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Abstract:
This paper deals with a possible approach to controlling
marine fish stocks using the prey‐predator model descri‐
bed by the Lotka‐Volterra equations. The control strategy
is conceived using the sliding mode control (SMC) appro‐
ach which, based on the Lyapunov theorem, offers the
possibility to track desired functions, thus guaranteeing
the stability of the controlled system. One of the most
important aspects of this model is the identification of
some parameters which characterizes the model. In this
work two cascaded and Extended Kalman Filters (EKFs)
are proposed to estimate them in order to be utilized in
SMC. This approach can be used for sustainable manage‐
ment of marine fish stocks: through the developed algo‐
rithm, the appropriate number of active fishermen and
the suitable period for fishing can be determined. Com‐
puter simulations validate the proposed approach.

Keywords: Lotka‐Volterra Model, Sliding Mode Control,
Extended Kalman Filter

1. Introduction
Marine ecosystems provide humanity with a mul‑

titude of goods and services, including water quality,
�lood control and food supply, all of which are critical
for humanwelfare. Since the human population is gro‑
wing continuously, the demand for these goods and
services is also increasing and progressively exerting
more pressure on aquatic ecosystems. As many �ish
species migrate frequently and the oceans are mostly
de�ined as public areas, the de�inition of clear bounda‑
ries and property rights regardingmarine resources is
rather complicated. As a result, most natural resour‑
ces exploited by the �ishing industry are de�ined as
common‑pool resources. This has resulted inmanype‑
lagic ecosystems experiencing high levels of depletion
and overexploitation [1], with 46% of European com‑
munity �ish stocks currently below their minimum bi‑
ological level (European Environment Agency, [2]).
The increasing intensity of human �ishing activities in
turn diminishes the biodiversity within the affected
systems, which is positively correlated with the provi‑
sion of the goods and services of the ecosystem that
are of bene�it to the human population, see [3]. Le‑
vels of biodiversity have been shown to determine the
stability of marine ecosystems and their ability to re‑
cover. Consequently, Worm et al. suggest that busi‑
ness as usual in the �ishing industry could potenti‑
ally threaten global food security and water quality,
as well as ecosystem resilience, and thus jeopardise

present and future generations, see [3]. The obser‑
ved trend is thus of increasing concern, so the topic of
the conservation and restoration of aquatic biodiver‑
sity through sustainable �ishery management is incre‑
asingly visible in scienti�ic and political agendas. The
United Nations has included this issue in its sustaina‑
ble development goals, dedicating goal number 14 to
the conservation and sustainable usage of the planet’s
oceans, seas and marine resources, [4]. The success‑
ful implementation of this goal includes the adapta‑
tion of sustainable methods to manage marine and
coastal ecosystems in order to avoid signi�icant ad‑
verse effects, which is indicated by the proportion of
national economic zones following ecosystem‑based
approaches. By 2020, the United Nations aims to re‑
gulate destructive �ishing activities and end over�is‑
hing, alongside implementing a science‑based mana‑
gement approach to restore natural �ish stocks (Uni‑
ted Nations, 2019). In addition, the European Union
has conducted several reforms of the Common Fisher‑
ies Policy (CFP), establishing different approaches to
attempt to bring the situation under control, with the
goal of reaching and maintaining a sustainable level
of �ish in the oceans and in �ishermen’s nets. As com‑
mon practice in this �ield, scientists estimate the ex‑
isting level of �ish stocks within an area and suggest
a number of total allowable catches (TACs) to politi‑
cal �ishery ministers. In turn, those ministers try to
bargain and receive the highest shares for their regi‑
ons, which often leads to the amount of TACs excee‑
ding the maximum level recommended by scientists,
rather than levels being allocated for mutual bene�it
and optimal conservation purposes. As a result, the
methods of the EUare rather unsuccessful formaintai‑
ning a sustainable yield of �ish and achieving the tar‑
gets adopted by all member states of the United Nati‑
ons: as [5] claims, the decision‑making process within
the catch allocation should be managed by scientists
rather than by politicians. One possible approach to
enhancing this decision‑making process and expan‑
ding it based on an independent and objective compo‑
nent, drivenby scienti�ic data, is to translate the obser‑
ved ecosystem into a mathematical model using MAT‑
LAB and simulate them with the integrated tool MAT‑
LAB/Simulink. MATLAB is a software package used
to describe dynamic systems in a mathematical mo‑
del and can be used to identify the interdependences,
mutual interactions, information feedback loops and
circular causalities existing in the observed system.
This article is an extension of the research presented
in [6]. In this work the estimate of some parameters

