3.1. Time Series
A time series is a succession of observations over

time. A time series usually consists of several ele‑
ments:
‑ Trend: represents the long‑term evolution of the se‑
ries.

‑ Seasonality: evolution repeated regularly every year.
‑ Stationary (or residual) component: what remains
when the other components are removed and des‑
cribes the short‑term evolution of the series.
A time series comes from the realization of a family

of random variables {Xt, t ∈ I}, where the set I is a
time interval that can be discrete or continuous. For
our study, we note the set I = {0, 1, ..., T}, where T is
the total number of observations.

3.2. Forecast Models
In this work, we are interested in time series ana‑

lysis in order to understand the behavior of a variable
and its dynamics, to discover the regularities and then
to establish a short term forecast.

Prediction methods are often subdivided into ca‑
tegories. We focus on forecasts based on the ARIMA
model and the exponential smoothing models.

3.3. BOX JENKINS Method
The Box‑Jenkins method [6] refers to a set of pro‑

cedures for identifying and estimating time seriesmo‑
dels in the class of autoregressive integrated moving
average (ARIMA) models.

Box‑Jenkins’ approach to building the ARIMA mo‑
del includes the following steps:
‑ 1. Identify the parameters p, d and q of the model
‑ 2. Select the appropriate model
‑ 3. Diagnose the chosen model
‑ 4. Use the model for forecasting
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Fig. 1. Example of ULD specification [2]
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3.4. Smoothing Method
Themethods of exponential smoothingwere intro‑

duced by Holt in 1957 [13] and by Winters in 1960
[22] and popularized by Brown in 1962 [7]. They
constitute the set of empirical techniques that assign
exponentially decreasing weights as the observation
is more older. Thus, recent observations have more
weight in the forecast than older observations.

Simple exponential smoothing Simple exponential
smoothing is used for short‑term forecasts. It assu‑
mes that the data �luctuates around a reasonably sta‑
ble average without seasonality and a locally consis‑
tent trend. The speci�ic formula for simple exponential
smoothing is:

X̃(h) = St

St = α×Xt + (1− α)× St−1

With α is a real 0 < α < 1
The predicted value is theweighted average of pre‑

vious observations. If α = 0, then the current value is
ignored, the new value depends entirely on the smoot‑
hed value that precedes it. The smaller the value of α,
the greater the selection of the initial value of S. Thus
the choice of the initial value affects the calculation of
the values which follow it; it can be initialized by the
average of � or 5 �irst observations.

Double exponential smoothing Double exponential
smoothing is used when the data show a trend. It is
a generalization of simple exponential smoothing that
assumes that the series approaches locally through
an af�ine transformation of time. It is an exponential
smoothing with a trend [15].

Its speci�ic formula for is:

X̃(h) = St + hTt

St = α×Xt + (1− α)(St−1 + Tt−1)

Tt = γ(St − St−1) + (1− γ)Tt−1

Where 0 < γ < 1 and 0 < α < 1 And h represents
the horizon of the forecast made at time T.

Triple exponential smoothing (Holt‐Winters) This
type of exponential smoothing makes it possible to
add to the autoregressive component of the model, a
trend and a seasonality. But that can be adapted to
the series without seasonality by adjusting them by a
line in the vicinity of T [15].

The formula of the additive seasonal HWmodel is:

X̃(h) = St + hTt + It−p+h

St = α(Xt + It−p) + (1− α)(St−1 + Tt−1)

Tt = γ(St − St−1) + (1− γ)Tt−1

It = δ(Xt − St) + (1− δ)It−p

Where 0 < γ < 1 and 0 < α < 1 and 0 < δ < 1
And It is the seasonality index smoothed at the end of
period t and p is the seasonality cycle.

3.5. Performance and Model Comparison
To assess the credibility of a given model, valida‑

tion is an essential activity when faced with the need
tomake critical decisions based onmodeling results. It
allows us to decide whether the model responds cor‑
rectly and ef�iciently to our problem.

Several methods are used in the benchmarking ap‑
proach for time series data to study the accuracy of a
given model:

Partitioning data for time series The partitioning of
the data will divide the series to study in 2 periods:
‑ Train is the set of data used for the analysis and con‑
struction of the model.

