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Abstract:
The music industry has come a long way since its in‐
ception. Music producers have also adhered to modern
technology to infuse life into their creations. Systems ca‐
pable of separating sounds based on sources especially
vocals from songs have always been a necessity which
has gained attention from researchers as well. The chal‐
lenge of vocal separation elevates even more in the case
of the multi‐instrument environment. It is essential for a
system to be first able to detect that whether a piece of
music contains vocals or not prior to attempting source
separation. It is also very much challenging to perform
source separation fromaudiowhich is contaminatedwith
noise. In this paper, such a system is proposed being tes‐
ted on a database of more than 99 hours of instrumen‐
tals and songs. Experiments were performed with both
noise free as well as noisy audio clips. Using line spectral
frequency‐based features, we have obtained the highest
accuracies of 99.78% and 99.34% (noise free and noisy
scenario respectively) from among six different classi‐
fiers, viz. BayesNet, Support Vector Machine, Multi Layer
Perceptron, LibLinear, Simple Logistic and Decision Table.

Keywords: Background track, Vocals, Noisy audio, Line
spectral frequency, Framing

1. Introduction
Technology has had a profound impact in every sp‑

here and the music industry has not been an excep‑
tion to this. Audio engineers now have various advan‑
ced solutions to help themwithmusic production. One
of the primary requirements of musicians has always
been for such a technology that can enable them to
separate background tracks from vocals. This can be
extremely helpful for acapella extraction for rearran‑
gements. It can also help musicians in understanding
minute technicalities of background tracks who have
little audio engineering knowledge. The separation of
vocals frommusic is itself a dif�icult task which eleva‑
tes evenmore in the case songsdue topresenceofmul‑
tiple instruments. It is also extremely dif�icult to sepa‑
rate vocals from clips which has been breathed upon
by noise. A system of this sort can also help towards
voice activity detection in songs aswell and aid the se‑
paration of individual instruments in songs for further
analysis. It is essential to be able to distinguish instru‑
mentals from songs prior to extracting instrumental
portions from the songs and perform any kind of ana‑
lysis.

In this paper, such a system is proposed which

tries to segregate instrumentals and songs from noisy
clips using line spectral frequency (LSF)‑based featu‑
res. The system has been pictorially illustrated in Fi‑
gure 1. It has been testedwithmultiple feature dimen‑
sions and various classi�iers whose details are presen‑
ted in the subsequent paragraphs.

In the rest of the paper, Sections 2, 3 and 4 des‑
cribe the relatedworks, datasets andproposedmetho‑
dology, respectively. Section 5 highlights the details of
the results while conclusion and future work are pre‑
sented in Section 6.

Fig. 1. Pictorial view of the System

2. Related Work
Leung et al. [1] used a supervised variant of in‑

dependent component analysis namely ICA‑FX for the
taskof segregating instrumentals andvoices. Theyhad
also used general likelihood ratio based distance and
S�Mbased classi�ication; using 5 and 25 pop songs for
training and testing respectively, they obtained a hig‑
hest individual accuracy of 80.04%. Chanrungutai et
al. presented a system for separating vocals from mu‑
sic with the aid of a non negative matrix factorization
based technique. They performed pitch extraction on
the separated voices; their data consisted of both real
backing tracks aswell asMIDI ones. A detailed account
of the results is presented in [2].

Rocamora et al. [3] studied various audio descrip‑
tors for the task of music and voice segregation and
concluded the fact that mel frequency cepstral coef�i‑
cient (MFCC)‑based approach is themost appropriate.
They also presented a statistical classi�ication techni‑
que with the help of a reduced descriptor set for de‑
tecting voice in songs and obtained a highest accuracy
of 78.5%. Hsu et al. performed separation of music ac‑
companiments andunvoiced singing voice on theMIR‑
1K dataset. They followed the computational auditory
scene analysis framework in their experiments whose
details are presented in [4].

Ra�ii et al. [5] adopted a repetitive musical struc‑
ture identi�ication based approach for segregating
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voice and music; they experimented with the MIR‑1K
dataset and obtained a highest global normalized sig‑
nal to distortion ratio of 1.11. On another work Ra�ii et
al. [6] presented a systemnamedREPET for the task of
speech andmusic separation; they experimentedwith
1000 song clips and 14 songs and extended the system
to aid in the pre‑processing stage for detecting pitch
to help in melody extraction. Liutkus et al. [7] further
extended REPET to handle background variations as
well as long excerpts in order to process full songs.

Ghosal et al. [8] adopted a random sample and
consensus based approach for the purpose of separa‑
ting songs and instrumentals; they experimented on
a dataset of 300 instrumentals and songs each and
obtained an accuracy of 95%. Mauch et al. [9] obtai‑
ned an accuracy of 89.8% for the task of instrumen‑
tal solo detection using a combination of four featu‑
res in the thick of MFCC, pitch �luctuation, MFCC of re‑
synthesised predominant voice and normalised am‑
plitude of harmonic partials.