28



29

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  14,      N°  3       2020

Articles 29

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 3 2020

which characterize the model taken into considera‑
tion using Extended Kalman Filters (EKF). Thus, this
paper aims to offer a �irst attempt at exploring how
MATLAB and Simulink can be utilised to facilitate the
implementation of sustainable management approa‑
ches in the �ishing industry through strategic policy
testing. The software will be used to formulate a sim‑
ple mathematical description of a marine ecosystem
based upon the prey‑predator system represented in
the Lotka‑Volterra equations. A number of papers de‑
alingwith simulated prey‑predator systems have been
published previously; however, adaptation of the mo‑
del to a marine ecosystem including �ish stocks and
human �ishers has not yet been covered. In order to si‑
mulate the consequences of various possible policies
through different controllers, these have been incor‑
porated into the code to eventually reach and main‑
tain a certain setpoint equal to the maximum sustai‑
nable yield of �ish. In terms of the proposed control
technique, sliding mode control (SMC) is taken as one
of the �irst possible approaches. In fact, the controllers
obtained by an SMC approach show robust properties
with respect to parameter uncertainties, as well with
respect to more general dynamic uncertainties and to
unknown signals. Another application for which SMC
has suitable qualities is the �ield of fault‑tolerant cont‑
rol (FTC). In this area, due to intrinsic robustness, SMC
models are able to overcome faults and uncertainties.
Nevertheless, large uncertainties in the model imply
strong chattering effects. Therefore, one of the most
important aspects of this approach is the identi�ica‑
tion of some parameters which characterize the mo‑
del. In this work, two cascaded and EKFs are propo‑
sed to estimate them in order to be utilized in SMC. KF
is one of the most important and used algorithms in
the �ield of identi�ication of states and parameters of a
system of any nature. During the last years many dif‑
ferent contributions appeared in many �ields of appli‑
cations and in different technical estimation and iden‑
ti�ication contexts, [7], [8]. Very often, to reduce pro‑
blems of curse of dimensionality KFs are split and or‑
ganized in cascaded forms as for instance in [9]. Just
to recall very brie�ly, KF is one of the algorithms using
series of the observed measurements over time and
it also contains inaccuracies such as statistical noise.
Estimates of unknown variables are produced by KF
and they are more accurate than the estimates based
on the only measurements by estimating a joint pro‑
bability distribution over the variables for each time
frame, see [10], [11] and [12]. In fact, the controllers
obtained by an SMC approach show robust properties
with respect to parameter uncertainties, as well with
respect to more general dynamic uncertainties and to
unknown signals. Another application for which SMC
has suitable qualities is the �ield of fault‑tolerant cont‑
rol (FTC). In this area, due to intrinsic robustness, SMC
models are able to overcome faults and uncertainties.
Concerning the measurements of the prey, recent re‑
search held at the University Laval and Quebec’s Mi‑
nistry of Forests, see [13], Wildlife and Parks treated
the topic of DNA found in lake water which can be

used for estimation of the fertility of �ish which live
there. This revolutionary approach presented in the
Journal of Applied Ecology can contribute to under‑
standing how �ish stocks aremanaged in lakes. 10 one‑
liter samples ofwater fromdifferent areas of each lake
under investigation were analysed by the researchers
to be able to estimate the concentration of DNA of the
lake trout. The water was �iltered and particles for ge‑
nomic analysis helped tomeasure the trout DNA in the
water samples. A strong correlation between popula‑
tion estimates obtainedbymeans of the traditional ap‑
proach and the one based on the DNA concentration
is presented in the results. The paper is organised in
the following way. In Section 2 the Lotka‑Volterra mo‑
del is presented. Section 3 is devoted to the control
design performed using SMC without and with using
EKF. Section 5.1 presents the obtained results and the
paper ends with the conclusions drawn.