‑ Test is the dataset used to verify and validate model
performance. We assume that we do not have these
data and we want to predict them.

‑ Future is the period of which we do not really know
and we want to predict.
Generally, more data is allocated for training and

less for testing. �ne can choose a �ixed data partition
or by advancing the learning period (the partitioning
is done several times). The latter has several advanta‑
ges; it allows us to compare the performance of roll‑
forward deployment scenarios.

Performance Indicators (KPIs) To evaluate the accu‑
racy of the forecast, the validation periodmust be exa‑
mined by comparing the actual values Xt and the Ft va‑
lues generated by the model, by comparing their per‑
formance indicators.

Several KPIs are possible for our study:
Mean Absolute Error

MAE =
1

T

T∑
t=1

|Xt − Ft|

The weaker it is, the smaller the gap between ob‑
servation and prediction. MAE is not used when the
series is intermittent.

Mean Squared Error

MSE =
1

T

T∑
t=1

|Xt − Ft|2

It is preferred to MAE because it is more sensitive
to errors with small deviations.

Mean absolute percentage error

MAPE =
1

T

T∑
t=1

|Xt − Ft|
|Xt|

It can only apply to strictly positive values.
Weighted Absolute Percentage Error

WAPE =

∑T
t=1 |Xt − Ft|∑T

t=1 Xt
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Root mean squared error

RMSE =

√√√√ 1

T

T∑
t=1

(Xt − Ft)2

Symmetric Mean Percentage Error

SMPE =

∑T
t=1 Ft −Xt∑T
t=1 Ft +Xt

The best performingmodel is the one that minimi‑
zes the most these key performance indicators.

Time series are widely used in various �ields, such
as �inance [8] [21], energy consumption [20] [10],
cloud performance [16]. We are interested in this pa‑
per in predicting the demand for ULDs to optimize the
cost of travel.

4. Related Works
The quality of an airline’s service depends on its

timeliness, accuracy, functionality, quality, and price.
For these purposes, airlines need optimization‑based
decision support systemsOptimization [25]. There are
several works in the literature that address different
aspects of air transport optimization, as airline crew
scheduling [4] [12], crew pairing [3] and �light plan‑
ning among others [17]. However, the study and opti‑
misation of the management of ULDs is still rare, and
for themost part does not exploit the techniques of ar‑
ti�icial intelligence and machine learning.

Thus, Lu et al. [14] estimate safety stock levels of
ULDs for international airline operations which is as
theminimumquantity that can support the utilization
during the entire trip. Limbourg et al. [19] deal with
the problem of an optimal loading of ULDs in an air‑
craft. Wong et al. [23] has studied the issue of loading
passengers’ luggage in the cargo hold in an optimal
way. Yan et al. [24] proposed a mixed integer non li‑
near model to address the problem of how to load the
containers into anaircraft in a stochastic environment.

Deploying machine learning in the business pro‑
cess by using data from logistic information systems
offers the company several advantages: anticipating
the evolution of its stocks, optimizing �low manage‑
ment by reducing costs, thus enabling the steering
committee to focus on decision‑making with better
control and visibility.

The positive impact of the machine Learning for
the supply chain lies in the management of demand
forecasting, and the anticipation of product needs,
which eliminates operating irregularities (baggage
not routed ..) and consequently allows a better service
delivery for customers.

�n the �ield of passenger air transport, several stu‑
dies have been conducted to study the performance of
the �light based on historical data (number of passen‑
gers, number of baggage lost, number of delays ...) but
there are very few works on the estimated demand in
terms of baggage (especially ULD).

Among them is Cheng’s comparative study on bag‑
gage demand forecastingmethods [9]. Thiswork com‑

pares prediction models: neural networks and multi‑
ple regression to predict baggage demand. Themodels
werebuilt basedon thehistorical data of the �light bag‑
gage claim. �n order to provide a scienti�ic basis for
the allocation of resources for checked baggage and to
improve the ef�iciency of the passenger service, fore‑
castsweremade by analyzing three types of data (data
for all �lights, data of a single �light, and data of �lig‑
hts with the same destination). The authors suggest
to optimize the neural network model or to choose a
more adequate predictive model and address this is‑
sue more accurately.

