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Abstract:
If the antecedents of a fuzzy classification method are
derived from pictures or measured data, it might have
too many dimensions to handle. A classification scheme
based on such data has to apply a careful selection or
processing of themeasured results: either a sampling, re‐
sampling is necessary. or the usage of functions, transfor‐
mations that reduce the long, high dimensional observed
data vector or matrix into a single point or to a low num‐
ber of points.Wavelet analysis can be useful in such cases
in two ways.

As the number of resulting points of the wavelet ana‐
lysis is approximately half at each filters, a consecutive
application of wavelet transform can compress the me‐
asurement data, thus reducing the dimensionality of the
signal, i.e., the antecedent. An SHDSL telecommunication
line evaluation is used to demonstrate this type of appli‐
cability, wavelets help in this case to overcome the pro‐
blem of a one dimensional signal sampling.

In the case of using statistical functions, like mean,
variance, gradient, edge density, Shannon or Rényi en‐
tropies for the extraction of the information from a pic‐
ture or a measured data set, and they don not produce
enough information for performing the classificationwell
enough, one or two consecutive steps of wavelet analy‐
sis and applying the same functions for the thus resulting
data can extend the number of antecedents, and can dis‐
till such parameters that were invisible for these functi‐
ons in the original data set. We give two examples, two
fuzzy classification schemes to show the improvement
caused bywavelet analysis: ameasured surface of a com‐
bustion engine cylinder and a colonoscopy picture. In the
case of the first example the wear degree is to be deter‐
mine, in the case of the second one, the roundish polyp
content of the picture. In the first case the applied statisti‐
cal functions are Rényi entropy differences, the structural
entropies, in the second case mean, standard deviation,
Canny filtered edge density, gradients and the entropies.

In all the examples stabilized KH rule interpolation
was used to treat sparse rulebases.

Keywords: Fuzzy classification, wavelet analysis, fuzzy
rule interpolation, structural entropy

1. Introduction
Real‑life control or classi�ication problems are of‑

ten solved by fuzzymethods, as fuzzy inference is usu‑
ally practically more ef�icient, �lexible and close to the
human way of thinking than classical, crisp decision
schemes. As the digital measuring and picture taking

devices become more and more widespread, the me‑
asured data becomes larger, contains more informa‑
tion bout the measured or photographed objects, but
most of the such acquired information disturbs an
automatic control or classi�ication scheme. For trai‑
ning a neural network or other, nature based learning
method, however, very large number of measurement
with time and resource consuming pre‑processing is
often needed, thus in some cases it is not possible to
use them.

Digital measuring devices sample either in time,
like in the case of an oscilloscope or temperature
monitoring system; in frequency, like in the case of
spectrum analysers; or in space, like in the case pictu‑
res or 3D scanners. The results of such measurements
often consist of several hundreds or thousands or even
millions of points, but such large data sets are not suit‑
able for serving as the antecedent set for a fuzzy deci‑
sion or classi�ication scheme.

The measured data has to be made processable
by a fuzzy inference system of reasonable size and
complexity, mostly by decreasing the amount of data
with the condition of keeping as much information as
possible. The simplest step to achieve this may be re‑
sampling: selecting only a few from the measured va‑
lues as representatives of the whole data set. A more
sophisticated method would be averaging. However,
both lead to loss of information. From image and data
compression it is well known that wavelets are suita‑
ble for distilling a lot of the available information and
achieving a large compression ratio, thus it seems to
be reasonable to try wavelet transform for achieving
suitable compression rate as well as suf�iciently small
information loss. In case of telecommunication line
insertion loss over frequency functions, this method
proved to be effective.

