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Abstract: As neuron models become more plausible, 
fewer computing units may be required to solve 
some problems; such as static pattern classification. 
Herein, this problem is solved by using a single spiking 
neuron with rate coding scheme. The spiking neuron is 
trained by a variant of Multi-objective Particle Swarm 
Optimization algorithm known as OMOPSO. There were 
carried out two kind of experiments: the first one deals 
with neuron trained by maximizing the inter distance 
of mean firing rates among classes and minimizing 
standard deviation of the intra firing rate of each class; 
the second one deals with dimension reduction of 
input vector besides of neuron training. The results of 
two kind of experiments are statistically analyzed and 
compared again a Mono-objective optimization version 
which uses a fitness function as a weighted sum of 
objectives.

Keywords: Multi-objective Optimization, Spiking Neu-
ron, Pattern Classification

1.	 Introduction 
Artificial Neural Networks (ANNs) try to simulate 

the behavior of the brain when they generate, process 
or transform information. An ANN is a system formed 
of simple processing units, which offers the property, 
and capability of input-output mapping. ANNs learn 
to solve complex problems in a reasonable amount 
of time [1]. The ability of learning of ANNs become 
a powerful tool for wide applications, for instance: 
pattern recognition works, classifying, clustering, vi-
sion tasks and forecasting [2]. 

ANNs can be distinguished in three generations ac-
cording to their computational units [3]. The first one 
is based on McCulloch-Pitts neuron as computational 
units that can handle digital data [3]. The second one 
is characterized by a multilayer architecture, connec-
tivity separating input, intermediate, and output units 
and applying activation functions with a continuous 
set of possible output values to a weighted sum of the 
inputs [4]. The third generation has been developed 
with the purpose of design neural models more plau-

sible to the biological neurons. These are known as 
Spiking Neural Networks (SNNs) [5], [6].

ANNs are conformed by neurons organized in in-
put, hidden and output layers, which are inter-con-
nected by synaptic weights. These simulate the neu-
ron synapsis of the human brain. During the training 
process of an ANN, a set of synaptic weights con-
stantly is changing until the knowledge acquired is 
enough. Once the knowledge process has finished, 
it is necessary to evaluate the performance of the 
ANN. It is expected that the ANN can classify with 
acceptable accuracy the patterns from a particular 
problem during the testing phase [7]. The training 
process is an optimization task since it is desired 
to find the optimal weight set of the ANN. Methods 
based on gradient-descent have been applied to 
the training phase [8], but these techniques can be 
trapped at local minima. Then to overcome this situ-
ation, the researchers have proposed different glob-
al optimization methods [9] to optimize the ANNs 
by Evolutionary Algorithms (EAs). These EAs can be 
used to calibrate the connection weights, optimize 
the architecture and selecting the input features of 
ANNs [10]. 

The present research proposes a method for train-
ing full and partially connected SNNs based on the 
Leaky Integrate and Fire (LIF) model, by using a var-
iant of Multi-objective Particle Swarm Optimization 
known as OMOPSO. This methodology is designed to 
solve pattern recognition problems. The results are 
statistically analyzed and compared with a version 
of mono-objective optimization using the Particle 
Swarm Optimization algorithm (PSO). 

This paper is organized as follows: Section 2 pre-
sents the theoretical fundamentals used in this work. 
Section 3 explains the implemented methodology. 
Section 4 shows the results and statistical analysis. 
Finally, in section 5 are presented the conclusions and 
future work.

2. Background
This section describes the LIF model and the Op-

timized Multi-objective Particle Swarm Optimization 
(OMOPSO), which were used in this work.
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this work, we used the OMOPSO algorithm described 
in [15], which is based on Pareto dominance and an 
elitist selection through crowding factor. Beside this, 
the authors incorporated two mutation operators 
(uniform mutation and non-uniform mutation). The 
uniform mutation refers to variability range allowed 
for each decision variable, which is kept constant 
over generations and the non-uniform mutation has 
a characteristic variability range allowed for each de-
cision variable, which decreases over time. Finally, it 
was added the e-dominance concept which is the final 
size of the external file where stores the non-dominat-
ed solutions. Algorithm 1 shows the OMOPSO. 