Also, Li conducted an analytical study on the de‑
parture baggage check at the airport based on passen‑
ger behavior [18]. This study was based on operati‑
onal data from the airport to establish an analysis of
the behavior of the baggage claim process and bag‑
gage claim characteristics such as weight and quan‑
tity, which can provide support for scienti�ic decision‑
making for the demand forecast of baggage. The re‑
sults of this analysis showed that baggage weight fol‑
lows a widespread distribution of extreme value and
demand varies according to the type of �light, which
has led to improvements in the baggage registration
process.

Bokern [5], who was inspired by D’Engelbronner
[11], conducted research on creating a forecast based
on two data sources: historical �light data and reserva‑
tion data. He showed in his thesis that a forecast can
be made over a 10‑day horizon with an error of 2‑3%.
We are interested in the prediction made on the basis
of the �light data obtained from the ALTEA informa‑
tion system. To create this forecast, Bokern used two
types of models: Autoregressive Moving Average Mo‑
dels (ARMA) and Exponential Smoothing (ES)models.
A comparison between the models was made on the
basis of error measurements to determine which fo‑
recasting model is the best in terms of forecasting.

5. Forecasting
5.1. Data Source

The source of the data is the AMADEUS ALTEA De‑
parture Control System ‑ Costumer Management. Two
data �iles will be extracted from the DCS and saved in
Excel �iles:
‑ Statistics Baggage by period: this �ile contains sta‑
tistics on checked baggage in each �light per pe‑
riod (�light number, type of machine, date of depar‑
ture, departure, destination, number of pieces, total
weight of coins ..).

‑ Filling of �lights: provides information on the num‑
ber of passengers boarded for a �light (�light num‑
ber, type ofmachine, departure date, departure, des‑
tination, type of cabin, number of PAX recorded,
number of PAX on board).
After preprocessing these two �iles, a table of two

columns will be created which will include the date of
the �light and the corresponding baggage � passenger
ratio and which will represent our series to be analy‑
zed.
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Fig. 2. Structure of the final file to exploit

5.2. Data Analysis
Before the implementation of the prediction mo‑

del, it is essential to visualize our series, analyze it and
study its behavior over time to check if it contains null
values (if yes, use the interpolation), and check if the
observed values represent insigni�icant outliers to re‑
move them. A �irst analysis of the series makes it pos‑
sible to analyze the behavior of the data (Fig. 3):

Fig. 3. The series

5.3. ARIMA Model
Recall that the ARIMA model assumes that the se‑

ries is stationary. Thus, to identify the parameters of
the model, a �irst step will be the study of stationarity.

Fig. 4.Mobile Average and Standard Deviation of the
series

The Dickey‑Fuller test allows us to check if the se‑
ries is stationary:

From the results, we note that the statistical test
is not less than the critical values of 10%, 5% and 1%
(Fig. 5) . Thus, We can not reject the null hypothesis
H0: ”the series is not stationary”. So, according to the
Dickey‑Fuller test we conclude that the series is not
stationary and needs to be differentiated.

Let’s analyze the correlogram of the original series
(Fig. 6):

Fig. 5. Dickey‐Fuller test results

Fig. 6. Correlogram of the original series (FAC, FACP)

Note that the autocorrelation is positive and non‑
zero for a large number of lags. This con�irms that dif‑
ferentiation is necessary.

Fig. 7. Correlogram of the series after differentiation
(FAC, FACP)

This graph represents FAC and FACP of the series
after a �irst differentiation. Note that offset autocorre‑
lation 1 is negative and greater than ‑0.5. This indica‑
tes that our series does not need to be differentiated
and therefore we estimate d = 1. Negative offsets jus‑
tify differentiation.

On theFACgraphaswell as theFACP,wenotice that
there is apeakat offset 1. This allowsus to estimate the
parameters p and q, with p = 1 and q = 1.

Model Selection From the foregoing, the model of
ARIMA (1, 1, 1) is a suitablemodel. Tomake sure of the
validity of our choice, we compare the different possi‑
ble models with the information criteria AIC and BIC
(Fig. 1):

We note that the ARIMAmodel (1, 1, 1) minimizes
the two criteria themost. Thus, themodel to be imple‑
mented will be ARIMA (1, 1, 1).