Burute and Mane [10] used a robust principal
component analysis based approach for separating
backgroundmusic and voice. They experimentedwith
the MIR‑1K dataset and reported results for different
parameters in the thick of source to distortion ratio,
source to artefact ratio, source to interference ratio
and global normalised source to distortion ratio. A
best global normalised source to distortion value of
around 5.2 decibels was reported by them as well.
Ghosal et al. [11] used MFCC based features for seg‑
menting instrumentals and songs. They experimented
on a database consisting of 180 songs and instrumen‑
tals each of length 40‑45 seconds. The clips were mo‑
nophonic in nature sampled at 22050 Hz. The dataset
consisted of data from different instruments like �lute,
guitar, drums and piano aswell as different genres like
rock, classical and jazz. Among differentmachine lear‑
ning algorithms, they obtained a highest accuracy of
93.34% using random sample and consensus classi�i‑
cation.

Regnier and Peeters [12] attempted to detect the
presence of voice in music tracks with the aid of vi‑
brato and tremolo characteristics. They also used har‑
monicity based criteria to assign a clip to either of sin‑
ging or non singing class. The experiment was con‑
ducted on database of 90 songs from different artists,
genres, languages and tempos out of which 58 songs
were used for training ad the rest for training. In the
entire dataset, 50.3% were segments with vocals and
the remaining were without vocals or only music. A
highest F‑measure value of 76.8% was obtained in
their experiment. Ozerov et al. [13] applied a bayesian
model adaptation‑based approach for source separa‑
tion over a single channel. They experimented with
music and voice separation and concluded reported
better results using adaptive models over non adap‑
tive models. Hsu et al. [14] proposed a tandem algo‑
rithm for extraction of music pitch and separation of
voice from background music. They also used a trend
estimation technique to identify pitch range of singing
voice and obtained average accuracy of 90%.

Tab. 1. Number of instrumental and song clips for the
different datasets

Datatset Song Instrumental
(clip length) (49:19:48) (49:50:15)

D1 (5s) 35116 35718
D2 (10s) 17362 17771
D3 (15s) 11431 11798
D4 (20s) 8500 8805

Zhu et al. [15] proposed amultiple stage non nega‑
tive matrix factorization technique for separating mo‑
noaural singing voice. They �irst applied the factoriza‑
tion technique for decomposition of spectrograms fol‑
lowed by application of a spectral discontinuity thres‑
holding technique. Multitudinous experiments were
performed on the MIR‑1K dataset consisting of 1000
short audios and the Beach‑Boys dataset consisting of
14 songs whose results are presented in [15].

3. Dataset Development
Data is an essential entity of any experiment. It is

always important to ensure that the dataset contains
real life characteristics as far as possible. In our expe‑
riment, audio clips of songs and instrumentals were
extracted from various websites like YouTube [16].
The top three languages of India namely English, Hindi
and Bangla [17] were considered in the case of songs.
Songs of different genres and timelineswere chosen in
order to ensure that the dataset covered various qua‑
lities of songs in terms of rendering and audio engi‑
neering. The song clips had either background music
or sections of instrument only parts. Different artists
were chosen for collecting instrumental clips in order
to get data of various types like genre, playing style,
tonality and technicality. Instrumental covers of vari‑
ous songs, as well as original compositions using dif‑
ferent instruments like guitar, violin and piano, along
with background music constituted the instrumental
part of the dataset.

This data was used to generate 4 datasets (D1‑D4)
having clips of lengths 5, 10, 15 and 20 seconds, re‑
spectively. The details of the generated datasets along
with that of the original data is presented in Table 1.

In order to test the system’s performance in noisy
scenario, each of the datasets were subjected to 3 ty‑
pes of noise sources namely humming noise, highway
noise and thunder noise. The signal to noise ratios ran‑
ged from ‑20.65 to 14.90. The amplitude based pre‑
sentation for the different noise clips along with those
of the instrument and song clips from the 4 datasets is
presented in Figures 2‑ 5.

4. Proposed Method
4.1. Pre‐Processing

The audio clips were split into smaller frames as
the spectral characteristics tend to show a lot of devi‑
ation for longer clips. The clips were partitioned into
256 sample point wide frames with a 100 point over‑
lap as presented in [18]. Next, the frames were sub‑
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dataset and obtained a highest global normalized sig‑
nal to distortion ratio of 1.11. On another work Ra�ii et
al. [6] presented a systemnamedREPET for the task of
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1000 song clips and 14 songs and extended the system
to aid in the pre‑processing stage for detecting pitch
to help in melody extraction. Liutkus et al. [7] further
extended REPET to handle background variations as
well as long excerpts in order to process full songs.

Ghosal et al. [8] adopted a random sample and
consensus based approach for the purpose of separa‑
ting songs and instrumentals; they experimented on
a dataset of 300 instrumentals and songs each and
obtained an accuracy of 95%. Mauch et al. [9] obtai‑
ned an accuracy of 89.8% for the task of instrumen‑
tal solo detection using a combination of four featu‑
res in the thick of MFCC, pitch �luctuation, MFCC of re‑
synthesised predominant voice and normalised am‑
plitude of harmonic partials.