Algorithm 1. OMOPSO
Require: Initialize Swarm Pi, Initialize Leaders Li

1:    Send Li to e-file

2:    crowding(Li), g = 0

3:    while g < gmax do

4:       for each particle

5:          Select leader

6:          Fly

7:         Mutation

8:         Evaluate

9:         Update pbest

10:     end for

11:     Update Li

12:     Send Li to e-file

13:     crowding(Li), g = g + 1

14:  end while

15:  Report results in e-file

3.	 Methodology
This section shows the methodology used in our 

work. There were proposed two kinds of experi-
ments: the first one treats with neuron trained by 
maximizing the inter distance of mean firing rates 
among classes and minimizing the standard deviation 
of the intra firing rate of each class; the second one 
deals with dimension reduction of input vector be-
sides of neuron training. 

The LIF neuron model was implemented into 
jMetal [16], [17] where is available the OMOPSO al-
gorithm, which was used for training the LIF neuron. 
Furthermore, the OMOPSO algorithm was configured 
as a mono-objective algorithm (PSO). 

The design of the methodology is shown in Fig. 2. 
Initially, we set up the parameters of the OMOPSO algo-
rithm and the LIF neuron model. Next, it is necessary to 
initialize the particles and Leaders (Li) with uniformly 
random numbers to make a swarm. Each particle rep-
resents a synaptic weight vector ( )w  with the same size 
as the feature input vector ( )x . Then, whole particles 

2.1. Leaky Integrate and Fire Model
The LIF neuron model is one of the most used in 

the field of computational neuroscience given this 
model has an easier implementation and a lower 
computational cost in comparison with other spiking 
neuron models [11].

The mathematical representation for this model 
is shown in [11], [12] and it is given by the potential 
dynamic of the membrane:

	
τ
dv
dt

g v E I ti
leak i leak= − −( ) + ( )

	
(1)

where gleak and Eleak are the conductance and the re-
versal potential of the leak current, t is the membrane 
time constant and I(t) is a  current injected into the 
neuron.

In this work, it was used the representation pro-
posed in [11],[13] defined as: 

	

′ = + −

≥ ←

v I a bv

v v v cthreshold

,

,if then 	 (2)

where I is the input current of the neuron, v denotes 
the membrane potential, a and b are parameters to 
configure the behavior of the neuron, c is the rest 
state voltage and vthreshold is the threshold for the spike 
(firing) of the neuron. Besides, an initial condition v0 
is necessary to solve the differential equation by nu-
merical methods.

Since the input patterns cannot be directly pro-
cessed by the LIF neuron, they must be transformed 
to input currents by means of the equation:

	 I x w= ⋅ ⋅θ 	 (3)

where x n∈  is the input pattern vector, w n∈  is 
the set of synaptic weights and θ is a gain factor.

Fig. 1 shows the representation of a LIF neuron. 
When I is computed, it continues to solve the equa-
tion (2) to obtain the output spike train belonging to 
the input pattern.

Fig. 1. Representation of a LIF neuron

2.2.	 Optimized Multi-Objective Particle Swarm 
Optimization (OMOPSO)

Regarding multi-objective optimization, a con-
siderable number of algorithms can be found in the 
literature. For instance, the Multi-objective Particle 
Swarm (MOPSO) was proposed by Coello in [14]. In 
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are evaluated into the LIF neuron model, by means of 
the objective functions. The non-dominated particles 
in the swarm will be Li, which are sent to e-file. Besides 
this, it is calculated a crowding factor for each Li as 
a second discrimination criterion. 

Start 

After it is initialized an Internal Loop into an External 
Loop, and each particle is modified into the Internal 
Loop, updating the position and applying the 
mutation operators. Then, each particle is evaluated 
and updated its personal best value (     ). A new 
particle replaces the       if such value is dominated 
by the new particle or if both are non-dominated 
concerning each other.   
When all particles have been updated, the    are 
modified in the External Loop. Only the particles that 
overcome their       will try to enter to    set. Once 
the    have been updated, they are sent to  -    . 
Finally, the crowding values of the set of    is updated 
and we eliminate as many leaders as necessary to 
avoid overflow of the size of the    set. The process is 
repeated until finalizing all iterations.  
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Methodology schema 
 
3.1. Objective Functions 
Three different objective functions were considered 
to measure the performance of the solutions 
(particles): 

A. The Euclidean distance between the 
combination of      and     , where     is 
the average firing rate of each class and     . 
For this objective function, we looking for 
maximize the separability between the 
classes: 

        (         ) (eq.4) 

B. The Standard Deviation of the firing rate for 
each pattern class      , where         
and   is the total of pattern classes. In this 

objective function, we looking for minimize 
the dispersion of each pattern class: 

   (     ) (eq.5) 

C. The dimension of the input feature vector ( ̅). 
To avoid redundancies in information, we 
desire to reduce the dimensionality of the 
feature vectors, by minimizing the total of     
of a binary mask ( ̅) with the same size of the 
input feature vector. 
 

