
73

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Single Spiking Neuron Multi-Objective Optimization for Pattern Classification

Carlos Juarez-Santini, Manuel Ornelas-Rodriguez, Jorge Alberto Soria-Alcaraz,
Alfonso Rojas-Domínguez, Hector J. Puga-Soberanes, Andrés Espinal, Horacio Rostro-Gonzalez

Submitted: 20th December 2019; accepted: 30th March 2020

DOI: 10.14313/JAMRIS/1-2020/9

Abstract: As neuron models become more plausible,
fewer computing units may be required to solve
some problems; such as static pattern classification.
Herein, this problem is solved by using a single spiking
neuron with rate coding scheme. The spiking neuron is
trained by a variant of Multi-objective Particle Swarm
Optimization algorithm known as OMOPSO. There were
carried out two kind of experiments: the first one deals
with neuron trained by maximizing the inter distance
of mean firing rates among classes and minimizing
standard deviation of the intra firing rate of each class;
the second one deals with dimension reduction of
input vector besides of neuron training. The results of
two kind of experiments are statistically analyzed and
compared again a Mono-objective optimization version
which uses a fitness function as a weighted sum of
objectives.

Keywords: Multi-objective Optimization, Spiking Neu-
ron, Pattern Classification

1. Introduction
Artificial Neural Networks (ANNs) try to simulate

the behavior of the brain when they generate, process
or transform information. An ANN is a system formed
of simple processing units, which offers the property,
and capability of input-output mapping. ANNs learn
to solve complex problems in a reasonable amount
of time [1]. The ability of learning of ANNs become
a powerful tool for wide applications, for instance:
pattern recognition works, classifying, clustering, vi-
sion tasks and forecasting [2].

ANNs can be distinguished in three generations ac-
cording to their computational units [3]. The first one
is based on McCulloch-Pitts neuron as computational
units that can handle digital data [3]. The second one
is characterized by a multilayer architecture, connec-
tivity separating input, intermediate, and output units
and applying activation functions with a continuous
set of possible output values to a weighted sum of the
inputs [4]. The third generation has been developed
with the purpose of design neural models more plau-

sible to the biological neurons. These are known as
Spiking Neural Networks (SNNs) [5], [6].

ANNs are conformed by neurons organized in in-
put, hidden and output layers, which are inter-con-
nected by synaptic weights. These simulate the neu-
ron synapsis of the human brain. During the training
process of an ANN, a set of synaptic weights con-
stantly is changing until the knowledge acquired is
enough. Once the knowledge process has finished,
it is necessary to evaluate the performance of the
ANN. It is expected that the ANN can classify with
acceptable accuracy the patterns from a particular
problem during the testing phase [7]. The training
process is an optimization task since it is desired
to find the optimal weight set of the ANN. Methods
based on gradient-descent have been applied to
the training phase [8], but these techniques can be
trapped at local minima. Then to overcome this situ-
ation, the researchers have proposed different glob-
al optimization methods [9] to optimize the ANNs
by Evolutionary Algorithms (EAs). These EAs can be
used to calibrate the connection weights, optimize
the architecture and selecting the input features of
ANNs [10].

The present research proposes a method for train-
ing full and partially connected SNNs based on the
Leaky Integrate and Fire (LIF) model, by using a var-
iant of Multi-objective Particle Swarm Optimization
known as OMOPSO. This methodology is designed to
solve pattern recognition problems. The results are
statistically analyzed and compared with a version
of mono-objective optimization using the Particle
Swarm Optimization algorithm (PSO).

This paper is organized as follows: Section 2 pre-
sents the theoretical fundamentals used in this work.
Section 3 explains the implemented methodology.
Section 4 shows the results and statistical analysis.
Finally, in section 5 are presented the conclusions and
future work.

2. Background
This section describes the LIF model and the Op-

timized Multi-objective Particle Swarm Optimization
(OMOPSO), which were used in this work.

74

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Articles74

this work, we used the OMOPSO algorithm described
in [15], which is based on Pareto dominance and an
elitist selection through crowding factor. Beside this,
the authors incorporated two mutation operators
(uniform mutation and non-uniform mutation). The
uniform mutation refers to variability range allowed
for each decision variable, which is kept constant
over generations and the non-uniform mutation has
a characteristic variability range allowed for each de-
cision variable, which decreases over time. Finally, it
was added the e-dominance concept which is the final
size of the external file where stores the non-dominat-
ed solutions. Algorithm 1 shows the OMOPSO.