2. Model Design
The designed model is inspired by the ecological

concept of the prey and predator relationship. This
concept was formulated by Lotka and Volterra, and is
based upon different mathematical theorems.
2.1. Lotka‐Volterra Equations

The assumptions of Lotka and Volterra are taken
as a basis to describe the relationship between na‑
tural �ish stocks and the �ishing activities of humans.
Lotka and Volterra �irst describe the population dyna‑
mics of two species in a prey andpredator relationship
through two �irst‑order nonlinear differential equati‑
ons, as follows:

dx(t)

dt
= αx(t)− βx(t)y(t), (1)

dy(t)

dt
= δx(t)y(t)− γy(t), (2)

where x(t) represents the number of prey and y(t) re‑
presents the number of predators. dx(t)

dt and dy(t)
dt re‑

present the growth rates of the populations based on
the respective changes within their population sizes
over time, which is denoted by the term t. α, β, δ, γ
are positive real parameters and describe the inte‑
raction between the two populations. The expression
(1) represents the dynamics of the prey population,
which are calculated by subtracting the rate of preda‑
tion from the population’s intrinsic growth rate. Since
it is assumed that the prey has an unlimited food sup‑
ply, its population grows exponentially if the popula‑
tion of predators and the rate of predation equal zero,
which is expressed by the term αx(t). In turn, the rate
of predation upon the prey is assumed to be propor‑
tional to βx(t)y(t). Thus, if either x(t) or y(t) equals
zero, there is no predation.
Equation (2) describes the dynamics of the predator
population, which are determined by the rate at which
it consumes the prey population, minus its intrinsic
death rate. Since the growth rate of the predator po‑
pulation does not necessarily equal the rate of preda‑
tion of the prey, it is expressed by δx(t)y(t), which is
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similar but not equal to the term representing the rate
of predation in Eq. (1). In this equation, γy(t) denotes
the loss rate of the predator population due to natural
death or emigration. This results in an exponential de‑
cay if there is no prey available to be consumed. Since
themain objective of designing this newapproach is to
achieve and maintain sustainable levels of �ish stocks
and harvests alike, an equilibrium point between the
two populations is intended. This point is reached if:

dx(t)

dt
= 0, (3)

dy(t)

dt
= 0. (4)

As a result, putting the corresponding equations also
equal zero, wherefore one has:

0 = αx(t)− βx(t)y(t), (5)

0 = δx(t)y(t)− γy(t). (6)
These equations yield two different solutions. One so‑
lution states that both populations become extinct:

x(t) = 0, y(t) = 0. (7)

�iven the second solution, a �ixed point can be achie‑
ved at which both populations sustain their current
non‑zero numbers, depending on the settings of the
four parameters α, β, δ, γ. This yields:

y(t) =
α

β
, (8)

x(t) =
γ

δ
. (9)

Considering the Linearization Lyapunov Theorem it is
possible to determine the nature of these two equili‑
brium points. The Jacobian matrix is as follows:

J =
[

α− βy(t) −βx(t)
δy(t) δx(t)− γ

]
. (10)

At the extinction point (0, 0) the Jacobianmatrix beco‑
mes:

J =
[

α 0
0 −γ

]
, (11)

with the following two eigenvalues λ1 = α and λ2 =
−γ. This implies instable equilibrium points. Conside‑
ring the second equilibrium point stated by (9), then

J =
[

0 −βγ
δ

αδ
β 0

]
, (12)

with the following two complex eigenvalues λ1 =
j
√
αγ and λ2 = −j

√
αγ. This implies oscillating point

and no conclusion about the nature of this equilibrium
point.