In our proposal, the number of objective functions is 
related to the number of classes of the dataset. 
 
3.2. Experiments 
Four supervised classification datasets from the UCI 
Machine Learning Repository [18] were employed for 
experimentation: Iris Plant, Wine, Glass, and SPECT. 
Table 1 shows the details of the datasets used. 
Each dataset was randomly divided in two subsets 
with approximately the same size. The first one was 
employed as training set and the second one as 
testing set.  
 

Dataset Instances Classes Features 
Iris Plant 150 3 4 

Wine 178 3 13 
Glass 214 6 9 

SPECT 267 2 22 
Table. 1. Datasets employed for experimentation  

 
With the aim to observe the performance of our 
proposal, four experiments were configurated 
according to the objective functions seen in section 
3.1. The characteristics of each experiment are 
defined below and summarized in Table 2.  

i. Experiment #1 was defined as a multi-
objective problem, focusing on the A and B 
objective functions. The OMOPSO algorithm 
was used to optimize the synaptic weight 
vector of the LIF neuron. 

ii. Experiment #2 employs the multi-objective 
approach, considering the A, B and C 
objective functions. The OMOPSO algorithm 
was taken to optimize the synaptic weight 
vector and the dimension of the input vector. 
Concerning the optimization of the last 
parameter, a binary mask ( ̅) was used in 
equation (3) to calculate a modified input 
current given by equation (6).  

   ̅   ̅   ̅    (eq.6) 
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Fig. 2. Methodology schema

After it is initialized an Internal Loop into an Exter-
nal Loop, and each particle is modified into the Internal 
Loop, updating the position and applying the mutation 
operators. Then, each particle is evaluated and updated 
its personal best value (pbest). A new particle replaces 
the pbest if such value is dominated by the new particle 
or if both are non-dominated concerning each other. 

When all particles have been updated, the Li are 
modified in the External Loop. Only the particles that 
overcome their pbest will try to enter to Li set. Once the 
Li have been updated, they are sent to e-file. Finally, 
the crowding values of the set of Li is updated and we 
eliminate as many leaders as necessary to avoid over-
flow of the size of the Li set. The process is repeated 
until finalizing all iterations. 

3.1.	 Objective Functions
Three different objective functions were consid-

ered to measure the performance of the solutions 
(particles):

A. The Euclidean distance between the combina-
tion of AFRi and AFRj, where AFR is the average firing 
rate of each class and i ≠ j. For this objective function, 
we looking for maximize the separability between the 
classes:

	 MAXdist AFR AFRi j,( ) 	 (4)

B. The Standard Deviation of the firing rate for each 
pattern class SDFRk, where k = 1, ..., K and K is the total 
of pattern classes. In this objective function, we looking 
for minimize the dispersion of each pattern class:

	 MIN SDFRk( ) 	 (5)

C. The dimension of the input feature vector ( )x . 
To avoid redundancies in information, we desire to 
reduce the dimensionality of the feature vectors, by 
minimizing the total of 1's of a binary mask a bina-
ry mask ( )r  with the same size of the input feature 
vector.

In our proposal, the number of objective functions is 
related to the number of classes of the dataset.

3.2.	 Experiments
Four supervised classification datasets from the 

UCI Machine Learning Repository [18] were em-
ployed for experimentation: Iris Plant, Wine, Glass, 
and SPECT. Table 1 shows the details of the datasets 
used.

Each dataset was randomly divided in two subsets 
with approximately the same size. The first one was 
employed as training set and the second one as test-
ing set. 