Diagnosis of residual According to the diagnosis of
the residual (Fig. 8), it is found that the autocorrela‑
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Tab. 1. Comparison of the AIC and BIC of the different
models

ARIMAModel AIC BIC
ARIMA (0, 0,1) 1830,63593742 1839,78050251
ARIMA (0, 1, 1) ‑345,135984579 ‑335,991419493
ARIMA (1, 0,0) ‑177,874517485 ‑168,729952399
ARIMA (1, 0,1) ‑345,0467419 ‑331,329894272
ARIMA (1, 1,0) ‑247,992863849 ‑238,848298764
ARIMA (1, 1,1) ‑372,325641125 ‑358,608793497

tion is signi�icantly zero for almost all offsets, with the
exception of shift 7. Again, the distribution of the re‑
sidues follows the linear trend of the samples taken
froma normal distribution and therefore can also con‑
sider that they follow a normal distribution.

Fig. 8. Diagnosis of residues

The short‑term forecast (7 days) gives the follo‑
wing results:

Tab. 2. ARIMA(1, 1, 1) Prediction Results

Datel Real Value ARIMA (1,1,1)
04‑01 0,551838 0,798146
04‑02 0,559496 0,804509
04‑03 0,576744 0,806367
04‑04 0,610526 0,806910
04‑05 0,761290 0,807069
04‑06 0,750789 0,807115
04‑07 0,633952 0,807128

According to these results, it is noted that the pre‑
dicted values are higher than the real values. To know
to what extent the forecast of this model is accurate,
we calculate in the next part the different indicators
mentioned above.

5.4. Construction of Smoothing Models
Simple exponential smoothing (SES) Recall that the
simple exponential smoothingmakes it possible to cal‑
culate theprediction from theweighted average, by as‑
signing to each value a weight and where the weight
decreases according to an exponential function.

By partitioning the data into training data (Train)
and test data (Test), we obtain the following graph :

The table below summarizes the 7‑day results of
our prediction:

Fig. 9. Simple exponential smoothing

Tab. 3. Simple exponential smoothing Prediction Results

Date Real Value SES
04‑01 0,551838 0,666563
04‑02 0,559496 0,602323
04‑03 0,576744 0,586976
04‑04 0,610526 0,601106
04‑05 0,761290 0,697217
04‑06 0,750789 0,729360
04‑07 0,633952 0,672115

It can be seen that the predicted valueswith simple
exponential smoothing are higher but very close to the
real values.

Double exponential smoothing (DES) Double expo‑
nential smoothing, as already seen, is an exponential
smoothing suitable for series with a tendency Tt and a
level St.

The graph below shows the behavior of the series
over the three periods: the Learning Train series in
blue, the validation test series in red and modeling
with the DES in purple:

Fig. 10. Double exponential smoothing

And the results of the forecast are presented in the
following table:

Tab. 4. Simple exponential smoothing Prediction Results

Datel Real Value DES
04‑01 0,551838 0,674789
04‑02 0,559496 0,526861
04‑03 0,576744 0,473992
04‑04 0,610526 0,498582
04‑05 0,761290 0,651936
04‑06 0,750789 0,748076
04‑07 0,633952 0,709196

Holt‐Winters exponential smoothing (HW) Holt‑
Winters Smoothing or Triple Smoothing involves
applying exponential smoothing to the seasonal
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ARIMA (1, 1,1) ‑372,325641125 ‑358,608793497
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exception of shift 7. Again, the distribution of the re‑
sidues follows the linear trend of the samples taken
froma normal distribution and therefore can also con‑
sider that they follow a normal distribution.

Fig. 8. Diagnosis of residues

The short‑term forecast (7 days) gives the follo‑
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Tab. 2. ARIMA(1, 1, 1) Prediction Results

Datel Real Value ARIMA (1,1,1)
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04‑03 0,576744 0,806367
04‑04 0,610526 0,806910
04‑05 0,761290 0,807069
04‑06 0,750789 0,807115
04‑07 0,633952 0,807128

According to these results, it is noted that the pre‑
dicted values are higher than the real values. To know
to what extent the forecast of this model is accurate,
we calculate in the next part the different indicators
mentioned above.

