
65

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

Modeling of a Dynamic and Intelligent Simulator
at the Infrastructure Level of Cloud Services

Faouzia Zegrari, Abdellah Idrissi

Submitted: 26th June 2019; accepted: 25th March 2020

DOI: 10.14313/JAMRIS/3-2020/36

Abstract: Cloud environments made up of a large
number of compute and storage servers provide on-
demand services in a usage-based consumption model
(pay-as-you-go). Load balancing is one of the major
problems in the cloud. Indeed, the dynamics of demand
requirements and QoS, as well as the variability of cloud
resources and its provisioning models make difficult
the operation of performance evaluation of the system.
To face this issue and to ensure the viability of cloud
computing, IT resources must be managed effectively by
a dynamic monitoring of the current workload of virtual
machines (VMs). In this study, we propose the design
of a cloud services simulation tool at the infrastructure
level based on cloud computing simulation platform
named CloudSim. It allows real-time monitoring of a
load of each VM in terms of CPU utilization, memory
utilization and bandwidth utilization ratio. The result
of this case study can be useful for carry out dynamic
environment simulations for VMs monitoring and fast
decision making that can be used in load balancing
mechanisms.

Keywords: Load balancing, Cloud computing, Resource
utilization, Dynamic environment simulation

1.	 Introduction
The explosion of numerical data and the need for

high availability of service are the critical factors in
the emergence of the concept of cloud computing.
The cloud model is a new paradigm in IT aiming at
modernizing the Internet. It allows access to a pool
of computing resources that can be allocated and re-
leased on demand with minimal interaction with the
service provider [1]. The cloud provides hosted ser-
vices in Datacenters of high performance, which are
categorized according to the technical layer provid-
ed. There are three usage models at the disposal [2]:
IaaS, PaaS and SaaS. [3] The IaaS layer corresponds to
the architecture and IT infrastructure part where the
provider hosts virtualized resources like servers, data
storage, network and virtualization. The variability of
cloud resources, the diversity of requirements for ap-
plications in terms of performance and workload are
among the most important problems in the field of re-

search. The dynamic of demands can be managed by
dynamically provisioning cloud resources capacities.

Several researchers, who integrate state of load
control techniques of resources in a cloud data-
center, have proposed various dynamic scheduling
algorithms. The simulation of these algorithms in real
time for the evaluation of the performances of various
metrics is a very difficult job to realize. In our study,
we propose a dynamic simulator based on CloudSim
Framework [4, 5, 6]. Let us recall that CloudSim allows
a modeling and a correct simulation of the infrastruc-
ture and application services of the cloud computing.
It is an open source framework developed in Java.
The communication between the various CloudSim
entities, such as Datacenters, hosts, virtual machines
VMs and cloudlets, occurs using events with static
triggering. Indeed, after launching the simulation,
CloudSim does not make it possible to interact with
the system or to add tasks dynamically. Tasks are as-
signed to VMs through the Datacenter broker before
the beginning of the execution. That is explained by
the fact why the Cloudsim clock is based on events for
its operation. Each execution, resumption or stop ex-
ecution is defined as being an event. At the beginning
of its execution, it predicts, based on the information
of simulation, the duration of simulation as well as the
successions of the events, which will take place. We
are not thus able to obtain a load of VMs in real time.
There exists in the literature some tools, that measure
the use of resources, but these tools are not easy to
adapt them in certain contexts.

The rest of this paper is organized as follows: the
next section presents the analysis of some frame-
works used in previous work for the measurement of
workload and the possibility to adapt them in dynam-
ic environment simulations. In section 3, we propose
the architecture and modeling of the simulation. The
CloudSimulator simulation scenario is described in
Section 4. Section 5 is devoted to evaluating and ana-
lyzing the results obtained by CloudSimulator. The
conclusion of this paper is presented in Section 6 with
perspectives for future related work.

2.	 Related Work
In our study, several tracks have been explored

to analysis some frameworks used in previous work
in measuring the load of VMs and their possibility

66

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

Articles66

3.	 Architecture and Simulation Modeling
The operation of the simulator proposed is not

based on events in order to make the dynamic simula-
tion. Its architecture is described by the whole of the
components as illustrated below, in Fig. 1.