Algorithm 1. OMOPSO
Require: Initialize Swarm Pi, Initialize Leaders Li

1: Send Li to e-file

2: crowding(Li), g = 0

3: while g < gmax do

4: for each particle

5: Select leader

6: Fly

7: Mutation

8: Evaluate

9: Update pbest

10: end for

11: Update Li

12: Send Li to e-file

13: crowding(Li), g = g + 1

14: end while

15: Report results in e-file

3. Methodology
This section shows the methodology used in our

work. There were proposed two kinds of experi-
ments: the first one treats with neuron trained by
maximizing the inter distance of mean firing rates
among classes and minimizing the standard deviation
of the intra firing rate of each class; the second one
deals with dimension reduction of input vector be-
sides of neuron training.

The LIF neuron model was implemented into
jMetal [16], [17] where is available the OMOPSO al-
gorithm, which was used for training the LIF neuron.
Furthermore, the OMOPSO algorithm was configured
as a mono-objective algorithm (PSO).

The design of the methodology is shown in Fig. 2.
Initially, we set up the parameters of the OMOPSO algo-
rithm and the LIF neuron model. Next, it is necessary to
initialize the particles and Leaders (Li) with uniformly
random numbers to make a swarm. Each particle rep-
resents a synaptic weight vector ()w with the same size
as the feature input vector ()x . Then, whole particles

2.1. Leaky Integrate and Fire Model
The LIF neuron model is one of the most used in

the field of computational neuroscience given this
model has an easier implementation and a lower
computational cost in comparison with other spiking
neuron models [11].

The mathematical representation for this model
is shown in [11], [12] and it is given by the potential
dynamic of the membrane:

τ
dv
dt

g v E I ti
leak i leak= − −() + ()

(1)

where gleak and Eleak are the conductance and the re-
versal potential of the leak current, t is the membrane
time constant and I(t) is a current injected into the
neuron.

In this work, it was used the representation pro-
posed in [11],[13] defined as:

′ = + −

≥ ←

v I a bv

v v v cthreshold

,

,if then (2)

where I is the input current of the neuron, v denotes
the membrane potential, a and b are parameters to
configure the behavior of the neuron, c is the rest
state voltage and vthreshold is the threshold for the spike
(firing) of the neuron. Besides, an initial condition v0
is necessary to solve the differential equation by nu-
merical methods.

Since the input patterns cannot be directly pro-
cessed by the LIF neuron, they must be transformed
to input currents by means of the equation:

 I x w= ⋅ ⋅θ (3)

where x n∈ is the input pattern vector, w n∈ is
the set of synaptic weights and θ is a gain factor.

Fig. 1 shows the representation of a LIF neuron.
When I is computed, it continues to solve the equa-
tion (2) to obtain the output spike train belonging to
the input pattern.

Fig. 1. Representation of a LIF neuron

2.2. Optimized Multi-Objective Particle Swarm
Optimization (OMOPSO)

Regarding multi-objective optimization, a con-
siderable number of algorithms can be found in the
literature. For instance, the Multi-objective Particle
Swarm (MOPSO) was proposed by Coello in [14]. In

75

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Articles 75

are evaluated into the LIF neuron model, by means of
the objective functions. The non-dominated particles
in the swarm will be Li, which are sent to e-file. Besides
this, it is calculated a crowding factor for each Li as
a second discrimination criterion.

Start

After it is initialized an Internal Loop into an External
Loop, and each particle is modified into the Internal
Loop, updating the position and applying the
mutation operators. Then, each particle is evaluated
and updated its personal best value (). A new
particle replaces the if such value is dominated
by the new particle or if both are non-dominated
concerning each other.
When all particles have been updated, the are
modified in the External Loop. Only the particles that
overcome their will try to enter to set. Once
the have been updated, they are sent to - .
Finally, the crowding values of the set of is updated
and we eliminate as many leaders as necessary to
avoid overflow of the size of the set. The process is
repeated until finalizing all iterations.