5.4. Construction of Smoothing Models
Simple exponential smoothing (SES) Recall that the
simple exponential smoothingmakes it possible to cal‑
culate theprediction from theweighted average, by as‑
signing to each value a weight and where the weight
decreases according to an exponential function.

By partitioning the data into training data (Train)
and test data (Test), we obtain the following graph :

The table below summarizes the 7‑day results of
our prediction:

Fig. 9. Simple exponential smoothing

Tab. 3. Simple exponential smoothing Prediction Results

Date Real Value SES
04‑01 0,551838 0,666563
04‑02 0,559496 0,602323
04‑03 0,576744 0,586976
04‑04 0,610526 0,601106
04‑05 0,761290 0,697217
04‑06 0,750789 0,729360
04‑07 0,633952 0,672115

It can be seen that the predicted valueswith simple
exponential smoothing are higher but very close to the
real values.

Double exponential smoothing (DES) Double expo‑
nential smoothing, as already seen, is an exponential
smoothing suitable for series with a tendency Tt and a
level St.

The graph below shows the behavior of the series
over the three periods: the Learning Train series in
blue, the validation test series in red and modeling
with the DES in purple:

Fig. 10. Double exponential smoothing

And the results of the forecast are presented in the
following table:

Tab. 4. Simple exponential smoothing Prediction Results

Datel Real Value DES
04‑01 0,551838 0,674789
04‑02 0,559496 0,526861
04‑03 0,576744 0,473992
04‑04 0,610526 0,498582
04‑05 0,761290 0,651936
04‑06 0,750789 0,748076
04‑07 0,633952 0,709196

Holt‐Winters exponential smoothing (HW) Holt‑
Winters Smoothing or Triple Smoothing involves
applying exponential smoothing to the seasonal
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component, trend, and level. Thus, to implement it,
we must formulate the equation of these last three.

Fig. 11. Triple Exponential Smoothing (HW)

On the graph, we notice that modeling closely mi‑
mics our learning series. But by zooming in on the trial
period, we observe that the modeling does not adapt
well to the real values.

By closely analyzing the graph, it can be seen that
the exponential smoothing of HW does not correctly
imitate the behavior of the test series:

Fig. 12. HW zoomed on the test period

The table below presents the results of this fore‑
cast:

Tab. 5. Holt‐Winters Prediction Results

Date Real Value HW
04‑01 0,551838 0,784246
04‑02 0,559496 0.779285
04‑03 0,576744 0,727776
04‑04 0,610526 0,794183
04‑05 0,761290 0,765640
04‑06 0,750789 0,732398
04‑07 0,633952 0,875425

In the next section, we will perform a benchmark
between the models as well as calculate the perfor‑
mance indicators of each one.

6. Performances, Discussion and Recommen‐
dations
This section presents the synthesis of this work.

We summarize the results of each of the models stu‑
died and compare them to conclude which model will
be the most appropriate for our problem.
6.1. Model Performance
Naive forecast In order to measure the performance
of the models used, a �irst comparison with the naive
forecast will be made. We have considered two types
of naive forecast: a dynamic and a step by step:

Fig. 13. Naive prediction

To compare between the two types of naive pre‑
diction, several KPIs were used:

Tab. 6. KPIs of both types of naive prediction

KPI OS naive forecast Naive forecast
MSE 0,008579 0,013474
MAE 0,069330 0,083110
RMSE 0,092617 0,116077
MAPE 10,77% 11,7520%
WAPE 0,1092 0,1309
SMPE 0,55005 0,07003

We note that all the performance indicators calcu‑
lated for the step‑by‑step forecast are minimal com‑
pared to the dynamic naive forecast. This allows us to
conclude that stepwise forecasting is better than dyn‑
amic forecasting. But our goal is a 7‑day forecast (that
is, estimate the next 7 days at one time). This forces
us to choose Dynamic Forecasting as a benchmark for
our benchmark.

Model Comparison To examine the performance of
each forecast model, a forecast analysis was perfor‑
med.