Burute and Mane [10] used a robust principal
component analysis based approach for separating
backgroundmusic and voice. They experimentedwith
the MIR‑1K dataset and reported results for different
parameters in the thick of source to distortion ratio,
source to artefact ratio, source to interference ratio
and global normalised source to distortion ratio. A
best global normalised source to distortion value of
around 5.2 decibels was reported by them as well.
Ghosal et al. [11] used MFCC based features for seg‑
menting instrumentals and songs. They experimented
on a database consisting of 180 songs and instrumen‑
tals each of length 40‑45 seconds. The clips were mo‑
nophonic in nature sampled at 22050 Hz. The dataset
consisted of data from different instruments like �lute,
guitar, drums and piano aswell as different genres like
rock, classical and jazz. Among differentmachine lear‑
ning algorithms, they obtained a highest accuracy of
93.34% using random sample and consensus classi�i‑
cation.

Regnier and Peeters [12] attempted to detect the
presence of voice in music tracks with the aid of vi‑
brato and tremolo characteristics. They also used har‑
monicity based criteria to assign a clip to either of sin‑
ging or non singing class. The experiment was con‑
ducted on database of 90 songs from different artists,
genres, languages and tempos out of which 58 songs
were used for training ad the rest for training. In the
entire dataset, 50.3% were segments with vocals and
the remaining were without vocals or only music. A
highest F‑measure value of 76.8% was obtained in
their experiment. Ozerov et al. [13] applied a bayesian
model adaptation‑based approach for source separa‑
tion over a single channel. They experimented with
music and voice separation and concluded reported
better results using adaptive models over non adap‑
tive models. Hsu et al. [14] proposed a tandem algo‑
rithm for extraction of music pitch and separation of
voice from background music. They also used a trend
estimation technique to identify pitch range of singing
voice and obtained average accuracy of 90%.

Tab. 1. Number of instrumental and song clips for the
different datasets
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(clip length) (49:19:48) (49:50:15)

D1 (5s) 35116 35718
D2 (10s) 17362 17771
D3 (15s) 11431 11798
D4 (20s) 8500 8805

Zhu et al. [15] proposed amultiple stage non nega‑
tive matrix factorization technique for separating mo‑
noaural singing voice. They �irst applied the factoriza‑
tion technique for decomposition of spectrograms fol‑
lowed by application of a spectral discontinuity thres‑
holding technique. Multitudinous experiments were
performed on the MIR‑1K dataset consisting of 1000
short audios and the Beach‑Boys dataset consisting of
14 songs whose results are presented in [15].

3. Dataset Development
Data is an essential entity of any experiment. It is

always important to ensure that the dataset contains
real life characteristics as far as possible. In our expe‑
riment, audio clips of songs and instrumentals were
extracted from various websites like YouTube [16].
The top three languages of India namely English, Hindi
and Bangla [17] were considered in the case of songs.
Songs of different genres and timelineswere chosen in
order to ensure that the dataset covered various qua‑
lities of songs in terms of rendering and audio engi‑
neering. The song clips had either background music
or sections of instrument only parts. Different artists
were chosen for collecting instrumental clips in order
to get data of various types like genre, playing style,
tonality and technicality. Instrumental covers of vari‑
ous songs, as well as original compositions using dif‑
ferent instruments like guitar, violin and piano, along
with background music constituted the instrumental
part of the dataset.

This data was used to generate 4 datasets (D1‑D4)
having clips of lengths 5, 10, 15 and 20 seconds, re‑
spectively. The details of the generated datasets along
with that of the original data is presented in Table 1.

In order to test the system’s performance in noisy
scenario, each of the datasets were subjected to 3 ty‑
pes of noise sources namely humming noise, highway
noise and thunder noise. The signal to noise ratios ran‑
ged from ‑20.65 to 14.90. The amplitude based pre‑
sentation for the different noise clips along with those
of the instrument and song clips from the 4 datasets is
presented in Figures 2‑ 5.

4. Proposed Method
4.1. Pre‐Processing

The audio clips were split into smaller frames as
the spectral characteristics tend to show a lot of devi‑
ation for longer clips. The clips were partitioned into
256 sample point wide frames with a 100 point over‑
lap as presented in [18]. Next, the frames were sub‑
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Fig. 2. Amplitude based representation for 5 second
long (a) Instrumental, (b) Song, (c) Highway noise, (d)
Humming noise and (e) Thunder noise clips

Fig. 3. Amplitude based representation for 10 second
long (a) Instrumental, (b) Song, (c) Highway noise, (d)
Humming noise and (e) Thunder noise clips

Fig. 4. Amplitude based representation for 15 second
long (a) Instrumental, (b) Song, (c) Highway noise, (d)
Humming noise and (e) Thunder noise clips

Fig. 5. Amplitude based representation for 20 second
long (a) Instrumental, (b) Song, (c) Highway noise, (d)
Humming noise and (e) Thunder noise clips

jected to a windowing function (Hamming Window
as presented in [19]) in order to get rid of the jit‑
ters which might lead to spectral leakage at the time
of frequency based analysis. The mathematical repre‑
sentation of hamming windowB(n) is given by Equa‑
tion (1)where the value of r ranges between the frame
boundary of sizeR