Instead of wavelet‑based compression of the mea‑
surement results, its useful information content canbe
extracted by calculating statistical parameters, like its
mean value, standard deviation, average gradient or
gradient direction, some kind of shape‑related quan‑
tity or its entropy, or entropies, if Rényi’s generalisa‑
tion of the de�inition of entropy is used. In the case
of pictures edge densities or colour elated parameters
might be also necessary. Rényi’s generalised entropies
canbe combined into suchquantities that characterise
the shape or topology of the measured distribution,
too, this step can map the measured data into a cou‑
ple of points. This scheme is useful especially in the
case of two‑ or three‑dimensional measured data, as
the number ofmeasuredpoints is usually toohigh, and
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Fig. 1. Crisp and fuzzy membership function of a
measured variable

the number of the remaining points is still too high af‑
ter wavelet‑based compression. In many cases, using
only entropies, or other, similar functions leads to cri‑
tically high information loss, thus a method for regai‑
ning some of the information should be introduced. As
the high‑pass �ilter outputs of the wavelet transform
distill the �ine details from the original data and the
low‑pass outputs behave as a kind of averaging, ap‑
plying the same functions – the previously mentioned
statistical parameters and entropies – on the wavelet
transformed versions of the images leads to other in‑
formation. This step can enhance the performance of
an inference systemwithout increasing the number of
antecedents too much. This scheme proved to be ef�i‑
cient in signi�icantly increasing the effectiveness of a
classi�ication scheme in surface roughness and colo‑
rectal polyp content characterisation.

These two approaches are studied in the following
considerations. As a �irst step, in Sec. 2a summary
about fuzzy classi�ications is given completed with
a section of fuzzy rule interpolation. Next the intro‑
duction of wavelet transforms is given in Sec. 3. Sec. 4
gives the generalization of the Shannon entropy and
its use in the characterisation of shapes of functions or
distributions. The applicability of the �irst approach is
demonstrated in Sec. 5, and the usage ofwavelet trans‑
form for increasing the information content is given in
Sec. 6 and Sec. 7. A conclusions to be found in the last
section.

2. The Fuzzy Component of the Approach
2.1. Fuzzy Sets

In set theory L.A. Zadeh came forthwith a new con‑
cept in 1965. According to his idea [1], an element can
not only be fully member of a set, or fully not mem‑
ber of it, but there can be in�inite many possibilities
inbetween. This concept is closely related to the hu‑
man way of thinking, as there is a smooth transition
between a tea being hot or cold, or a dog breed being
small, medium‑sized or large. Zadeh’s fuzzy sets do
not only allow membership values of exclusively 0 or
1 (like with the traditional, crisp sets), but any value
in the [0, 1] unit interval. A measured value can have
a membership degree in a fuzzy set, thus it also be‑
comes a fuzzy quantity, as it can be seen in Fig. 1 Ba‑
sed on such fuzzy sets, decisions can be made, like “IF

the water level is low”, “THEN �ill the water tank with
a small amount of water”, or “IF the temperature is
high”, “THEN classify it to the highest class”. In the case
of multiple conditions, like “IF the gasoline concentra‑
tion is high AND the pressure is high” it is necessary to
re‑de�ine he operators “AND” and “OR”. Zadeh de�ined
“AND” as the lowest of the membership values (called
nowadays rather t‑norm), and “OR” as the highest (cal‑
led s‑norm or t‑conorm).

2.2. Fuzzy Inference
Using the fuzzy membership functions a rather

�lexible control systems can be built. �amdani propo‑
sed [2] the �irst concept for carrying out fuzzy cont‑
rol (anddecisions),whichwas a computationallymore
ef�icient implementation of the �ompositional Rule of
Inferencemethod also proposed by Zadeh [3]. His con‑
cept used multiple input variables, i.e., antecedents.
For each of the outputs, i.e., consequents, he de�ined
a set of rules, consisting of membership functions for
all the antecedents. The consequent fuzzy set arises as
the s‑norm (e.g., maximum) of the results for conse‑
quents, and the results for a consequent is the t‑norm
(e.g., minimum) of the rules belonging to that conse‑
quent, as it can be seen in Fig. 2.

The rules are generated from measured data,
either using statistics or some intelligent learning al‑
gorithm. This means that there must be some measu‑
rements, where not only the antecedents, but also the
consequents are known, moreover, it is useful to have
such data for testing the inference system. In our ex‑
amples very simple rules are used: the membership
function of each antecedent for each consequent is a
triangle, with the minimum and maximum of the me‑
asured data forming the support of the membership
function and the mean forming the core, the peak of
the triangle, as seen in Fig. 3.