In this analysis, a 7‑day forecast was made for
transatlantic route �lights after 31 March (taken into
account 2 years of history). From these predictions, a
comparison can be made between different forecas‑
ting methods.

Below is a graph of all the forecasting techniques
used:

Fig. 14. The different forecasting models

On this graph, the blue line represents the test se‑
ries containing the actual values while the other lines
represent the predicted values according to a model.
By visualizing the graph, it is assumed that the simple
exponential smoothing gives results closer to the rea‑
lity compared to the other models.

Let’s recap the results of each model:
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Tab. 7. Comparison of the results of the forecasting models

Date Real Value ARIMA SES DES HW naïve
01/04 0,551838 0,798146 0,666563 0,674789 0,784246 0,776358
02/04 0,559496 0,804509 0,602323 0,526861 0.779285 0,776358
03/04 0,576744 0,806367 0,586976 0,473992 0,727776 0,776358
04/04 0,610526 0,806910 0,601106 0,498582 0,794183 0,776358
05/04 0,761290 0,807069 0,697217 0,651936 0,765640 0,776358
06/04 0,750789 0,807115 0,729360 0,748076 0,732398 0,776358
07/04 0,633952 0,807128 0,672115 0,709196 0,875425 0,776358

By analyzing the table, we notice that under no ci‑
rcumstances does the ARIMA model (1,1,1) correctly
mimic the real behavior of our series, with values that
are very out of stepwith reality, followed by the smoo‑
thing of Holt‑ Winters. The values closest to the actual
values are shown inbold, followedby the values repre‑
sented in blue, which are mainly derived from single
and double exponential smoothing.

Thus, to decide the choice between the different
models and choose themost adequate to our problem,
we compare in the following part the performance in‑
dicators of the models used.

Interpreting KPIs KPIs or performance indicators al‑
low us to measure the accuracy of our estimators by
comparing themwith actual values. Several KPIs have
been calculated to evaluate the models and to check if
the use of different KPIs will result in different results:

This table indicates that all indicators are mini‑
mal for simple exponential smoothing. It also con�irms
that ARIMA (1,1,1) represents the model with the hig‑
hest error value compared to the smoothing models.
6.2. Summary and Recommendations

The purpose of this study is to evaluate the ARIMA
univariate time series predictionmethodand compare
it to the exponential smoothing models (the three ty‑
pes of smoothing) to predict the baggage ratio. The
goal is to �ind a model that �its the data correctly and
could predict the behavior of our data.

This is done by �irst differentiating to remove both
the seasonal and trend components and to make the
series stationary, thenestimate theARIMAmodels and
adapt them to our data set.

The ARIMA models as well as the exponential mo‑
dels were used in time series analysis and the best
performing models were selected according to the in‑
formation criteria and comparing the error measure‑
ments. Thebest performingmodelswereused for data

forecasting.
The data �low is represented by a non‑stationary

time series. There is a trend and a seasonality. The pre‑
diction can be simpli�ied by studying the original dif‑
ferentiated series.
‑ Taking into account the different models of ARIMA,
theARIMAmodel (1,1,1) seems themost suitable for
the data �low studied based on the information cri‑
teria AIC and BIC.

‑ After identifying and estimating the parameters of
ARIMA (1,1,1), a diagnosis of the model was made.
Having satis�ied all the assumptions of the validity
of themodel, thismodel is considered to be themost
appropriate ARIMA model for forecasting.

‑ In addition to ARIMA, in order to determine which
method achieves the best results, an exponential
smoothing prediction has been made.

‑ The three types of exponential smoothing (Simple,
Double and Holt‑Winters) have been implemented
byde�ining functions according to the algorithmcor‑
responding to each type.

‑ To choose the model that mimics our data as accu‑
rately as possible, several performance indicators
have been calculated. The most accurate model will
be the model minimizing the value of the different
calculated KPIs.

‑ Compared with all the models studied, the simple
exponential smoothing allowed us to obtain a better
result with an error rate (MAPE) of 6.32%.

7. Conclusion
Baggage demand forecasting becomes a very im‑

portant task for optimizing the management of ULDs.
In this �ield, little research has been done and others
are still improving.