Datacenter: it manages and groups hundreds of
physical machines connected to each other and char-
acterized by physical resources such as mips, ram,
bandwidth and storage, also logical specifications like
architecture, hypervisor Vmm, operating system, time
zone and pricing at the second of the various resourc-
es used making it possible to bill the cost of consump-
tion to its customers. It implements resource alloca-
tion policies for hosts and VMs.

Host: This class models a physical node assigned
to one or more VMs by a VMs allocation policy named
VmScheduller. A host is characterized by CPU speed
(mips), storage capacity; one or more physical pro-
cessing cores Pes, bandwidth and memory capacity.

Datacenter Broker: the broker allows access to
Datacenter and plays the role of mediator. It manages
the execution of virtual machines and acts on behalf
of the cloud provider.

Virtual machine: This class models a VM, which is
managed by a host and allows running cloudlets ac-
cording to the scheduling policy that it uses. The ele-
ments characterizing a VM are CPU capacity, memory
capacity, the number of CPUs, bandwidth and storage
size.

VmAllocationPolicy [4]: This abstract class repre-
sents provisioning policies for allocating hosts to vir-
tual machines with the least Pes used.

Fig. 1. Class Diagram of the CloudSimulator Simulation
System

VmScheduler [10]: This abstract class models how
to distribute the available processing capacity of each
core of a host between the VMs that host them, ac-
cording to the chosen allocation policy: time-shared
or space shared. For proposed CloudSimulator, we
used VmSchedulerTimeShared because it allows Pes
sharing.

CloudletScheduler [10]: This class establishes
the virtual Pes allocation policy for a given VM to
run cloudlets. It implements two strategies: space-
shared and time-shared. We have created a third

to adapt them according to our context to perform
simulations in real time. The first track was to ana-
lyze the CloudSim distributions that were developed
in order to find one that would be able to meet our
request. Two distributions have attracted our atten-
tion: Dynamic CloudSim and Real Time CloudSim
[6], but none of these distributions overcomes our
problem. As a second solution, the CloudSched [7].
This tool compares existing simulation systems at
the application level for the cloud and defines a new
lightweight simulation system for dynamic resource
scheduling in cloud datacenters. The results are then
analyzed and discussed. The goal of CloudSched’s
analysis is to understand the logic of real-time sim-
ulation in order to adapt it to our solution. Since the
source code is not available, we were able to access
the compiled code and rewrote the source code. Af-
ter analysis, we noticed that it randomly generates
the tasks and executes them without defining a real
allocation policy. In addition, the defined classes do
not allow us to reuse them in order to implement
our solution since several elements are not defined,
like policies of supply and allocation at the level of
the hosts and VMs. The third possible solution was
to install a virtual machine hypervisor, free virtual-
ization software, which will be responsible for the
management of VMs. The principle of the hypervi-
sor is to run the operating system in the same kernel
and not emulate them, which allows keeping perfor-
mances close to the native ones. There are several
hypervisors and we chose XEN [8] which is (para)
virtualization software. This distribution integrates
a XenMon monitoring application [9] to monitor a
Xen-based environment. It allows running several
operating systems on the same hardware resource
(PC, Server...), but consumes many resources and
today, it is considered hypervisor completely over-
stepped. Similarly, for the VMWare hypervisor, the
physical server on which the VMs are hosted must
have a high memory capacity to be able to share it
between the VMs and it is a software, which requires
the purchase of a license for its use.

Since no explored solution was conclusive, we
then opted for the development of a simulator
called CloudSimulator, adapted to our need to de-
termine in a more flexible way, performance met-
rics in terms of use of CPU, ram and bw. Taking into
account its success, we decided to develop our sim-
ulator around CloudSim to take advantage of the
plethora of algorithms and basic models, which it
proposes.

The design and implementation of this proposed
load measurement tool first required an analysis of
the architecture of CloudSim and its various modes
of operation and then a stage of understanding its
source code in order to be able to redefine some
classes and methods of the CloudSim simulator. The
use of this tool in load balancing mechanisms rep-
resents a definite advance in real-time monitoring
of cloud resource status and load balancing deci-
sion-making.

67

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

Articles 67

The communication latency of the node can be
easily deduced by:

	 timeWait startTime submissionTime= − 	 (3)

where Waittime is the communication latency of the
node and submissionTime is Cloudlet’s submission
time to a Cloud Resource.