3. Sliding Mode Control
As the goal of the simulation is to realise and esta‑

blish sustainable �ishing activities in order to ensure

the continuity of both marine ecosystems and the hu‑
man species, the current situation of over�ishing and
ocean depletion has to be stopped and managed in a
way that enables �ish stocks to recover. Therefore, the
error between the desired setpoint, being the equili‑
briumpoint of the �ishery system, and the actual value,
represented by the current level of �ish, has to be as‑
certained, harmonised and stabilised. This is explored
through application of the Lyapunov Theorem. With
zero being the intended value for ẋ(t) = f(x, u, t), the
theorem de�ines that if:

V (x(t)) > 0, ∀x(t), (13)

V (0) = 0, (14)
the function is positive and if:

V̇ (x(t)) < 0, ∀x(t) (15)

and one has:
ẋ(t) = f(x, u, t), (16)

then x(t) = 0 is an asymptomatic stabile point for
function ẋ(t) = f(x, u, t).
In order to reduce the error and harmonise the actual
value of �ish with the desired value of �ish associated
with a sustainable population size, an SMC is used as
follows:

S(t) = (xd(t)− x(t)) + ks

∫ t

0

(xd(z)− x(z))dz, (17)

where ks is a parameter to be designed. Since the V‑
function is a positive‑de�ine function of x(t), it can be
employed in the function above. Therefore, one gets:

V (S(t)) =
1

2
S2(t). (18)

Thereupon, the function is differentiated, which
yields:

V̇ (S(t)) =
1

2
2S(t)Ṡ(t), (19)

= S(t) [(ẋd(t)− ẋ(t)) + ks(xd(t)− x(t))] , (20)

= S(t)[
ẋd(t)−

(
αx(t)− βx(t)y(t)

)
+ ks(xd(t)− x(t))

]
,

(21)

if: y(t) = yeq(t) =

−ẋd(t) + αx(t)− ks(xd(t)− x(t))

βx(t)
, (22)

then V̇ (S(t)) = 0 and if:

y(t) = yeq(t)−
ηsgn(S(t))

βx(t)
, (23)

with

sgn(S(t)) =




1 if S(t) > 0
0 if S(t) = 0
−1 if S(t) < 0,

(24)
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then, if η > 0:

V̇ (S(t)) = S(t)[−ηsgn(S(t))]
= −ηS(t)sgn(S(t)) = −η|S(t)| < 0. (25)

In order to accelerate the process and reach the desi‑
red value more quickly, term λS(t), with λ > 0, can be
included in the equation. The resulting control law is
as follows:

y(t) = yeq(t)−
ηsgn(S(t))

βx(t)
− λS(t)

βx(t)
. (26)

Remark 1 It is known that, if ∆ represents the upper
bound of the uncertainties of the cancellation through
the equivalent part of the control, see (22), then to gua‑
rantee the convergence it is suf�icient to i�pose η > ∆.

3.1. Euler Method
Since the system in question has a relatively slow

dynamics, it is not intended to measure its state
second‑by‑second, but rather on a monthly basis.
Therefore, the equation is discretised according to
the Forward Euler method, where k represents the
known counting integer variable and Ts represents
the known sampling time, which yields:

ẋ(t) =
x(k)− x(k − 1)

Ts

= αx(k − 1)− βx(k − 1)y(k − 1) (27)

→ x(k) = x(k − 1) + Ts

(
αx(k − 1)

− βx(k − 1)y(k − 1)
)
. (28)

At this point, the respective equations are integrated
into Matlab. With the number of predators and re‑
spectively the number of �ishermen represented by
y(t), being the leverage point to control the level of �ish
stocks in the regarded aquatic ecosystem, Eq. (26) re‑
presents one of the main equations in the SMC. Since
the goal of the applied controller is to harmonise the
desired and actual amounts of �ish, measured in kilo‑
gram biomass, the desired amount of �ish (denoted by
xd(t)) and the actual amount of �ish (represented by
x(t)) are the two main data inputs for the equation.
Eq. (26) represents the main equation within the SMC
strategy.