In this paper we applied the methods of predictive
analysis taking into account the recommendations of

Tab. 8. KPIs of different forecast models

KPI Naïve ARIMA SES DES HW
MSE 0,013474 0,03532 0,003030 0,008128 0,023707
MAE 0,083110 0,17037 0,042298 0,042981 0,109434
RMSE 0,116077 0,18794 0,055045 0,090157 0,153971
MAPE 11,75% 28,75% 7,00% 12,98% 15,55%
WAPE 0,1309 0,2683 0,06769 0,12545 0,1723
SMPE 0,07003 0,1183 0,0334 0,0638 0,0936

82



79

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  14,      N°  3       2020

Articles 79

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

Tab. 7. Comparison of the results of the forecasting models

Date Real Value ARIMA SES DES HW naïve
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03/04 0,576744 0,806367 0,586976 0,473992 0,727776 0,776358
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06/04 0,750789 0,807115 0,729360 0,748076 0,732398 0,776358
07/04 0,633952 0,807128 0,672115 0,709196 0,875425 0,776358

By analyzing the table, we notice that under no ci‑
rcumstances does the ARIMA model (1,1,1) correctly
mimic the real behavior of our series, with values that
are very out of stepwith reality, followed by the smoo‑
thing of Holt‑ Winters. The values closest to the actual
values are shown inbold, followedby the values repre‑
sented in blue, which are mainly derived from single
and double exponential smoothing.

Thus, to decide the choice between the different
models and choose themost adequate to our problem,
we compare in the following part the performance in‑
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Interpreting KPIs KPIs or performance indicators al‑
low us to measure the accuracy of our estimators by
comparing themwith actual values. Several KPIs have
been calculated to evaluate the models and to check if
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that ARIMA (1,1,1) represents the model with the hig‑
hest error value compared to the smoothing models.
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goal is to �ind a model that �its the data correctly and
could predict the behavior of our data.

This is done by �irst differentiating to remove both
the seasonal and trend components and to make the
series stationary, thenestimate theARIMAmodels and
adapt them to our data set.

The ARIMA models as well as the exponential mo‑
dels were used in time series analysis and the best
performing models were selected according to the in‑
formation criteria and comparing the error measure‑
ments. Thebest performingmodelswereused for data

forecasting.
The data �low is represented by a non‑stationary

time series. There is a trend and a seasonality. The pre‑
diction can be simpli�ied by studying the original dif‑
ferentiated series.
‑ Taking into account the different models of ARIMA,
theARIMAmodel (1,1,1) seems themost suitable for
the data �low studied based on the information cri‑
teria AIC and BIC.

‑ After identifying and estimating the parameters of
ARIMA (1,1,1), a diagnosis of the model was made.
Having satis�ied all the assumptions of the validity
of themodel, thismodel is considered to be themost
appropriate ARIMA model for forecasting.

‑ In addition to ARIMA, in order to determine which
method achieves the best results, an exponential
smoothing prediction has been made.

‑ The three types of exponential smoothing (Simple,
Double and Holt‑Winters) have been implemented
byde�ining functions according to the algorithmcor‑
responding to each type.

‑ To choose the model that mimics our data as accu‑
rately as possible, several performance indicators
have been calculated. The most accurate model will
be the model minimizing the value of the different
calculated KPIs.

‑ Compared with all the models studied, the simple
exponential smoothing allowed us to obtain a better
result with an error rate (MAPE) of 6.32%.

7. Conclusion
Baggage demand forecasting becomes a very im‑

portant task for optimizing the management of ULDs.
In this �ield, little research has been done and others
are still improving.

In this paper we applied the methods of predictive
analysis taking into account the recommendations of

Tab. 8. KPIs of different forecast models

KPI Naïve ARIMA SES DES HW
MSE 0,013474 0,03532 0,003030 0,008128 0,023707
MAE 0,083110 0,17037 0,042298 0,042981 0,109434
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82

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

the research already done.
The results obtained throughout our study and the

steps carried out, showed that the ARIMA model re‑
mains far from reality even if it correctly imitated our
dataset during the learning, and the simple exponen‑
tial smoothing model is the a model that minimizes
KPIs and therefore is considered the best performing
model for our forecast.
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