Fig. 2. Methodology schema

3.1. Objective Functions
Three different objective functions were considered
to measure the performance of the solutions
(particles):

A. The Euclidean distance between the
combination of and , where is
the average firing rate of each class and .
For this objective function, we looking for
maximize the separability between the
classes:

 () (eq.4)

B. The Standard Deviation of the firing rate for
each pattern class , where
and is the total of pattern classes. In this

objective function, we looking for minimize
the dispersion of each pattern class:

 () (eq.5)

C. The dimension of the input feature vector (̅).
To avoid redundancies in information, we
desire to reduce the dimensionality of the
feature vectors, by minimizing the total of
of a binary mask (̅) with the same size of the
input feature vector.

In our proposal, the number of objective functions is
related to the number of classes of the dataset.

3.2. Experiments
Four supervised classification datasets from the UCI
Machine Learning Repository [18] were employed for
experimentation: Iris Plant, Wine, Glass, and SPECT.
Table 1 shows the details of the datasets used.
Each dataset was randomly divided in two subsets
with approximately the same size. The first one was
employed as training set and the second one as
testing set.

Dataset Instances Classes Features
Iris Plant 150 3 4

Wine 178 3 13
Glass 214 6 9

SPECT 267 2 22
Table. 1. Datasets employed for experimentation

With the aim to observe the performance of our
proposal, four experiments were configurated
according to the objective functions seen in section
3.1. The characteristics of each experiment are
defined below and summarized in Table 2.

i. Experiment #1 was defined as a multi-
objective problem, focusing on the A and B
objective functions. The OMOPSO algorithm
was used to optimize the synaptic weight
vector of the LIF neuron.

ii. Experiment #2 employs the multi-objective
approach, considering the A, B and C
objective functions. The OMOPSO algorithm
was taken to optimize the synaptic weight
vector and the dimension of the input vector.
Concerning the optimization of the last
parameter, a binary mask (̅) was used in
equation (3) to calculate a modified input
current given by equation (6).

 ̅ ̅ ̅ (eq.6)

Report
results
in 𝜀𝜀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Send 𝐿𝐿𝑖𝑖
to 𝜀𝜀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Calculate a
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
for 𝐿𝐿𝑖𝑖

For each
particle

Initialize
OMOPSO
and LIF
parameters

Update
position
(Fly)

Initialize
particles
and 𝐿𝐿𝑖𝑖

Evaluate
particles
into LIF

True

Apply
mutation
operators

Update
𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝

Update
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
 for 𝐿𝐿𝑖𝑖

Send 𝐿𝐿𝑖𝑖
to 𝜀𝜀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Update
𝐿𝐿𝑖𝑖

False
Reports
results
in 𝜀𝜀-𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

False

End

𝑐𝑐 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 True

Fig. 2. Methodology schema

After it is initialized an Internal Loop into an Exter-
nal Loop, and each particle is modified into the Internal
Loop, updating the position and applying the mutation
operators. Then, each particle is evaluated and updated
its personal best value (pbest). A new particle replaces
the pbest if such value is dominated by the new particle
or if both are non-dominated concerning each other.

When all particles have been updated, the Li are
modified in the External Loop. Only the particles that
overcome their pbest will try to enter to Li set. Once the
Li have been updated, they are sent to e-file. Finally,
the crowding values of the set of Li is updated and we
eliminate as many leaders as necessary to avoid over-
flow of the size of the Li set. The process is repeated
until finalizing all iterations.

3.1. Objective Functions
Three different objective functions were consid-

ered to measure the performance of the solutions
(particles):

A. The Euclidean distance between the combina-
tion of AFRi and AFRj, where AFR is the average firing
rate of each class and i ≠ j. For this objective function,
we looking for maximize the separability between the
classes:

 MAXdist AFR AFRi j,() (4)

B. The Standard Deviation of the firing rate for each
pattern class SDFRk, where k = 1, ..., K and K is the total
of pattern classes. In this objective function, we looking
for minimize the dispersion of each pattern class:

 MIN SDFRk() (5)

C. The dimension of the input feature vector ()x .
To avoid redundancies in information, we desire to
reduce the dimensionality of the feature vectors, by
minimizing the total of 1's of a binary mask a bina-
ry mask ()r with the same size of the input feature
vector.