The response time is calculated as hereafter:

	 time time timeResponse Execution Delay= + 	 (4)

Knowing that:

	 time time timeDelay Wait Transfer= + 	 (5)

where DelayTime is the transmission time of the
cloudlet and ExchangeData is the size of data ex-
changed between cloudlets that communicate with
this cloudlet.

The workload of each VM is determined from the
formula defined in (1) and can be categorized by three
states: under loaded, normal and overloaded.

4.	 Simulation Scenario
•	 Initialize the simulator clock;
•	 Create a Datacenter and a Datacenter broker;
•	 Generate VMs assuming nodes are heterogeneous;
•	 Generate cloudlets dynamically;
•	 Submit the VMs and Cloudlets created to the bro-

ker;
•	 Start the simulation;
•	 Save and display the monitoring of the execution

of each VM:
–	 The measurement of the load of CPU, ram and

bw load as described in (1);
–	 The execution time as defined in (2);
–	 Simulation start time, Start time of executing

cloudlet and time where this Cloudlet com-
pletes;

–	 The number of cloudlets processed;
•	 Stop the simulation.

Tab. 1. Host configuration

N° of Host 1

Processing Power (MIPS) 6 000

RAM (MB) 10 000

Bw (Mb/s) 10 000

Storage (MO) 1000000

Tab. 2. Virtual Machines configuration

Virtual machines VM0 VM1 VM2 VM3

P.Power (MIPS) 250 1 500 1 000 500

RAM (MB) 256 1 024 2 048 1 024

type to adapt it to the dynamic environment, which
we called DynamicCloudletSpaceShared based on the
principle of shared space type. Evaluating the effect
of these two policies on cloudlet completion time was
described in [11] and proved that space shared policy
has been better than time-shared policy.

Cloudlet: This class represents the task to run on a
VM, defined by a number of instructions and a quanti-
ty of data to be transferred, expressed by a size of the
input and output files.

As for the allocation of resources, such a schedul-
ing of VMs [10] uses policies at the host level and the
VM level: the first policy relates the sharing of host
cores between the VMs assigned to it. The second
policy allows the VMs to allocate from the available
capacity, a quantity of mips to the tasks for their exe-
cutions. Two modes of execution are suggested: time-
shared and space-shared. [4] In the space-shared
policy, the cloudlet is executed once the resource is
released, the other cloudlets are queued. The comple-
tion time of the cloudlet depends on the number of
Pes necessary for its execution and the capacity of the
assigned processing element. In time-shared, a sched-
uler is used to allocate resources to a cloudlet during
a certain time, once the usage time has elapsed, the
cloudlet is queued to execute the next entity from the
queue waiting, and however, running the cloudlets
happens almost at the same time.

The resource utilization of cpu, ram, and bw by a
Cloudlet can be determined according to the usage
model chosen. The models proposed by CloudSim
are UtilizationModelFull, UtilizationModelNull and
UtilizationModelStochastic. For our simulator, we
choose the stochastic model, which consists in as-
signing to each Cloudlet for its execution on a VM, a
percentage of random use between 0 and 1. A load
is specified as a rate of utilization resource, associ-
ated with a duration of use. In our case, since time is
variable, we associated it with the length of the task
(expressed in Millions of instructions MI) which is
a fixed value. When the simulation is launched, we
want to collect in real time information on the load
rate of each VM.
The utilization rate of the resource is the average
value of utilization rates for each cloudlet in the
execution list. The total utilization rate on a VM is
expressed by the following equation:

	 % 100
3

cpu ram bw
Vm

Use Use UseUse  + += ×  
.	 (1)

The execution time of cloudlet in real time is calcu-
lated by using the following formula:

	 timeExecution finishTime startTime= − 	 (2)

where finishTime is the time where this Cloudlet
completes and startTime is the start time of executing
this Cloudlet.

68

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

Articles68

Tab. 3. Cloudlets configuration

Number of Cloudlets 1 100

Length (MI) 40 000 à 140000

File Size (KO) 300

Output Size (KO) 300

5.	 Experiments and Evaluation of Results
In order to evaluate the behavior and the effi-

ciency of our proposed simulator, we present the
experiments and the evaluations of the results of the
simulation that we undertook along this study. The
simulation was carried out on a PC with an Intel Core
i5 CPU 2.40GHz, 32-bit Windows 8.2 Professional Op-
erating System, 4GB Ram, Development Environment:
NetBeans IDE 8.2, Cloudsim-3.0.3 Framework and
JAVA development language. The experiment consists
of measuring the workload on each VM in real time.