B(n) = 0.54− 0.46 cos
(

2πr

R− 1

)
. (1)

4.2. Feature Extraction
Line spectral frequency [20] is amethod for repre‑

senting linear predictive coef�icientswith better inter‑
polation properties. Here, a signal is considered as the

output of an all pole �ilter (H(z)). The inverse �ilter of
H(z) is represented by Equation 2, where r1, r2…rT
designate the predictive coef�icients up to the order T

R(z) = 1+r1z
−1+r2z

−2+r3z
−3+......+rT z

−T . (2)

R(z) is decomposed into polynomials F (z) and
G(z) as shown in Equation 3 and Equation 4, respecti‑
vely, whose zeros lie on the unit circle. They are also
interlaced with each other, thus helping in computa‑
tion

F (z) = R(z) + z−(T+1)R(z−1)and (3)

G(z) = R(z)− z−(T+1)R(z−1). (4)
Each of the datasets were used for extraction of

5, 10, 15 and 20 dimensional standard line spectral
frequency features. Since the clips were of disparate
lengths, a disparate number of frames were produ‑
ced for the clips, producing features of disparate di‑
mension. In order to tackle this problem, the band
wise sums for the energy valueswere computedwhich
were then used to compute the ratio of distribution
of energy across the bands. Along with this, the band
numbers were also added to the feature set graded in
descending order based on total energy content.

It was experimentally found that a clip of just 2 se‑
conds produced 880 frames; if a 5 dimensional LSF
was extracted for the clip then a feature set of 4400
dimension was obtained. However with the help of
the proposed technique, this dimension was brought
down to just 10 (5 ratio distribution values and 5 band
numbers). Thus, LSF values of 5, 10, 15 and 20 dimen‑
sions produced even dimensional feature sets of 10,
20, 30 and 40 dimensions which were independent of
the length of the clips. Trends of the feature values for
the songs and instrumental clips for the 40 dimensio‑
nal features (best result in noise free scenario) is pre‑
sented in Figure 6.

Fig. 6. 40 dimensional feature values for (a) Song, (b)
Instrumental

4.3. Classification
Each feature set for each datasets was fed into dif‑

ferent classi�iers popularly used inpattern recognition
problemsin the thick of BayesNet (BN) [21], Support
VectorMachine (SVM) [22], LibLinear (Lib) [23], Multi
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LayerPerceptron (MLP) [24], Simple Logistic (SL) [25]
and Decision Table (DT) [26].

BayesNet: is a bayesian classi�ier thatmakesuse of
a Bayes Network for learning with the aid of different
quality parameters and search algorithms. The base
class provides data structures like conditional proba‑
bility distributions, structure of network, etc. and dif‑
ferent facilities which are similar to that of the Baye‑
sian Network learning algorithm like K2.

Support VectorMachine: is a supervised learning
algorithm that can be used for classi�ication as well as
regression analysis. SVM builds a bi‑class model from
a set of training instances and then associates each in‑
stance to either class.

LibLinear: is a functional and linear type of clas‑
si�ier which is suitable for either large number of in‑
stances or large feature sets. It is also suitable for re‑
gression problems.

Decision Table: is one of the simplest supervi‑
sed learning algorithms; it consists of 2 parts namely,
schema which de�ines the features to be included in
the table and body which embodies the set of instan‑
ces along with their feature values and class labels.

Multi Layer Perceptron: is a feed forward vari‑
ant of an arti�icial neural network which maps an in‑
put and output set; it consists of nodes which are con‑
nectedby links havingweights associated to it. It is one
of the most popular classi�iers in pattern recognition
problems.

Simple Logistic: is a classi�ier used to build linear
logistic regressionmodels. The classi�ier has a base le‑
arner associated with it along with number of iterati‑
ons which aids to automatically select attributes.

The extremely popular open source classi�ication
tool namedWeka [27] was used in the present experi‑
ment. We used 5 fold cross validation for all the classi‑
�iers with default parameters. The details of the obtai‑
ned results are presented in the subsequent section.

5. Result and Discussion
5.1. Noise Free Scenario

The accuracies obtained for datasets D1–D4 using
different classi�iers are presented in Table 2 to Table
5.

From Table 2 it is observed that the highest and lo‑
west accuracies of 99.78% and 50.69%were obtained
using MLP and LibLinear, respectively, which are the
overall best andworst results among all the classi�iers
with default parameters. The same behaviour is found
for D2 dataset as can be seen in Table 3; the highest
and lowest accuracies being 98.27% and 52.27%. On
the other hand, forD3 (Table 4), the highest and lowest
accuracies were 99.57% and 52.84%, obtained using
BayesNet and LibLinear, respectively. Highest and lo‑
west accuracies of 99.39% and 51.77%were obtained
usingMLP and LibLinear, respectively for D4 (Table 5).