In our proposal, the number of objective functions is
related to the number of classes of the dataset.

3.2. Experiments
Four supervised classification datasets from the

UCI Machine Learning Repository [18] were em-
ployed for experimentation: Iris Plant, Wine, Glass,
and SPECT. Table 1 shows the details of the datasets
used.

Each dataset was randomly divided in two subsets
with approximately the same size. The first one was
employed as training set and the second one as test-
ing set.

Tab. 1. Datasets employed for experimentation
Dataset Instances Classes Features

Iris Plant 150 3 4

Wine 178 3 13

Glass 214 6 9

SPECT 267 2 22

With the aim to observe the performance of our
proposal, four experiments were configurated ac-
cording to the objective functions seen in section 3.1.
The characteristics of each experiment are defined
below and summarized in Table 2.
i. Experiment #1 was defined as a multi-objective

problem, focusing on the A and B objective
functions. The OMOPSO algorithm was used to
optimize the synaptic weight vector of the LIF
neuron.

ii. Experiment #2 employs the multi-objective
approach, considering the A, B and C objective
functions. The OMOPSO algorithm was taken
to optimize the synaptic weight vector and the
dimension of the input vector. Concerning the
optimization of the last parameter, a binary
mask ()r was used in equation (3) to calculate
a modified input current given by equation (6).

 I x w r= ⋅ ⋅ ⋅θ (6)

iii. Experiment #3 was designed as a mono-objective
problem. The objective function (eq. 7) was formed
by the weighted sum of two objective functions.
The first one is the inverse of the summation of
the Euclidean distances among all combinations
of AFRi and AFRj and the second objective is the
sum of the standard deviation of the firing rate
for all classes as shown in equation 7 [11]. PSO
algorithm was used to design the synaptic weight
vectors.

76

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Articles76

MIN f

dist
SDFR

k

K

k() = ()
+

=
∑1

1AFR
(7)

iv. Experiment #4 is a mono-objective approach that
seeks to optimize the synaptic weight vector and
the dimension of the input vector with the PSO
algorithm. The objective function (eq. 8) is formed
by the weighted sum of the equation (7) and the
rate of T and D, where T is total of 1's in the binary
mask ()r and D is the dimension of the input
feature vector.

MIN f

dist AFR
SDFR

k

K

k() = ()
+ +

=
∑1

1

T
D

(8)

Tab. 2. Configuration for experimentation

Algorithm Optimized Parameters
Objective
Functions

Exp
#1

OMOPSO
synaptic weight

vector
A, B

Exp
#2

OMOPSO
synaptic weight

vector and dimension of
input vectors

A, B, C

Exp
#3

PSO
synaptic weight

vector
A, B

Exp
#4

PSO
synaptic weight

vector and dimension of
input vectors

A, B, C

Table 3 shows a compendium of the number of ob-
jective functions by experiment for each dataset.

Tab. 3. Total of Objective Functions by experiment

Objective Functions in

Dataset Classes Exp #1 Exp #2 Exp #3 Exp #4

Iris Plant 3 6 7 1 1

Wine 3 6 7 1 1

Glass 6 21 22 1 1

SPECT 2 3 4 1 1

Each experiment consisted of 40 independently
executions per each dataset to guarantee statistical
significance. The parameter values used in the OMOP-
SO algorithm and the LIF neuron model [11] are de-
tailed in Table 4 and 5 respectively.

The initial synaptic weights were generated ran-
domly θ ∈ [0,1].

4. Results and Statistical Analysis
This section describes the results obtained from

the experimentation proposed in section 3. The re-
sults are statistically analyzed and discussed below.

Tab. 4. Configuration OMOPSO Parameters
Max particle size: 100

Max iterations: 1000

e-file size: 100

Uniform Mutation

Mutation probability:
1 0.

Number of
problem variables

Perturbation index: 0.5

Non-uniform Mutation

Mutation probability:
1 0.

Number of
problem variables

Perturbation index: 0.5

Max iterations: 1000

Tab. 5. Configuration LIF Parameters
a 0.5

b -0.001

c -50 mV

vi -60 mV

vthreshold 50 mV

Time 1000 ms

h 1

θ 0.1

For each execution, at the end of the training phase,
the total of particles is evaluated in the LIF neuron
model using the training set, and the classification ac-
curacy is calculated for each particle. Finally, the par-
ticle with the best performance is used in the testing
phase for obtaining the accuracy in the testing set.