Tab. 1. Datasets employed for experimentation 
Dataset Instances Classes Features

Iris Plant 150 3 4

Wine 178 3 13

Glass 214 6 9

SPECT 267 2 22

With the aim to observe the performance of our 
proposal, four experiments were configurated ac-
cording to the objective functions seen in section 3.1. 
The characteristics of each experiment are defined 
below and summarized in Table 2. 
i.	 Experiment #1 was defined as a  multi-objective 

problem, focusing on the A  and B objective 
functions. The OMOPSO algorithm was used to 
optimize the synaptic weight vector of the LIF 
neuron.

ii.	 Experiment #2 employs the multi-objective 
approach, considering the A, B and C objective 
functions. The OMOPSO algorithm was taken 
to optimize the synaptic weight vector and the 
dimension of the input vector. Concerning the 
optimization of the last parameter, a  binary 
mask ( )r  was used in equation (3) to calculate 
a modified input current given by equation (6). 

	 I x w r= ⋅ ⋅ ⋅θ 	 (6)

iii.	 Experiment #3 was designed as a mono-objective 
problem. The objective function (eq. 7) was formed 
by the weighted sum of two objective functions. 
The first one is the inverse of the summation of 
the Euclidean distances among all combinations 
of AFRi and AFRj and the second objective is the 
sum of the standard deviation of the firing rate 
for all classes as shown in equation  7 [11]. PSO 
algorithm was used to design the synaptic weight 
vectors.
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MIN f

dist
SDFR

k

K

k( ) = ( )
+

=
∑1

1AFR 	
(7)

iv.	 Experiment #4 is a mono-objective approach that 
seeks to optimize the synaptic weight vector and 
the dimension of the input vector with the PSO 
algorithm. The objective function (eq. 8) is formed 
by the weighted sum of the equation (7) and the 
rate of T and D, where T is total of 1's in the binary 
mask ( )r  and D is the dimension of the input 
feature vector.

	
MIN f

dist AFR
SDFR

k

K

k( ) = ( )
+ +

=
∑1

1

T
D 	

(8)

Tab. 2. Configuration for experimentation 

Algorithm Optimized Parameters
Objective  
Functions

Exp 
#1

OMOPSO
synaptic weight  

vector
A, B

Exp 
#2

OMOPSO
synaptic weight  

vector and dimension of 
input vectors

A, B, C

Exp 
#3

PSO
synaptic weight  

vector
A, B

Exp 
#4

PSO
synaptic weight  

vector and dimension of 
input vectors

A, B, C

Table 3 shows a compendium of the number of ob-
jective functions by experiment for each dataset. 

Tab. 3. Total of Objective Functions by experiment 

Objective Functions in

Dataset Classes Exp #1 Exp #2 Exp #3 Exp #4

Iris Plant 3 6 7 1 1

Wine 3 6 7 1 1

Glass 6 21 22 1 1

SPECT 2 3 4 1 1

Each experiment consisted of 40 independently 
executions per each dataset to guarantee statistical 
significance. The parameter values used in the OMOP-
SO algorithm and the LIF neuron model [11] are de-
tailed in Table 4 and 5 respectively.

The initial synaptic weights were generated ran-
domly θ ∈ [0,1].

4.	 Results and Statistical Analysis
This section describes the results obtained from 

the experimentation proposed in section 3. The re-
sults are statistically analyzed and discussed below.

Tab. 4. Configuration OMOPSO Parameters
Max particle size: 100

Max iterations: 1000

e-file size: 100

Uniform Mutation

Mutation probability:
1 0.

Number of
problem variables

 
 

Perturbation index: 0.5

Non-uniform Mutation

Mutation probability:
1 0.

Number of
problem variables

 
 

Perturbation index: 0.5

Max iterations: 1000

Tab. 5. Configuration LIF Parameters 
a 0.5

b -0.001

c -50 mV

vi -60 mV

vthreshold 50 mV

Time 1000 ms

h 1

θ 0.1

For each execution, at the end of the training phase, 
the total of particles is evaluated in the LIF neuron 
model using the training set, and the classification ac-
curacy is calculated for each particle. Finally, the par-
ticle with the best performance is used in the testing 
phase for obtaining the accuracy in the testing set.