Table 6 shows the highest and lowest accuracies
obtained for all experiments based on the feature di‑
mension. It can be seen from the Table that LibLinear

produced the lowest accuracy for every featuredimen‑
sion. It can also be observed that the top 2 results
were obtained using MLP on D1 (shortest clips in ex‑
periment) and D4 (longest clips in experiment) which
shows the effectiveness of MLP.

It is also observed from Tables 2–5 that highest
accuracies of 99.57%, 99.31%, 84.86%were obtained
for BayesNet, SVM and LibLinear respectively. The lo‑
west accuracies for the same classi�iers were found to
be 67.01%, 59.67% and 50.69% respectively. In the
case of MLP, Simple Logistic and Decision Table, hig‑
hest accuracies of 99.78%, 89.91% and 97.47% re‑
spectively were obtained. The lowest accuracies for
the same were found to be 69.08%, 60.24%, 71.73%
respectively.

�oncluding, the classi�iers can be organized in the
following manner based on their best performance:
MLP, BayesNet, SVM, Decision Table, Simple Logistic
and LibLinear.MLP is very suitable for audio signal ba‑
sed applications as demonstrated in [24,19,18] which
is depicted in the obtained results as well.

The confusion matrix for the best result (D1, MLP
with 40 dimensional features) is presented in Table 7
where it can be observed that 0.19% of the song clips
and 0.25% of the instrumental clips were confused
with each other. One possible reason for this is that
during the generation of the dataset (splitting of clips
into shorter clips), some of the instrumental parts
from the songs might have got entirely isolated for
the 5 second clips (it was observed that various songs
had instrumental sections of more than 5 seconds at a
stretch) which interfered with the trained model.

Since the best resultwas obtained forMLP,we furt‑
her experimented with it by varying the number of
training iterations (ephocs); the obtained accuracies
are depicted in Table 8.

From the Table it can be observed that the highest
accuracy (99.81%) was obtained for 1800 iterations
and that value maintained for further iterations. The
confusion matrix for this experiment is presented in
Table 9 where it can be seen that the number of mis‑
classi�ied samples for both the classes decreased with
respect to the default con�iguration of MLP as shown
in Table 7.

We had further experimented by varying the num‑
ber of folds in cross validation for the same setup (best
accuracy with lowest number of training iterations);
the details are presented in Table 10. We had varied
the number of folds for cross validation from 2‑10 to
observe the performance of MLP for test and training
sets of different sizes. It canbe seen from theTable that
the best accuracywas obtained for 5 and 7 foldswhich
further decreased on increasing the number of folds.

5.2. Noisy Scenario
The obtained accuracies for the different feature

dimensions for the 4 datasets in the presence of
highway noise is presented in Table 11.

It can be seen from the Table that highest accu‑
racies of 97.77%, 97.85% and 99.16% for D1‑D3 re‑
spectively were obtained for 40 dimensional features
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Tab. 2. Obtained accuracies for D1 using different classifiers and feature dimensions

Dimension BN MLP DT SL SVM Lib
10 83.38 86.22 86.51 84.86 84.86 84.86
20 67.01 72.83 72.92 61.71 88.15 57.37
30 69.47 72.36 71.82 61.53 72.21 50.69
40 95.30 99.78 94.96 62.36 73.01 54.55

Tab. 3. Obtained accuracies for D2 using different classifiers and feature dimensions

Dimension BN MLP DT SL SVM Lib
10 67.38 69.08 72.06 60.24 64.57 60.24
20 75.351 92.51 94.42 64.64 96.89 62.47
30 89.62 94.96 96.62 62.16 94.98 57.03
40 98.27 98.18 96.76 73.97 61.21 52.27

Tab. 4. Obtained accuracies for D3 using different classifiers and feature dimensions

Dimension BN MLP DT SL SVM Lib
10 67.53 70.26 71.73 60.61 61.89 60.62
20 78.56 99.30 99.04 61.97 99.31 59.56
30 93.27 97.44 97.36 61.49 92.55 52.84
40 99.57 99.52 94.13 89.91 59.67 72.56

Tab. 5. Obtained accuracies for D4 using different classifiers and feature dimensions

Dimension BN MLP DT SL SVM Lib
10 85.25 85.26 85.42 60.77 84.19 60.63
20 83.55 96.32 96.51 69.11 96.16 66.51
30 90.97 99.39 97.47 62.62 95.53 51.77
40 90.97 92.58 90.93 70.43 64.85 61.84

Tab. 6. Highest and lowest accuracies obtained for all experiments based on feature dimension along with the classifier
and dataset

Dimension Highest Lowest
10 86.51 (D1, DT) 60.24 (D2,SL; D2,Lib)
20 99.31 (D3, SVM) 57.37 (D1, Lib)
30 99.39 (D4, MLP) 50.69 (D1, Lib)
40 99.78 (D1, MLP) 52.27 (D2, Lib)

Tab. 7. Confusion matrix for D1 with 40 dimensional
features using MLP showing the number of correctly
and misclassified instances

Song Instrumental
Song 35051 65

Instrumental 89 35629

using MLP. In the case of D4, the best result was obtai‑
ned for 30 dimensional features.