Tab. 6. Accuracy of training phase over each experiment
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.9817

±
0.0131

0.9793
±

0.0157

0.9
±

 0.0232

0.8987 ±
0.0219

Wine
0.7858

±
0.0358

0.8048
±

0.0336

0.6849
±

0.0432

0.6986
±

0.0301

Glass
0.5050

±
0.0441

0.5031
±

0.0405

0.39
±

 0.0030

0.3638 ±
0.0726

SPECT
0.8592

±
0.0243

0.8286
±

0.0227

0.7276
±

0.0325

0.7273 ±
0.0344

Tables 6 and 7 show the results obtained from the
methodology proposed. The accuracy values along
with the standard deviations grade the performance
of the experiments. The accuracy of the training phase
corresponds to the average of the performance of the

77

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Articles 77

best particles obtained in each experiment, whereas
that the accuracy of the testing phase is obtained from
the average of the performance of these particles ap-
plied to the testing set. The highest accuracy values
are remarked in bold font.

Tab. 7. Accuracy of testing phase over each experiment

OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.94

±
 0.0383

0.9543
±

0.0220

0.9003
±

 0.0355

0.8883
±

0.0303

Wine
0.7322

±
0.0604

0.7397
±

0.0610

0.6706
±

0.0505

0.6858
±

0.0451

Glass
0.3516

±
0.1141

0.3695
±

0.1163

0.3472
±

 0.0947

0.3594
±

0.0960

SPECT
0.7043

±
0.1051

0.7019
±

0.1006

0.7157
±

0.0545

0.7073
±

0.0523

Tab. 8. Analysis of reduction of features of input vector

Experiments

#2 #4

Dataset

Average
number of

features
employed

Rate of
features

used

Average
number of

features
employed

Rate of
features

used

Iris
Plant

2.575
±

0.747
0.640

3.050
±

0.221
0.760

Wine
8.475

±
3.266

0.652
5.850

±
1.902

0.450

Glass
5.550

±
1.999

0.617
6.00

±
1.377

0.667

SPECT
10.325

±
5.677

0.469
21.675

±
0.526

0.985

Table 8 shows the average amount of input fea-
tures employed by the LIF neuron model and its cor-
responding rate concerning the total size of the origi-
nal input feature vector.

Several statistic tests were applied to the obtained
results. Firstly, Shapiro-Wilk test was executed to
identify the kind of parametric or non-parametric
tests to be used along with our data. Our tests were
implemented using R programming language, and
the CONTROLTEST package tool (available at http://
sci2s.ugr.es/sicidm/) was used for non-parametric
comparison between experiments. Specifically, three

non-parametric tests were applied: Friedman, Fried-
man Aligned Ranks, and Quade.

Firstly, the results from statistic tests for the Train-
ing phase are shown and discussed. Subsequently, the
results of statistic tests computed in the Testing phase
are analyzed.

In the Shapiro-Wilk test, the null-hypothesis (H0)
states the samples come from a normal distribution.
In Table 9, for a significance level of a = 0.05, the
P-values obtained show that approximately half of the
results do not reject H0, but the rest of the results re-
ject H0. Therefore, non-parametric statistics were ap-
plied since such tests include both cases.

Tab. 9. Shapiro-Wilk test in Training phase
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris
Plant

0.0002868 0.000761 0.1257 0.189

H0 is
rejected

H0 is
rejected

H0 is not
rejected

H0 is not
rejected

Wine
0.6275 0.0407 0.08713 0.3317

H0 is not
rejected

H0 is
rejected

H0 is not
rejected

H0 is not
rejected

Glass
0.0002413 0.001126 6.64E-14 1.09E-11

H0 is
rejected

H0 is
rejected

H0 is
rejected

H0 is
rejected

SPECT
0.06032 0.07665 0.3015 0.09427

H0 is not
rejected

H0 is not
rejected

H0 is not
rejected

H0 is not
rejected

Friedman, Friedman Aligned Ranks, and Quade
tests were applied to the obtained results. In these
tests, the null-hypothesis (H0) states that the data of
the experiments follow the same distribution [19]
(there is no difference in their performance).