4. An Extended Kalman Filter in the Control
Loop
The two KFs represeted in Fig. 1 consider the me‑

asured prey x(k) as output measured signal and para‑
meter α(k) and β(k) are the two augmented state to
be estimated and y(k − 1) is the number of predators
which represents the measured input. The a priori es‑
timation of the augmented state of EKF I is as follows:

α̂−(k) = α̂(k − 1), (29)

Fig. 1. Control Scheme

and the augmented state of EKF II is as follows:

β̂−(k) = β̂(k − 1). (30)

The a priori predicted covariance matrix is

P−(k − 1) = JdP (k − 1)JT
d +Qw, (31)

where Qw is the process noise covariance matrix and
matrixJd represents thediscrete state Jacobianmatrix
which is an identitymatrix and in our case is represen‑
ted by the scalar for both EKFs:

Jd = 1.

Considering that for EKF I which estimates parameter
β̂−(k) = β̂(k−1) as a stochastic augmented state, the
equation of the output prey state is as follows:

hI(k) = (1 + Tsα̂(k − 1))x(k − 1)

− β̂(k − 1)Tsx(k − 1)y(k − 1), (32)

where Ts represents the sampling time and y(k − 1)
represents the input predator variable. The output Ja‑
cobian of hI(k) is as follows:

HI(k) = −Tsx(k − 1)y(k − 1).

Considering that for EKF II which estimates para‑
meter α̂−(k) = α̂(k − 1) as a stochastic augmented
state, the equation of the output is exactly the same as
for EKF I:

hII(k) = (1 + Tsα̂(k − 1))x(k − 1)

− β̂(k − 1)Tsx(k − 1)y(k − 1) (33)
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and its output Jacobian is as follows:

HII(k) = −Tsx(k − 1).

The following equations state the correction (a poste‑
riori prediction) of for both EKF, EKF I and EKF II:

K(.)(k) = P−(k − 1)HT
(.)

(
H(.)P

−(k − 1)HT
(.) + ζ

)−1
,

α(k) = α̂(k − 1) +K(.)(k)
(
x(k)− h(k)

)
,

β(k) = β̂(k − 1) +K(.)(k)
(
x(k)− h(k)

)
,

P(.)(k) = P(.)(k − 1)−K(.)(k)H.P(.)(k − 1),

(34)

where ζ is themeasurement noise covariance variable
and K(k) is the Kalman gain and x(k) represents the
measured biomass.

5. Simulation Results
It is known, that in the presence of uncertainties

SMC should provide to switch with a suf�icient large
amplitude of η to guarantee the convergence, see (22).
In this paragraph the use of EKF is proposed to relax
the task of SMC. Tests without considering cancella‑
tion errors are shown at the beginning and after simu‑
lations using EKF in the presence of cancellation er‑
rors are shown.
5.1. Simulation Results Without Using EKF andWithout

Errors in α and β

In order to test the designed model it is assumed
that a sustainable level of �ish stocks is reached at ami‑
nimumof 10.000 kg of �ish. The goal is then to test how
the attendance of �ishermen affects the dynamics of
the prey population and how a meaningful policy de‑
signed to regulate the activities of the �ishermen could
be framed. Figure 2 shows the number of �ishermen
in a system that is not restricted by political regula‑
tions. The line graph shows the development of the
number of �ishermen over a period of 60 months. In
the absence of political regulations, the number of �is‑
hermen immediately increases to 1.000 and remains
stable over the entire period of time. The line graph
depicted in Fig. 3 shows the corresponding dynamics
of the �ish population over a period of 60 months, gi‑
ven the same situation that no political regulation of
�ishing activities exists. In this scenario the amount
of �ish peaks at 11.000 kg after approximately three
months and stabilises at the desired amount of 10,000
kg after 60 months. In order to test how a political re‑
gulation regarding the number of active �ishermen af‑
fects the system, a hypothetical regulation has been
assumed demanding that all �ishing activities are pro‑
hibited between the 5th and the 8th month of the pe‑
riod in question. This regulation is realised through an
if‑clause in the m‑�ile of Matlab, as follows: if((T <
5)|(T > 8))

y(t) = yeq(t)−
ηsgn(S(t))

βx(t)
. (35)