The obtained accuracies for the different feature
dimensions for the 4 datasets in the presence of hum‑
ming noise is presented in Table 12.

It can be seen from the Table that the best results
for all 4 datasets was obtained using MLP. The 40 di‑
mensional features produced highest results (96.44%
and 98.55%) for D1and D2 respectively while the 30
dimensional features produced the best result for the
remaining 2 datasets(98.20% and 98.17% respecti‑

vely). It can be seen that for D4, the accuracy dropped
signi�icantly for 40 dimensional features in compari‑
son to the 30 dimensional features which points to‑
wards over �itting the neural networ�. In the case of
D3 it can be seen that an increase of 16.21% in accu‑
racy was obtained for the 30 dimensional features as
compared to the 20 dimensional features thereby de‑
monstrating the inability of the 20 dimensional featu‑
res to handle the 15 second long noisy clips.

The obtained accuracies for the different feature
dimensions for the 4 datasets in the presence of thun‑
der noise is presented in Table 13.

It can be seen from the Table that in the case of D2,
the best result was obtained for decision table with 20
dimensional features. The obtained accuracies for 10
and 30 dimensional features were quite less as com‑
pared to the 20 dimensional features as can be seen in
the Table as well. In The remaining datasets produced
best resultswithMLP and20dimensional features out
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Dimension BN MLP DT SL SVM Lib
10 83.38 86.22 86.51 84.86 84.86 84.86
20 67.01 72.83 72.92 61.71 88.15 57.37
30 69.47 72.36 71.82 61.53 72.21 50.69
40 95.30 99.78 94.96 62.36 73.01 54.55

Tab. 3. Obtained accuracies for D2 using different classifiers and feature dimensions

Dimension BN MLP DT SL SVM Lib
10 67.38 69.08 72.06 60.24 64.57 60.24
20 75.351 92.51 94.42 64.64 96.89 62.47
30 89.62 94.96 96.62 62.16 94.98 57.03
40 98.27 98.18 96.76 73.97 61.21 52.27

Tab. 4. Obtained accuracies for D3 using different classifiers and feature dimensions

Dimension BN MLP DT SL SVM Lib
10 67.53 70.26 71.73 60.61 61.89 60.62
20 78.56 99.30 99.04 61.97 99.31 59.56
30 93.27 97.44 97.36 61.49 92.55 52.84
40 99.57 99.52 94.13 89.91 59.67 72.56

Tab. 5. Obtained accuracies for D4 using different classifiers and feature dimensions

Dimension BN MLP DT SL SVM Lib
10 85.25 85.26 85.42 60.77 84.19 60.63
20 83.55 96.32 96.51 69.11 96.16 66.51
30 90.97 99.39 97.47 62.62 95.53 51.77
40 90.97 92.58 90.93 70.43 64.85 61.84

Tab. 6. Highest and lowest accuracies obtained for all experiments based on feature dimension along with the classifier
and dataset

Dimension Highest Lowest
10 86.51 (D1, DT) 60.24 (D2,SL; D2,Lib)
20 99.31 (D3, SVM) 57.37 (D1, Lib)
30 99.39 (D4, MLP) 50.69 (D1, Lib)
40 99.78 (D1, MLP) 52.27 (D2, Lib)

Tab. 7. Confusion matrix for D1 with 40 dimensional
features using MLP showing the number of correctly
and misclassified instances

Song Instrumental
Song 35051 65

Instrumental 89 35629

using MLP. In the case of D4, the best result was obtai‑
ned for 30 dimensional features.

The obtained accuracies for the different feature
dimensions for the 4 datasets in the presence of hum‑
ming noise is presented in Table 12.

It can be seen from the Table that the best results
for all 4 datasets was obtained using MLP. The 40 di‑
mensional features produced highest results (96.44%
and 98.55%) for D1and D2 respectively while the 30
dimensional features produced the best result for the
remaining 2 datasets(98.20% and 98.17% respecti‑

vely). It can be seen that for D4, the accuracy dropped
signi�icantly for 40 dimensional features in compari‑
son to the 30 dimensional features which points to‑
wards over �itting the neural networ�. In the case of
D3 it can be seen that an increase of 16.21% in accu‑
racy was obtained for the 30 dimensional features as
compared to the 20 dimensional features thereby de‑
monstrating the inability of the 20 dimensional featu‑
res to handle the 15 second long noisy clips.

The obtained accuracies for the different feature
dimensions for the 4 datasets in the presence of thun‑
der noise is presented in Table 13.