Table 10 reports the average ranks obtained from
these tests on the whole experiments. The smaller
values, in bold font, indicate that Experiment #1 had
consistently the best performance.

Tab. 10. Average rankings of the experiments for the
Training phase

Experiment Friedman
Friedman Aligned

Ranks
Quade

#1 1.25 4.0 1.2

#2 1.75 5.0 1.80

#3 3.25 12.25 3.199

#4 3.75 12.75 3.8

Table 11 shows the P-value for each statistical test
and the sentence corresponding to the status of H0 for
a significance level a = 0.05. If the P-value is greater than
a then indicates that not exist evidence to reject H0.
Therefore, the tests Friedman and Quade rejected H0.
However, these results do not give enough information

78

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Articles78

to select the best experiment, so that, a post-hoc proce-
dure was necessary to do. From Table 10, Experiment
#1 was taken as the control experiment.

Tab. 11. Contrast the null-hypothesis in Training phase

Friedman
Friedman

Aligned
Ranks

Quade

P-values 0.01694 0.3806 1.04E-04

H0 is rejected
H0 is not
rejected

H0 is rejected

Table 12 shows the results of the post-hoc pro-
cedure, where the P-values were adjusted by Holm’s
correction. For a = 0.05, the adjusted P-values for the
comparison between the control experiment and the
Experiments #3 and #4 show that the Experiment #1
had better performance.

Then, it is presented the results for the Testing
phase.

Table 13 shows the results of the Shapiro-Wilk test
where the P-values were contrasted with a significance
level of a = 0.05. The P-values obtained show that five
results reject H0, and eleven results do not reject H0.
Next, non-parametric statistic tests were applied.

Tab. 12. Adjusted P-values for Training phase

Friedman Quade

Experiment Holm Holm

#1 vs #4 0.01667 0.01667

#1 vs #3 0.025 0.025

#1 vs #2 0.05 0.05

Tab. 13. Shapiro-Wilk test in Testing phase
OMOPSO PSO

Experiments Experiments

Dataset #1 #2 #3 #4

Iris Plant
0.05354 0.02317 0.4062 0.2015

H0 is not
rejected

H0 is
rejected

H0 is not
rejected

H0 is not
rejected

Wine
0.4185 0.4515 0.4542 0.2932

H0 is not
rejected

H0 is not
rejected

H0 is not
rejected

H0 is not
rejected

Glass
0.06616 0.00249 4.17E-08 4.71E-07

H0 is not
rejected

H0 is
rejected

H0 is
rejected

H0 is
rejected

SPECT
0.002891 0.08466 0.7195 0.07491

H0 is
rejected

H0 is not
rejected

H0 is not
rejected

H0 is not
rejected

Table 14 shows the average ranks obtained from
Friedman, Friedman Aligned Ranks and Quade tests
for whole results. In the three tests, the smaller av-
erage ranks, in bold font, specify that Experiment #2
had the best performance.

Tab. 14. Average rankings of the experiments for the
Testing phase

Experiment Friedman
Friedman

Aligned
Ranks

Quade

#1 2.5 6.5 2.3

#2 1.75 4.75 1.2999

#3 3.0 11.75 3.4

#4 2.75 11.0 3.0

Tab. 15. Contrast the null-hypothesis in Testing phase

Friedman
Friedman

Aligned
Ranks

Quade

P-values 0.5519 0.3632 0.0381

H0 is not
rejected

H0 is not
rejected

H0 is rejected

Table 15 shows the P-value for each statisti-
cal test. The significance level was set up a = 0.05.
Quade test rejects H0. Nonetheless, this result does
not present enough information to choose of the
best experiment. So, a post-hoc procedure was
made. From Table 14, Experiment #2 was used as
the control experiment.

Tab. 16. Adjusted P-values for Testing phase

Quade

Experiment Holm

#2 vs #4 0.01667

#2 vs #3 0.025

#2 vs #1 0.05

Table 16 shows the results of the post-hoc pro-
cedure for Quade test, where P-values were adjusted
by Holm’s correction. The P-values were compared
against a significance level of a = 0.05. The P-values
for the comparison between the control experiment
and the Experiment #3 and #4 show that the Experi-
ment #2 had better performance.