2.3. Fuzzy Rule Interpolation
In measurements it often happens that the rule‑

base does not completely cover the space of the pos‑
sible measured data, i.e., sparse rulebases are genera‑
ted. In this case, making the other measured data eva‑
luable can be carried out by rule interpolation. Stabi‑
lized KH interpolation [4], [5], [6]

inf{B∗
α} =

∑2n
i=1

(
1

dαL(A∗,Ai)

)k
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(
1
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give very good results in our examples, too.

3. The Wavelet Component of our Approach
Wavelet analysis [7] developed from several bran‑

ches of signal processing and numerical mathematics
in the late 1970s‑early 1980s. Up till now its main
use is image compression, from �ingerprint databases
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Fig. 3. A simple rule generation method from the
measured values of the training set. The statistics of the
measured data is represented by the histogram of the
plot, while the resulting fuzzy rule by the
triangle‐shaped membership function. Arbitrary units

through the Mars rover [8] to the JPEG2000 image co‑
ding standard [9]. It is also possible to suppress noise,
enhance edges, or retrieve special types of patterns
from images by wavelet transform, moreover, simi‑
larly to Fourier transform [10], wavelets are used to
simplifying differential equations, too [11].

3.1. Multiresolution Analysis
The discrete wavelet transform is mathematically

de�ined by a so called multiresolution analysis of the
function space, mostly the square integrable functi‑
ons’ Hilbert space. It consists of subspaces embedded
into each other, each subspace belonging to a resolu‑
tion level, hence the name. The �inest resolution level
subspace is dense in the original function space (i.e.,
to any function of the original function space to any li‑
mit there can bee found a function in the in�initely �ine
resolution subspace that is closer than the limit). The
lowest (in�initely low) resolution level consists of only
constant functions.

The most interesting part of this approach of the
function space is that each subspace is expanded by
a set of basis functions, which have the same shape,
just shifted over a regular grid. The shape of the basis
functions change from subspace to subspace, i.e., from
resolution level to resolution level only by shrinking
or dilation: the �ine resolution level subspaces have
higher and narrower basis function distributed over

a grid of smaller grid distance, while the rougher re‑
solution levels have lower, wider basis functions over
grids with larger grid distance, as it can be seen from
the following de�initions of the basis functions at reso‑
lution level j and shift position k

ϕjk(x) = 2j/2ϕ(2jx− k). (3)

Thesebasis functionsϕjk of the embedded subspa‑
ces are called scaling functions.

Wavelets are also similar basis functions: they pro‑
vide the way between two resolution levels. The spa‑
ces completing a rougher resolution level subspace to
the next, �iner resolution subspace are the detail spa‑
ces, and their basis functions are thewavelets, de�ined
as

ψjk(x) = 2j/2ψ(2jx− k). (4)
This subspace setup means, that any function of

any resolution level j can be expressed either as a
linear combination of its resolution level subspace,
or using any rougher resolution level scaling function
subspace as a basis, and adding wavelets to it as a re‑
�inement, i.e., as

f [j](x) =

∞∑
−∞

cjkϕjk(x), (5)

or by decreasing the basic resolution level by 1 as

f [j](x) =

∞∑
−∞

cj−1 kϕj−1 k(x) +

∞∑
−∞

dj−1 kψj−1 k(x),

(6)
or by decreasing the rougher resolution level to zero,
as

f [j](x) =

∞∑
−∞

c0kϕ0k(x) +

j−1∑
i=0

∞∑
−∞

dikϕik(x), (7)

Practically, measurement results can be treated as
a very �ine resolution level coef�icient set of the sam‑
pled function, their wavelet transform results in the
rougher resolution level scaling function and wavelet
coef�icients by using the so called re�inement equation