As a result, the number of �ishermen depicted in Fig. 4
rises to 1.000 and remains at that level until it drops

0 10 20 30 40 50 60
Time [months]

0

200

400

600

800

1000

1200

N
u
m
b
e
r
 
o
f
 
p
r
e
d
a
t
o
r
s

Fig. 2. Number of predators without regulation
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Fig. 3. Biomass of prey without regulation

to 0 at the �ive‑month mark. It then remains at 0 until
the 8th month and temporarily increases to 1.100 af‑
ter this point. Subsequently, the number slowly decre‑
ases again until it returns to a level of 1.000 after 60
months. The consequences of the regulation regarding
the level of �ish stocks in kilogram biomass is depicted
in Fig. 5. At the beginning of the time period in que‑
stion, when the number of �ishermen is high, the �ish
biomass level is at 10.000 kg. As soon as the regulation
takes effect, the �ish biomass increases exponentially,
peaking at 1�.500 kg at eight months. Since the �isher‑
men resume their activities from the 8th month on‑
wards, the biomass level decreases again, stabilising
at the desired level of 10.000 kg after 60 months. The
results show that the designed model is indeed sensi‑
tive to regulatory changes, and that it is able to depict
the dynamics of the interdependent populations.

5.2. Simulation Without Using EKF and Including Errors
in α and β

If an error is considered in the parameter ofα, then
it is possible that SMC needs to work with large gain η
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Fig. 4. Number of predators with regulation
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Fig. 5. Biomass of prey with regulation

and λ to obtain the same performances. Nevertheless,
using large η the chattering phenomenon results to be
increased. In Fig. 6, a possible result in term of cont‑
rol is shown in which an error of 20% is considered
in the parameter α without increasing the tuning pa‑
rameters of SMC. In Fig. 7, it is visible how the sliding
surface does not reach zero.

5.3. Simulation Results Using EKF and Including Errors
in α and β

Using the control scheme of Fig. 1 in which an EKF
is utilized in the control loop the following results are
obtained. Figures 8 and 9 show how the EKF can es‑
timate parameters α and β even with an initial condi‑
tion error on parameters α and β of 20%. Figure 10
shows the result of the controlled biomass inside the
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Fig. 6. Biomass of prey without Kalman estimator and
with 20% of the error in parameter α
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Fig. 7. Sliding surface without Kalman estimator and
with 20% of the error in parameter α

described regulation inwhich the proposed EKF is uti‑
lised in the control loop. A biased error on parameters
α and β of 20%is simulatedwith error in the initial va‑
lue of biomass. Figure 11 shows the number of preda‑
tors with regulation and using EKF in the control loop.
Figure 12 indicates the sliding surface in the presence
of the EKF estimation action.

6. Conclusion
Since the implementation of a regulating if‑clause

in the m‑�ile yields a reasonable result, the model
seems towork and to be appropriate for policy testing
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Fig. 8. Estimation of parameter α using EKF in the
control loop with an initial error of 20% in parameter α

0 10 20 30 40 50 60
Time [months]

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

P
a
r
a
m
e
t
e
r

Estimated parameter
Real parameter

Fig. 9. Estimation of parameter β using EKF in the
control loop with an initial error of 20% in parameter α

in the �ishing industry. An algorithm is built in which
the biomass of prey is controlled using an SMC stra‑
tegy. To estimate the necessary parameter of the mo‑
del, in this work two cascaded and Extended Kalman
Filters (EKFs) are proposed to estimate them in order
to be utilized in SMC. However, further research will
be necessary in order to construct more complex mo‑
dels, and thus more realistic ones, by including addi‑
tional variables that may in�luence the system. In ad‑
dition, appropriate measurements must be taken and
the values within the models must be adapted accor‑
dingly in order to obtain realistic and meaningful re‑
sults.
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Fig. 10. Biomass of prey using EKF in the control loop
with an initial error of 20% in parameter α
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Fig. 11. Number of predators using EKF in the control
loop with an initial error of 20% in parameter α
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Fig. 12. Sliding surface with Kalman estimator and with
20% of the error in parameter α
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