5. Conclusion
This paper presents a methodology for training

full and partially connected LIF spiking neurons using
the OMOPSO algorithm for solving pattern recogni-
tion problems. The experiments were designed with
a multi-objective approach and their results were
compared statistically with the results of mono-ob-
jective experiments. Each experiment was tested on
four well-known benchmark datasets by performing
40 independently executions for each dataset.

The results have shown that the Experiments #1
and #2 had the best performances in the Training and
Testing phases respectively. Therefore, the multi-ob-

79

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Articles 79

jective approach provides an adequate alternative to
optimize LIF spiking neurons.

One interesting characteristic of our methodology
consists on the reduction of dimensionality of the in-
put feature vectors to avoid redundancies in the input
information.

As future work, we propose to include the LIF pa-
rameters into the OMOPSO algorithm to explore bet-
ter non-dominated solutions and to implement more
multi-objective algorithms from state of the art for
training LIF spiking neurons.

ACkNOwLEdgEMENTS
The authors express their gratitude to the National
Technology of Mexico and the University of Guanajua-
to. C. Juarez-Santini and A. Rojas-Dominguez thank the
National Council of Science and Technology of Mexico
(CONACYT) for the support provided by means of the
Scholarship for Postgraduate Studies and research
grant CATEDRAS-2598, respectively.

AUTHORS
Carlos Juarez-Santini – Postgraduate Studies and
Research Division, Leon Institute of Technology – Na-
tional Technology of Mexico, Leon, Guanajuato, Mexi-
co
e-mail: jusca_94@hotmail.com.

Manuel Ornelas-Rodriguez* – Postgraduate Studies
and Research Division, Leon Institute of Technology
– National Technology of Mexico, Leon, Guanajuato,
Mexico
e-mail: mornelas67@yahoo.com.mx.

Jorge Alberto Soria-Alcaraz – Department of Organi-
zational Studies, DCEA-University of Guanajuato, Gua-
najuato, Mexico, e-mail: jorge.soria@ugto.mx.

Alfonso Rojas-Domínguez – Postgraduate Studies
and Research Division, Leon Institute of Technology
– National Technology of Mexico, Leon, Guanajuato,
Mexico
e-mail: alfonso.rojas@gmail.com.

Hector J. Puga-Soberanes – Postgraduate Studies
and Research Division, Leon Institute of Technology
– National Technology of Mexico, Leon, Guanajuato,
Mexico
e-mail: pugahector@yahoo.com.mx.

Andrés Espinal – Department of Organizational
Studies, DCEA-University of Guanajuato, Guanajuato,
Mexico, e-mail: aespinal@ugto.mx.

Horacio Rostro-Gonzalez – Department of Electron-
ics, DICIS-University of Guanajuato, Salamanca, Gua-
najuato, Mexico, e-mail: hrostrog@ugto.mx.

* Corresponding author

REFERENCES
[1] M. van Gerven and S. Bohte, “Editorial: Artifi-

cial Neural Networks as Models of Neural In-
formation Processing”, Frontiers in Computa-
tional Neuroscience, vol. 11, 2017, 1–2,

 DOI: 10.3389/fncom.2017.00114.
[2] K. Soltanian, F. A. Tab, F. A. Zar and I. Tsoulos,

“Artificial neural networks generation using
grammatical evolution”. In: 2013 21st Iranian
Conference on Electrical Engineering (ICEE),
2013, 1–5,

 DOI: 10.1109/IranianCEE.2013.6599788.
[3] W. Maass, “Networks of spiking neurons: The

third generation of neural network models”, Neu-
ral Networks, vol. 10, no. 9, 1997, 1659–1671,

 DOI: 10.1016/S0893-6080(97)00011-7.
[4] D. Gardner, The Neurobiology of neural net-

works, MIT Press, 1993.
[5] N. G. Pavlidis, O. K. Tasoulis, V. P. Plagianakos, G.

Nikiforidis and M. N. Vrahatis, “Spiking neural
network training using evolutionary algorithms”.
In: Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, vol. 4, 2005,
2190–2194, DOI: 10.1109/IJCNN.2005.1556240.