ϕ(x) = 21/2
Ns∑
i=0

hiϕ(2x− i), (8)
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Fig. 4. One step of the wavelet transform as two
branches of convolutional filter signal processing and
downsampling steps. The low‐pass filter results in the
scaling function expansion coefficients c′i, while the
high‐pass filters give the fine details, i.e., the wavelet
expansion coefficients d′i

and its wavelet counterpart

ψ(x) = 21/2
1∑

i=−Ns+1

(−1)ih−i+1ϕ(2x− i). (9)

For the simplest wavelet family, the so called Haar wa‑
velets [12], the coef�icients h0 = h1, these mother ba‑
sis functions have a support length 1 unit; the other
wavelets have more coef�icients, thus longer support.
3.2. Wavelet Analysis in Signal Processing

This mathematical de�inition can be translated to
signal processing devices: practically the usage of (8)
and (9) can be translated directly to digital signal pro‑
cessors as convolutional �iltering and downsampling,
as it can be seen in Fig. 4. The coef�icients in the con‑
volutional �ilters are proportional to the coef�icients at
the re�inement equations.

In multiple dimension data sets either multiple
dimension wavelets, or more often separate wavelet
analysis steps in the separate dimensions has to be
carried out.

4. Entropies as Compact Descriptions of Two‐
Dimensional Datasets
The entropy in information theory was introduced

by Shannon [13] as the expectation value of the infor‑
mation for a complete set of events, i.e., for such sets,
where all the events have probabilities between 0 and
1, and the sum of all the probabilities is 1. If the pro‑
babilities are {p1, p2, . . . , pN}, then the entropy can be
written as

S = −
N∑
i=1

pi log2 pi. (10)

4.1. Rényi Entropies
Shannon’s entropy de�inition was generalised for

many purposes, Rényi’s [14] series of entropies, i.e.,

Sα =
1

1− α
log

N∑
i=1

pαi , (11)

gives the Shannon entropy as a limit at α = 1.
For α = 0 this entropy is the entropy of the uni‑

formdistribution. This is sometimes calledHartley en‑
tropy, as Hartley has introduced the concept of infor‑
mation and its expectation value using such set, where

the probabilities were equal. This approximation is
still used if nothing is knownabout the probability dis‑
tributions, only the number of the possible outcomes.

For α = 2 the formula turns into

S2 = − log
N∑
i=1

p2i . (12)

4.2. Structural Entropies of Probability Distributions
In the beginning of the 1990s Pipek andVarga [15],

[16] found out, that the difference of Rényi entropies
can characterize the structure of the probability dis‑
tribution {p1, p2, . . . , pN} in a very peculiar way. They
introduced structural entropy as the difference of two
Rényi entropies

Sstr = S1 − S2, (13)

and similarly, the they proved that the so called �il‑
ling factor q, which was used in solid state physics and
quantummechanics, is also related to a Rényi entropy
difference the following way

log(q) = S0 − S2. (14)

Later these quantities were applied in characterisa‑
tion of the localisation of pixel intensities in scanning
microscopy images [17], [18]. Bonyár developed a lo‑
calization factor for describing the roughness of gold
electrodes based on these entropy differences [19],
[20]

5. Telecommunication Lines
5.1. Measurements

In telecommunication line performanceprediction
the goal is to develop a method that approximates
the real‑life performance of the line suf�iciently well,
without actually building the connection, as it is cos‑
tly and time consuming. For SHDSL lines, which are
mainly for business use, errors in the prediction lead
to �inancial loss to the telecommunications provider.
Lilik measured over 170 lines [21], and developed a
fuzzy method for performance prediction [22], [23].