It can be seen from the Table that in the case of D2,
the best result was obtained for decision table with 20
dimensional features. The obtained accuracies for 10
and 30 dimensional features were quite less as com‑
pared to the 20 dimensional features as can be seen in
the Table as well. In The remaining datasets produced
best resultswithMLP and20dimensional features out
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Tab. 8. Accuracies using MLP for D1 with 40 dimensional features for different training iterations

Iterations 100 200 300 400 500 600 700 800
Accuracy (%) 99.66 99.72 99.72 99.79 99.78 99.78 99.78 99.78
Iterations 900 1000 1100 1200 1300 1400 1500 1600

Accuracy (%) 99.79 99.80 99.79 99.80 99.80 99.80 99.79 99.80
Iterations 1700 1800 1900 2000 2100 2200 2300 2400

Accuracy(%) 99.80 99.81 99.81 99.81 99.80 99.81 99.80 99.81

Tab. 9. Confusion matrix for D1 with 40 dimensional
features using MLP at 1800 learning iterations

Song Instrumental
Song 35052 64

Instrumental 74 35644

ofwhich D2 produced the best result (99.19%) among
all the noisy scenarios. The confusion matrix for the
same is presented in Table 14.

Since the best result for noise free scenario using
MLP was obtained using MLP with 1800 training ite‑
rations, so the same con�iguration was also used and
an accuracy of 99.34% (highest among all noisy scena‑
rios) was obtained whose confusion matrix is presen‑
ted in Table 15.

It can be seen from the Table that though the num‑
ber of misclassi�ications for song clips increased slig‑
htly (only 3 more instances) but the number of mis‑
classi�ied instrumental clips reduced by 31% in com‑
parison to the default iteration setup of MLP.

We had further experimented with the thunder
noise scenario and 20 dimensional feature set of D2

as the best result for noisy scenario was obtained for
it. We increased the power of the thunder noise signal
by 2 (N1), 5 (N2), 10 (N3) and 20 (N4) dB and added
it to the noise free clips of D2 to observe the system’s
performance. The amplitude based representation of
the noise clips along with that of the original data is
presented in Figure 7.

Fig. 7. Amplitude based representation for 10 second
long (a) Instrumental, (b) Song, (c) N1, (d) N2, (e) N3
and (f) N4 clips

The trend of the feature values for the 2 type of
clips in thunder noise scenario as well as N1, N2, N3
and N4 scenario is presented in Figure 8.

The obtained accuracies for N1‑N4 is presented in
Table 16.

It can be seen from the Table that the accuracy
dropped slightly for N2 with respect to the original
thunder noise scenario. A similar trend is also obser‑
ved for N2 and N3. However, the accuracy dropped

Fig. 8. 40 dimensional feature values for (a), (b)
Instrumental

signi�icantly when the noise was increased by 20 dB.
The dataset was manually investigated for this scena‑
rio and itwas fond that inmost of the clips, the propor‑
tion of noise was extremely high in comparison to the
original data and in many cases the original data was
inaudible. The confusion matrices for the 4 scenarios
is presented in Table 17.

It can be seen from the Table that in the case of N2
and N3, there is no major difference of the number of
misclassi�ied instances though thenoise component in
N3 is twice to that of N2 which points to the system’s
ability to handle noisy clips.
5.3. Statistical Significance Tests

Friedman test [28] on the 40 dimensional feature
set of D1 (overall highest among all scnarios) was car‑
ried out to check for statistical signi�icance. The data‑
setwasdivided into5parts (N) andall the 6 classi�iers
(k) were involved in the test. The distribution of ranks
and accuracies are presented in Table 18.

The Friedman statistic (χ2
F ) [28] was calculated

with the help of Table 18 in accordance with Equa‑
tion 5 where Rj corresponds to the mean rank of the
jth classi�ier.

χ2
F =

12N

k(k + 1)


∑

j

R2
j −

k(k + 1)2

4


 . (5)

The critical values ofχ2
F for the above setupwas found

to be 11.070 and 9.236 at signi�icance levels of 0.05
and 0.10 respectively; we got a value of 15.54 for χ2

F

thereby rejecting the null hypothesis.

6. Conclusion
In this paper, a system for segregating instrumen‑

tals and songs fromnoisy audio is presented using line
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rios) was obtained whose confusion matrix is presen‑
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The dataset was manually investigated for this scena‑
rio and itwas fond that inmost of the clips, the propor‑
tion of noise was extremely high in comparison to the
original data and in many cases the original data was
inaudible. The confusion matrices for the 4 scenarios
is presented in Table 17.

It can be seen from the Table that in the case of N2
and N3, there is no major difference of the number of
misclassi�ied instances though thenoise component in
N3 is twice to that of N2 which points to the system’s
ability to handle noisy clips.
5.3. Statistical Significance Tests

Friedman test [28] on the 40 dimensional feature
set of D1 (overall highest among all scnarios) was car‑
ried out to check for statistical signi�icance. The data‑
setwasdivided into5parts (N) andall the 6 classi�iers
(k) were involved in the test. The distribution of ranks
and accuracies are presented in Table 18.