[6] A. A. Hopgood, Intelligent Systems for Engineers
and Scientists, CRC Press/Taylor & Francis
Group, 2012.

[7] B. A. Garro and R. A. Vázquez, “Designing Ar-
tificial Neural Networks Using Particle Swarm
Optimization Algorithms”, Computational Intel-
ligence and Neuroscience, 2015, 1–20,

 DOI: 10.1155/2015/369298.
[8] D. E. Rumelhart, G. E. Hinton and R. J. Williams,

“Learning internal representations by error
propagation”. In: Parallel distributed process-
ing: explorations in the microstructure of cogni-
tion, vol. 1, MIT Press, 1986, 318–362.

[9] D. Karaboga, B. Akay and C. Ozturk, “Artificial
Bee Colony (ABC) Optimization Algorithm for
Training Feed-Forward Neural Networks”. In:
V. Torra, Y. Narukawa and Y. Yoshida (eds.),
Modeling Decisions for Artificial Intelligence,
vol. 4617, 2007, 318–329,

 DOI: 10.1007/978-3-540-73729-2_30.
[10] S. Ding, H. Li, C. Su, J. Yu and F. Jin, “Evolution-

ary artificial neural networks: a review”, Arti-
ficial Intelligence Review, vol. 39, no. 3, 2013,
251–260, DOI: 10.1007/s10462-011-9270-6.

[11] R. A. Vazquez and A. Cachon, “Integrate and
Fire neurons and their application in pattern
recognition”. In: 2010 7th International Confer-
ence on Electrical Engineering Computing Sci-
ence and Automatic Control, 2010, 424–428,

 DOI: 10.1109/ICEEE.2010.5608622.
[12] A. Cachón and R. A. Vázquez, “Tuning the pa-

rameters of an integrate and fire neuron via
a genetic algorithm for solving pattern recog-
nition problems”, Neurocomputing, vol. 148,
2015, 187–197,

 DOI: 10.1016/j.neucom.2012.11.059.

80

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 14, N° 1 2020

Articles80

[13] E. M. Izhikevich, “Which Model to Use for Cortical
Spiking Neurons?”, IEEE Transactions on Neural
Networks, vol. 15, no. 5, 2004, 1063–1070,

 DOI: 10.1109/TNN.2004.832719.
[14] C. A. Coello Coello and M. S. Lechuga, “MOP-

SO: a proposal for multiple objective particle
swarm optimization”. In: Proceedings of the
2002 Congress on Evolutionary Computation.
CEC’02, vol. 2, 2002, 1051–1056,

 DOI: 10.1109/CEC.2002.1004388.
[15] M. R. Sierra and C. A. Coello Coello, “Improving

PSO-Based Multi-objective Optimization Us-
ing Crowding, Mutation and ∈-Dominance”. In:
C. A. Coello Coello, A. Hernández Aguirre and
E. Zitzler (eds.), Evolutionary Multi-Criterion
Optimization, vol. 3410, 2005, 505–519,

 DOI: 10.1007/978-3-540-31880-4_35.
[16] J. J. Durillo, A. J. Nebro and E. Alba, “The jMetal

framework for multi-objective optimization:
Design and architecture”. In: IEEE Congress on
Evolutionary Computation, 2010, 1–8,

 DOI: 10.1109/CEC.2010.5586354.
[17] J. J. Durillo and A. J. Nebro, “jMetal: A Java

framework for multi-objective optimization”,
Advances in Engineering Software, vol. 42,
no. 10, 2011, 760–771,

 DOI: 10.1016/j.advengsoft.2011.05.014.
[18] “UCI Machine Learning Repository, Irvine, CA:

University of California, School of Information
and Computer Science”. D. Dua and C. Graff,
http://archive.ics.uci.edu/ml. Accessed on:
2020-05-28.

[19] J. Derrac, S. García, D. Molina and F. Herrera,
“A practical tutorial on the use of nonparamet-
ric statistical tests as a methodology for com-
paring evolutionary and swarm intelligence
algorithms”, Swarm and Evolutionary Computa-
tion, vol. 1, no. 1, 2011, 3–18,

 DOI: 10.1016/j.swevo.2011.02.002.