Tab. 6. Accuracy of training phase over each experiment
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.9817 

±
0.0131

0.9793
±

0.0157

0.9
±

 0.0232

0.8987 ±
0.0219

Wine
0.7858

±
0.0358

0.8048 
±

0.0336

0.6849 
±

0.0432

0.6986
±

0.0301

Glass
0.5050 

±
0.0441

0.5031
±

0.0405

0.39
±

 0.0030

0.3638 ±
0.0726

SPECT
0.8592

±
0.0243

0.8286
±

0.0227

0.7276 
±

0.0325

0.7273 ±
0.0344

Tables 6 and 7 show the results obtained from the 
methodology proposed. The accuracy values along 
with the standard deviations grade the performance 
of the experiments. The accuracy of the training phase 
corresponds to the average of the performance of the 
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best particles obtained in each experiment, whereas 
that the accuracy of the testing phase is obtained from 
the average of the performance of these particles ap-
plied to the testing set. The highest accuracy values 
are remarked in bold font.

Tab. 7. Accuracy of testing phase over each experiment

OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.94

±
 0.0383

0.9543 
±

0.0220

0.9003
±

 0.0355

0.8883 
±

0.0303

Wine
0.7322 

±
0.0604

0.7397 
±

0.0610

0.6706 
±

0.0505

0.6858 
±

0.0451

Glass
0.3516 

±
0.1141

0.3695 
±

0.1163

0.3472
±

 0.0947

0.3594 
±

0.0960

SPECT
0.7043 

±
0.1051

0.7019 
±

0.1006

0.7157 
±

0.0545

0.7073 
±

0.0523

Tab. 8. Analysis of reduction of features of input vector

Experiments

#2 #4

Dataset

Average 
number of 

features 
employed

Rate of 
features 

used

Average 
number of 

features 
employed

Rate of 
features 

used

Iris 
Plant

2.575
±

0.747
0.640

3.050
±

0.221
0.760

Wine
8.475

±
3.266

0.652
5.850

±
1.902

0.450

Glass
5.550

±
1.999

0.617
6.00

±
1.377

0.667

SPECT
10.325

±
5.677

0.469
21.675

±
0.526

0.985

Table 8 shows the average amount of input fea-
tures employed by the LIF neuron model and its cor-
responding rate concerning the total size of the origi-
nal input feature vector.

Several statistic tests were applied to the obtained 
results. Firstly, Shapiro-Wilk test was executed to 
identify the kind of parametric or non-parametric 
tests to be used along with our data. Our tests were 
implemented using R programming language, and 
the CONTROLTEST package tool (available at http://
sci2s.ugr.es/sicidm/) was used for non-parametric 
comparison between experiments. Specifically, three 

non-parametric tests were applied: Friedman, Fried-
man Aligned Ranks, and Quade.

Firstly, the results from statistic tests for the Train-
ing phase are shown and discussed. Subsequently, the 
results of statistic tests computed in the Testing phase 
are analyzed.

In the Shapiro-Wilk test, the null-hypothesis (H0)
states the samples come from a normal distribution. 
In Table 9, for a significance level of a = 0.05, the 
P-values obtained show that approximately half of the 
results do not reject H0, but the rest of the results re-
ject H0. Therefore, non-parametric statistics were ap-
plied since such tests include both cases. 

Tab. 9. Shapiro-Wilk test in Training phase
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris 
Plant

0.0002868 0.000761 0.1257 0.189

H0 is 
rejected

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

Wine
0.6275 0.0407 0.08713 0.3317

H0 is not 
rejected

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

Glass
0.0002413 0.001126 6.64E-14 1.09E-11

H0 is 
rejected

H0 is 
rejected

H0 is 
rejected

H0 is 
rejected

SPECT
0.06032 0.07665 0.3015 0.09427

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

Friedman, Friedman Aligned Ranks, and Quade 
tests were applied to the obtained results. In these 
tests, the null-hypothesis (H0) states that the data of 
the experiments follow the same distribution [19]  
(there is no difference in their performance).

Table 10 reports the average ranks obtained from 
these tests on the whole experiments. The smaller 
values, in bold font, indicate that Experiment #1 had 
consistently the best performance. 

Tab. 10. Average rankings of the experiments for the 
Training phase

Experiment Friedman
Friedman Aligned 

Ranks
Quade

#1 1.25 4.0 1.2

#2 1.75 5.0 1.80

#3 3.25 12.25 3.199

#4 3.75 12.75 3.8

Table 11 shows the P-value for each statistical test 
and the sentence corresponding to the status of H0 for 
a significance level a = 0.05. If the P-value is greater than 
a then indicates that not exist evidence to reject H0. 
Therefore, the tests Friedman and Quade rejected H0. 
However, these results do not give enough information 
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to select the best experiment, so that, a post-hoc proce-
dure was necessary to do. From Table 10, Experiment 
#1 was taken as the control experiment. 