During the measurements the SHDSL links were
built, and their performances were measured. Also
many physical parameters were determined using ge‑
neralmeasuringdevices available at telecommunicati‑
ons service providers. Sorting out the noise, the return
loss and many other parameters, it was proved that
basedon solely the insertion loss values of an area’s te‑
lecommunications lines their performance can be eva‑
luated with rather high reliability. The measured in‑
sertion loss values over the 0 to 2 MHz frequency ban
can be seen in Fig. 5.
5.2. Characterisation Scheme

In order to be able to build a classi�ication met‑
hod, themeasured datawas separated to a training set
and a test set. In the original characterisation scheme
simple, triangular rules were built from the measured
data of the training set according to Fig. 3. As the inser‑
tion loss values have rather large �luctuations around
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Fig. 5.Measured insertion loss as a function of
frequency for the lines of the 5 performance groups.
The darker shades of colours mean the measured lines
properties, while the brighter counterparts denote the
wavelet transforms

a quite smooth trend, �ive characteristic frequencies
were chosen, and the insertion loss values at those fre‑
quencies served as antecedents. Selecting fewer fre‑
quency points makes the calculations unstable, more
points make it unnecessarily complicated. Still, there
were a lot of lines that were not evaluable, and there
were very few cases, when the �luctuations were so
bad, that the evaluationwasnot successful, i.e., instead
of sorting the line into its real performance group, or
one group below it (which is still acceptable for the
provider), it sorted it to better performing group or
predicted much worse data rate than the real one.

For overcoming these problems, as a �irst step, we
introduced fuzzy rule interpolation to out classi�ica‑
tion scheme, thus making practically all the lines eva‑
luable.

Instead of selecting �ive representative samples
from the complete insertion loss‑frequency function,
we also appliedwavelet analysis to �ilter out the large‑
scale trends from the function. The �irst wavelet trans‑
form we use can also be seen in Fig. 5. It can be seen,
that the distribution of the transformed points is not
equidistant: in the lower frequency domain we in‑
cluded one step �iner resolution level results than in
the higher frequencies, because the communication’s
spectral power density is much larger at lower fre‑
quencies.

65 lines were used for testing, in the case of the
characteristic frequencies, 12 lines were put to one
class lower than their real group, while in the case of
the wavelet transformed antecedent selection 8 lines
went to the acceptable group and the remaining 57
ones to their true classes. In both cases all the lines
were classi�ied well, moreover, if the wavelet trans‑
form was carried out until 2 or 4 points remained, the
classi�ication was still as correct as the 5‑point ver‑
sion [23].

With these results we demonstrated that wavelets
can be used for stabilising calculations, if the measu‑
red data �luctuates and lowering the antecedent di‑
mension as well.

Fig. 6. A measured surface segment before wavelet
analysis

6. Wear
If the number of the antecedent dimensions is al‑

ready too low, like in the case of classi�ication based
on the Sstr and ln q values calculated for an image,
wavelets can provide 4 more pictures to be analysed,
as it can be seen in Fig. 6 and Fig. 7. In 2D data sets
the wavelet analysis is carried out in both dimensi‑
ons. This results in 4 output pictures of approxima‑
tely quarter of the size of the original data set (half
in each direction), one output for the case of using
low‑pass �ilters in both dimensions, which is a kind of
average of the original image, two outputs where one
of the directions have low‑pass, the other high‑pass �il‑
ter, and one output where both �ilters are high‑pass.
In the followings the latest picture will be called dia‑
gonal, the �irst averaging, and the two between will be
mentioned as vertical and horizontal results, depen‑
ding on which direction has the �ine details, i.e., which
direction used high‑pass �ilter.

6.1. Measurements
In [24] Solecki and Dreyermeasured a combustion

engine using silicone replica and surface scanners. Si‑
licone replicas are often used in geometrical measu‑
rements as the shape of many instruments does not
allow to access certain interesting points of an object.
In the case of a combustion engine the inner surface of
the cylinders can be accessed only by specially desig‑
ned devices that are not available in general laborato‑
ries, but they are developed exquisitely for one type of
automatedmeasurement in the industry. These highly
specialized tools are expensive thus if hardly accessi‑
ble surfaces are to be measured, either the object has
to be cut, or replicas are to be taken from the surface. If
the object under test is needed for further tests, clearly
only the second option is possible.