The Friedman statistic (χ2
F ) [28] was calculated

with the help of Table 18 in accordance with Equa‑
tion 5 where Rj corresponds to the mean rank of the
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F for the above setupwas found
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thereby rejecting the null hypothesis.
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tals and songs fromnoisy audio is presented using line
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Tab. 10. Accuracies for different number of cross validation folds of cross using MLP for D1 with 40 dimensional features
and 1800 training iterations

# Folds 2 3 4 5 6 7 8 9 10
Accuracy (%) 99.36 99.75 99.69 99.81 99.71 99.81 99.78 99.75 99.73

Tab. 11. Obtained accuracies for D1‐D4 and 10‐40 dimensional features in highway noise scenario

BN MLP DT SL SVM Lib
D1

10 68.80 68.89 70.28 61.84 61.66 61.51
20 67.81 76.15 77.95 63.16 62.70 59.08
30 72.06 78.21 78.46 63.36 62.27 55.58
40 97.14 97.77 96.61 69.35 56.98 56.96

D2
10 66.91 69.77 72.05 60.75 60.52 60.11
20 73.36 97.40 92.17 64.50 63.35 61.05
30 87.09 91.37 95.33 69.73 63.37 63.37
40 97.02 97.85 93.03 87.66 95.12 77.31

D3
10 80.30 80.89 80.63 73.86 74.58 74.09
20 83.77 91.29 92.66 70.58 72.13 64.30
30 95.49 97.51 94.32 79.96 79.78 71.45
40 97.49 99.16 96.70 77.04 83.87 65.77

D4
10 86.55 87.05 87.30 86.96 86.96 86.96
20 80.25 94.22 89.91 65.29 64.50 62.65
30 95.62 98.15 97.83 77.99 84.95 69.37
40 90.57 94.02 94.73 67.20 58.59 50.70

Tab. 12. Obtained accuracies for D1‐D4 and 10‐40 dimensional features in humming noise scenario

BN MLP DT SL SVM Lib
D1

10 67.27 68.08 70.07 63.10 62.07 62.14
20 62.96 70.07 67.16 61.28 59.41 56.20
30 77.66 85.63 92.51 65.77 65.13 55.77
40 77.22 96.94 90.56 65.28 64.82 53.50

D2
10 64.95 66.05 67.78 60.53 61.10 60.27
20 65.74 74.12 72.31 62.14 60.59 58.28
30 97.53 97.94 97.80 97.73 97.59 93.62
40 97.78 98.55 98.08 72.75 82.16 51.72

D3
10 87.21 88.00 87.38 69.83 68.47 69.50
20 65.22 81.99 70.70 62.21 60.35 58.68
30 97.61 98.20 97.05 87.23 81.01 83.51
40 91.71 96.92 93.49 84.38 86.45 74.34

D4
10 65.54 68.23 68.86 60.02 60.53 60.07
20 72.25 89.49 88.96 62.58 59.96 56.98
30 98.02 98.17 98.01 95.03 98.14 90.02
40 71.74 83.32 91.10 66.92 67.50 52.09

spectral frequency based features. The clips were sub‑
jected to multifarious noise sources to test the robust‑
ness of the system. We have applied different popular
classi�iers on the feature sets and obtained the highest
result using MLP algorithm for both noise free as well
as noisy scenario.. It was also observed that LibLinear

produced most of the accuracies in the lower side.
As future work we will experiment with a lar‑

ger and more robust dataset and observe the perfor‑
mance of various other classi�iers. We will also expe‑
riment with other machine learning techniques inclu‑
dingdeep learningbasedapproaches andusedifferent
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Tab. 13. Obtained accuracies for D1‐D4 and 10‐40 dimensional features in thunder noise scenario

BN MLP DT SL SVM Lib
D1

10 62.37 63.42 63.34 60.99 60.84 61.17
20 68.58 86.47 83.80 61.57 58.96 58.76
30 83.86 84.73 81.25 77.48 77.08 72.91
40 59.39 73.38 69.64 58.99 54.81 50.16

D2
10 61.15 62.11 63.96 58.97 58.96 58.66
20 91.78 99.19 99.03 68.63 69.43 66.89
30 68.30 79.86 71.23 78.79 75.27 66.90
40 59.14 87.67 87.64 58.94 52.64 49.87

D3
10 62.00 65.99 65.62 61.15 56.96 57.86
20 88.20 92.94 90.54 62.71 63.83 58.25
30 83.59 84.36 86.94 84.27 80.89 81.67
40 69.95 93.93 98.12 75.68 71.60 54.96

D4
10 62.21 64.66 66.22 59.71 57.51 58.34
20 95.30 98.89 96.91 84.32 82.68 83.52
30 61.87 63.07 65.50 62.34 54.71 50.56
40 81.53 92.92 84.36 65.95 64.27 55.01

Tab. 14. Confusion matrix for D2 with 20 dimensional
features and thunder noise scenario using MLP with
default parameters

Song Instrumental
Song 17250 112

Instrumental 172 17599

Tab. 15. Confusion matrix for D2 with 20 dimensional
features and thunder noise scenario using MLP with
1800 training iterations

Song Instrumental
Song 17247 115

Instrumental 118 17653

Tab. 16. Obtained accuracies for D2 using MLP when
subjected to N1‐N4 sources

Noise Scenario N1 N2 N3 N4
Accuracy 98.84 95.23 94.36 68.66

features to further minimize the errors. We also plan
to pre‑process the data for noise removal to make the
systemmore robustwhich is critical for live audio. The
system will be further extended to detect instrument
sections from songs in real time to separate the vocals
and instrument tracks.
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