5.1.	 Experimentation
CloudSimulator allows us to perform multiple

tasks on multiple Vms. The simulation is carried out
with a single host created in a single Datacenter. The
goal is to perform an experiment for various quan-
tities of tasks, which we add dynamically, and then
measure a load of CPU, memory and bandwidth on
each VM.

The scenario begins with a simulation configura-
tion step: We proceed by setting the parameters of the
various components of the simulator: a Datacenter
made up of 4 virtual machines whose capacities are
respectively 250, 1500, 1000 and 500 MIPS as shown
on Tab. 2. These VMs are instantiated on a host whose
configuration is set on Tab. 1. The tasks to be per-
formed on the VMs are set to an interval [40 000, 140
000] Million instructions, as shown on Tab. 3. In our
experiment, we suppose that the tasks communicate
with each other by the exchange of a quantity of data,
to send or to receive. After this initialization phase,
we proceeded to the application of the simulation sce-
nario as described above. The program that we have
developed uses a multithreaded environment. Among
the classes that have threads: EntitiesGenerator.java,
DynamicVm.java DynamicDatacenterBroker.java.
EntitiesGenerator.java is a class that allows creating
tasks dynamically, to assign them to the appropriate
VMs, and to send them to the Datacenter broker. When
launching the simulation, the thread of the Dynamic-
DatacenterBroker class performs four operations: the
first operation starts the thread of each VM, which
triggers the updateVmProcessing(vmInfo) method
of the DynamicCloudletScheduler class, for updating
the task state (in execution, finished) and updating
the processing time. The second operation sends the
cloudlets received on the broker to the waiting list of
the corresponding VM. The third operation calls on
with the method, which will collect on each VM, the

information of the load of the CPU, ram and Bw and
also the processing time of the accomplished tasks.
Lastly, the fourth operation executes the method that
ends the simulation. The results of simulation are
shown in the curves below.

5.2.	 Results Evaluation
The real-time monitoring performed throughout

the simulation on each VM showed the resource uti-
lization that varies according to the size of running
cloudlets expressed in million instructions. The meas-
ured values vary in the interval [0, 1] from which we
can determine the state of underload and overload.

Fig. 2 illustrates that the CPU load varies depend-
ing on the amount of data processed, the sizes of the
cloudlets vary from 40 000 to 140 000 Millions of In-
structions as shown on Tab. 3, which leads to a varia-
bility of the workload of the processor that can range
from 0.81% to 98.38%.

Fig. 3 shows that the rate of memory usage varies
rapidly depending on the number of tasks. The values
of the measurements collected depend on the amount
of data in execution and range from 0.89% to 95.23%.

Fig. 4 shows that the different load measurements
of the bandwidth collected during a period on each
VM as a function of the number of tasks take values
ranging from 1.75% to 93.69% representing the occu-
pancy rate of the data transferred on the bandwidth.

Fig. 5 shows the evolution of the execution time as
a function of the number of tasks that uses a shared-
space policy in a dynamic environment. The required
time increases gradually as the tasks are added dy-
namically. VMs with large capacity are faster and take
less time to complete a task, as it is clearly visible on
the curves.

5.3.	 Graphical Representation

Fig. 2. Real time CPU utilization based on the number
of tasks

Fig. 3. Real-time memory utilization according to the
number of tasks

69

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

Articles 69

Fig. 4. Real time bandwidth utilization based on the
number of tasks

Fig. 5. Evolution of the execution time according to the
number of tasks

6.	 Conclusion
Processing large amounts of data in a high hetero-

geneity system such as the cloud results in a variabil-
ity of the workload is not a simple task. In this paper,
we developed a simulator that we named CloudSim-
ulator based on CloudSim. It enables dynamic simu-
lation in the cloud environment and provides moni-
toring of the current workload of VM resources such
as CPU, memory and bandwidth. We proceeded by
defining a class diagram that is adapted to the dynam-
ic environment. Some classes of CloudSim have been
modified by redefining methods and others have been
newly created, and a new dynamic resource alloca-
tion policy has been implemented using the principle
of space-shared policy. The information collected on
the current load of resources determines the state of
load of each VM that can be used to solve load bal-
ancing problems. When an overload is detected on a
node, the overloads are transferred to the less loaded
nodes. The goal of this study is effectively managed
Cloud Computing resources to improve system per-
formance.