Themeasurements of the 4 cylinders of the engine
under test were carried out using Struers RepliSet F5
which is able to reproduce patterns of size down to 0.1
microns. Replicaswere taken of the new engine before
building it and after 500 hours of polycyclic endurance
test (later the engine was cut so that the worn surface
could be studied directly, as well). The resulting sam‑
ples were measured by a TalysurfCLI2000 white‑light
surface scanner at 5 points for each of the cylinders.
These points were selected so that one point would
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Fig. 7. A measured surface segment after wavelet
analysis

be between the topmost and the second ring’s turning
point, another point would be between the next two
piston rings’s turning points, and three along the path
where all 3 piston rings had worn the surface. An ex‑
ample of the 1mmby 1mm surface parts of a new and
worn engine can be seen in Fig. 8. Slight vertical scra‑
tches can be seen on the worn surface. Such a verti‑
cal scratch can be seen in the previous worn image of
Fig. 6, too, and slightly visible in the vertical transfor‑
med picture of Fig. 7.

6.2. Characterisation Scheme
The classi�ication scheme was very similar to the

one in the previous section. The antecedents consis‑

Fig. 8. A measured surface segment before and after the
polycyclic endurance run

ted of solely the structural entropy and the logarithm
of the �illing factor, i.e., the two �e�nyi entropy diffe‑
rences. The Sstr(ln q) plot of 128 measured surface
sub‑domains are plotted in Fig. 9. It can be seen, that
though thepoints corresponding towornandnewsur‑
faces occupy overlapping domains, there are clearly
such parts of the plot which belong to only one type
of surface.

However, these two characterising quantities are
not suf�icient for building fu��y classi�ication scheme:
from the 128 surface subdomains 64 were used for
building the rulebase, and of the 64 test data, only 33
could be classi�ied correctly, which is worse than a
random guess.

In the case of two‑dimensional data, such as the
above surface scans, wavelet transformation has to be
carried out in both dimensions, thus resulting in 4 out‑
put data matrices: one for the transformation, where
both directions had low‑pass �ilters, one for the high‑
pass‑high‑pass case, and two mixed �ilter pairs. The
structural entropy and the �illing factor can be calcu‑
lated for all 4 of the resulting matrices, thus the an‑
tecedent dimension can be increased from 2 to up
to 10. We tested [25] the method with all 4 wavelet
transformed surface types as well as with only the
low‑pass–low‑pass andhigh‑pass–high‑passmatrices,
and the results were not different from each other.
The number of incorrectly classi�ied surface elements
went down to 13, which indicates, that the structural
entropies are not suitable for being antecedents wit‑
hout other quantities. The second wavelet transform
usually does not improve the results in this example.

However we could demonstrate that wavelet ana‑
lysis is able to introduce independent information to
the overly simpli�ied antecedents.
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Fig. 9. Structural entropy map of 64 new and 64 worn
surface segments. This is a typical way of plotting
structural entropy, and determining the localization
type of the studied distribution. The teal thick solid line
denotes the theoretical limiting curve, above which no
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dash‐dotted lines shows three typical distributions, i.e.,
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power law distribution (dash‐dotted), then the average
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second order power law function. The green squares
give the points generated from the new surfaces’s
scans, while the red circles the worn ones

7. Colorectal Polyps
Colorectal polyps are wart‑like objects inside the

last parts of the bowel system. Some of these polyps
can develop into colorectal cancer, which is a really
dangerous type of cancer, as it can be detected usu‑
ally quite lately. If these polyps, that have the possibi‑
lity to develop into cancer could be detected and re‑
moved early, then they would not develop into malign
objects, thus detecting and classifying colorectal po‑
lyps is a really important task. Having a visual aid for
themedical experts based on automatic image proces‑
sing can help the diagnosis. There are several groups
trying to �ind polyps on colonoscopy images, some of
them even have their own database built. In the fol‑
lowing considerations, we apply our method founded
in [26] on the pictures of [27]. An example can be seen
in Fig. 10, while the wavelet transform of the picture
is given in Fig. 11.