Tab. 11. Contrast the null-hypothesis in Training phase

Friedman
Friedman 

Aligned 
Ranks

Quade

P-values 0.01694 0.3806 1.04E-04

H0 is rejected
H0 is not 
rejected

H0 is rejected

Table 12 shows the results of the post-hoc pro-
cedure, where the P-values were adjusted by Holm’s 
correction. For a = 0.05, the adjusted P-values for the 
comparison between the control experiment and the 
Experiments #3 and #4 show that the Experiment #1 
had better performance.

Then, it is presented the results for the Testing 
phase.

Table 13 shows the results of the Shapiro-Wilk test 
where the P-values were contrasted with a significance 
level of a = 0.05. The P-values obtained show that five 
results reject H0, and eleven results do not reject H0. 
Next, non-parametric statistic tests were applied.

 
Tab. 12. Adjusted P-values for Training phase

Friedman Quade

Experiment Holm Holm

#1 vs #4 0.01667 0.01667

#1 vs #3 0.025 0.025

#1 vs #2 0.05 0.05

Tab. 13. Shapiro-Wilk test in Testing phase
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.05354 0.02317 0.4062 0.2015

H0 is not 
rejected

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

Wine
0.4185 0.4515 0.4542 0.2932

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

Glass
0.06616 0.00249 4.17E-08 4.71E-07

H0 is not 
rejected

H0 is 
rejected

H0 is 
rejected

H0 is 
rejected

SPECT
0.002891 0.08466 0.7195 0.07491

H0 is 
rejected

H0 is not 
rejected

H0 is not 
rejected

H0 is not 
rejected

Table 14 shows the average ranks obtained from 
Friedman, Friedman Aligned Ranks and Quade tests 
for whole results. In the three tests, the smaller av-
erage ranks, in bold font, specify that Experiment #2 
had the best performance. 

Tab. 14. Average rankings of the experiments for the 
Testing phase 

Experiment Friedman
Friedman 

Aligned 
Ranks

Quade

#1 2.5 6.5 2.3

#2 1.75 4.75 1.2999

#3 3.0 11.75 3.4

#4 2.75 11.0 3.0

Tab. 15. Contrast the null-hypothesis in Testing phase

Friedman
Friedman 

Aligned 
Ranks

Quade

P-values 0.5519 0.3632 0.0381

H0 is not 
rejected

H0 is not 
rejected

H0 is rejected

Table 15 shows the P-value for each statisti-
cal test. The significance level was set up a = 0.05. 
Quade test rejects H0. Nonetheless, this result does 
not present enough information to choose of the 
best experiment. So, a post-hoc procedure was 
made. From Table 14, Experiment #2 was used as 
the control experiment. 

Tab. 16. Adjusted P-values for Testing phase

Quade

Experiment Holm

#2 vs #4 0.01667

#2 vs #3 0.025

#2 vs #1 0.05

Table 16 shows the results of the post-hoc pro-
cedure for Quade test, where P-values were adjusted 
by Holm’s correction. The P-values were compared 
against a significance level of a = 0.05. The P-values 
for the comparison between the control experiment 
and the Experiment #3 and #4 show that the Experi-
ment #2 had better performance. 

5.	 Conclusion
This paper presents a methodology for training 

full and partially connected LIF spiking neurons using 
the OMOPSO algorithm for solving pattern recogni-
tion problems. The experiments were designed with 
a multi-objective approach and their results were 
compared statistically with the results of mono-ob-
jective experiments. Each experiment was tested on 
four well-known benchmark datasets by performing 
40 independently executions for each dataset.

The results have shown that the Experiments #1 
and #2 had the best performances in the Training and 
Testing phases respectively. Therefore, the multi-ob-
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jective approach provides an adequate alternative to 
optimize LIF spiking neurons. 

One interesting characteristic of our methodology 
consists on the reduction of dimensionality of the in-
put feature vectors to avoid redundancies in the input 
information. 

As future work, we propose to include the LIF pa-
rameters into the OMOPSO algorithm to explore bet-
ter non-dominated solutions and to implement more 
multi-objective algorithms from state of the art for 
training LIF spiking neurons.
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