In future work, our proposed simulator may well
be integrated into load balancing mechanisms and re-
source allocation algorithms. The information collect-
ed on the measurement of the execution time can be
used as allocation metric in algorithms for assigning
tasks to VMs based on a minimal processing time.

AUTHORS
Faouzia Zegrari* – Intelligent Processing Systems
Team (IPSS), Computer Science Laboratory (LRI),
Computer Science Department, Faculty of Sciences,
Mohammed V University in Rabat, Rabat, Morocco,
email: z.faouzia@gmail.com.

Abdellah Idrissi – Intelligent Processing Systems
Team (IPSS), Computer Science Laboratory (LRI),
Computer Science Department, Faculty of Sciences,
Mohammed V University in Rabat, Rabat, Morocco,
email: idrissi@fsr.ac.ma.

*Corresponding author

REFERENCES
[1]	 P. Mell and T. Grance, “The NIST Definition

of Cloud Computing”, Technical Report, DOI:
10.6028/NIST.SP.800-145. https://csrc.nist.
gov/publications/detail/sp/800-145/final.
Accessed on: 2020.12.16.

[2]	 V. Sangeetha, V. Jaganraja and T. Gnanaprakasam,
“A General Study of Homomorphic Encryption
Algorithm with Cloud Computing”, Global Jour-
nal of Advanced Engineering Technologies and
Sciences, vol. 3, no. 3, 2016.

[3]	 S. Rajan and A. Jairath, “Cloud Computing: The
Fifth Generation of Computing”. In: 2011 Inter-
national Conference on Communication Systems
and Network Technologies, 2011, 665–667,

	 10.1109/CSNT.2011.143.
[4]	 R. N. Calheiros, R. Ranjan, A. Beloglazov,

C. A. F. De Rose and R. Buyya, “CloudSim:
a toolkit for modeling and simulation of cloud
computing environments and evaluation of
resource provisioning algorithms”, Software:
Practice and Experience, vol. 41, no. 1, 2011,
23–50,

	 10.1002/spe.995.
[5]	 T. Goyal, A. Singh and A. Agrawal, “Cloudsim:

simulator for cloud computing infrastructure
and modeling”, Procedia Engineering, vol. 38,
2012, 3566–3572,

	 10.1016/j.proeng.2012.06.412.
[6]	 “The CLOUDS Lab: Flagship Projects – Gridbus

and Cloudbus”. www.cloudbus.org/cloudsim/.
Accessed on: 2020.12.16.

[7]	 W. Tian, Y. Zhao, M. Xu, Y. Zhong and X. Sun,
“A Toolkit for Modeling and Simulation of Re-
al-Time Virtual Machine Allocation in a Cloud
Data Center”, IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 1, 2015,
153–161, 10.1109/TASE.2013.2266338.

[8]	 “xen [Wiki ubuntu-fr]”. https://doc.ubuntu-fr.
org/xen. Accessed on: 2020.12.16.

[9]	 D. Gupta, R. Gardner and L. Cherkasova, “Xen-
Mon: QoS Monitoring and Performance Profil-
ing Tool”, Technical Report – HPL-2005-187,
www.hpl.hp.com/techreports/2005/HPL-
2005-187.pdf. Accessed on: 2020.12.16.

[10]	 R. Kumar and G. Sahoo, “Cloud Computing Sim-
ulation Using CloudSim”, International Journal
of Engineering Trends and Technology, vol. 8,
no. 2, 2014, 82–86,

	 10.14445/22315381/IJETT-V8P216.

70

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

Articles70

[11]	 S. Mehmi, H. K. Verma and A. L. Sangal, “Simu-
lation modeling of cloud computing for smart
grid using CloudSim”, Journal of Electrical Sys-
tems and Information Technology, vol. 4, no. 1,
2017, 159–172,

	 10.1016/j.jesit.2016.10.004.