Fig. 10. A colonoscopy picture of [27] turned into
grayscale image, before wavelet analysis

Fig. 11. Colonoscopy picture after wavelet analysis.
Note that the upper left corner of the picture in Fig. 10,
i.e., the pixel of index (1,1) moved to the lower left part
of the coordinate system (the picture is upside down)

The classi�ication scheme consists of the following
steps. First, the images are cut into tiles of sizeN ×N ,
where N is generally between tenth and �ifth of the
original image size, in our case 200 compared to the
image size of magnitude 1000. Next, using the masks
provided by the database, for each tile the polyp con‑
tent, i.e., the percentage of the areawithmasked pixels
is calculated� based on this value the tiles are classi�ied
as ”with polyp” and ”without polyp”. For each of the ti‑
les, for all 3 colour channels the antecedents were cal‑
culated. The antecedents are the mean, standard de‑
viation, edge density, structural entropy and ln q and
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where N is generally between tenth and �ifth of the
original image size, in our case 200 compared to the
image size of magnitude 1000. Next, using the masks
provided by the database, for each tile the polyp con‑
tent, i.e., the percentage of the areawithmasked pixels
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culated. The antecedents are the mean, standard de‑
viation, edge density, structural entropy and ln q and
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the gradients. The edge density is calculated the follo‑
wing way: the tile is transformed to a black and white
edge image by Canny �iltering, then the rate of the ed‑
ges (white points) compared to the tile‑size.

Next, every second image is used for determining
the fuzzy rules according to Fig. 3. As out previous ex‑
periences show, that for different types of images the
classi�ication success rates are different, we sorted the
pictures into groups of the same patient of the same
take, and generated rules from each of the groups. The
thus arising rules are applied for classi�ication using
the same method as in the case of the cylinder surfa‑
ces, only the antecedent dimension increased to 21, or
99 in the case of using wavelet analysed pictures, too.

The results for both cases can be seen as ROC plots
in Fig. 12. The Classical ROC plots are not that much
visible due to the large number of points, however, if
a 3rd axis, i.e., the image group number is also given,
we can conclude the followings. The false positive rate
is rather low in all cases, especially in the case of using
wavelet analysed images, too. The true positive rate is
for some pictures extremely low, so this method wit‑
hout wavelet analysis is not usable, however, wavelets
improve the results up to amore acceptable level in all
cases.

8. Conclusion
In this articles the usage of wavelet transform in

fuzzy antecedent selection was studied. Two comple‑
tely different strategies were mentioned. First, the
simpli�ication of the decision and decrease of the
number of antecedents by using wavelet transform
instead of samples form a measured data vector,
which scheme’s effectiveness was demonstrated on
insertion loss‑based performance prediction of tele‑
communication lines. Second, the introduction of new,
independent information by using wavelet transfor‑
med data beside the original one for classi�ication
schemes with overly simplifying antecedent selection
such as selecting structural entropies. Combustion en‑
gine cylinder surface scan classi�ication was used as
a demonstrating example, where the performance of
the classi�ication could be improved signi�icantly by
introducing two of the wavelet transforms of the sur‑
face matrix. the other example was colonoscopy pic‑
ture segment classi�ication, where the improvement
due to wavelet analysis was more visible, and to al‑
most all the image types the classi�ication error rate
became acceptable.
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9026 Győr, Egyetem tér 1.
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“Localization factor: A new parameter for
the quantitative characterization of sur‑
face structure with atomic force microscopy
(AFM)”, Micron, vol. 43, no. 2, 2012, 305–310,
10.1016/j.micron.2011.09.005.

[20] A. Bonyár, “AFM characterization of the
shape of surface structures with locali‑
zation factor”, Micron, vol. 87, 2016, 1–9,
10.1016/j.micron.2016.05.002.

[21] F. Lilik and J. Botzheim, “Fuzzy based Prequali‑
�ication Methods for EoSHDSL Technology”, Acta
Technica Jaurinensis, vol. 4, no. 1, 2011, 135–144.

[22] F. Lilik, S. Nagy, and L. T. Kóczy, “Wavelet ba‑
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