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Abstract: Grammatical Evolution (GE) is a form of 
Genetic Programming (GP) based on Context-Free 
Grammar (CF Grammar). Due to the use of grammars, 
GE is capable of creating syntactically correct solutions. 
GE uses a genotype encoding and is necessary to apply 
a Mapping Process (MP) to obtain the phenotype 
representation. There exist some well-known MPs in 
the state-of-art like Breadth-First (BF), Depth-First 
(DF), among others. These MPs select the codons 
from the genotype in a sequential manner to do the 
mapping. The present work proposes a variation in the 
selection order for genotype’s codons; to achieve that, 
it is applied a random permutation for the genotype’s 
codons order-taking in the mapping. The proposal’s 
results were compared using a statistical test with the 
results obtained by the traditional BF and DF using the 
Symbolic Regression Problem (SRP) as a benchmark.

Keywords: Grammatical evolution, mapping process, 
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1. Introduction 
Genetic Programming (GP) is an Automatic Pro-

gramming (AP) technique proposed by Koza [1]. It 
aims the automatic construction of solutions to differ-
ent types of problems. One way to obtain syntactically 
correct solutions is by using grammars that restrict 
the search space [2, 3]. Grammars provide a mecha-
nism that can be used to describe complex structures 
and define what can be done [4]. Variants which are 
grammar-based are the second most commonly used 
variations of GP [5].

Grammatical Evolution (GE) [6] is a GP based form 
that uses an integer string and a grammar in a gen-
otype-phenotype mapping to obtain syntactically 
correct and feasible sentences [7]. Unlike GP, GE per-
forms the evolutionary process in the linear genotype 
rather than the solution [6]. The Mapping Process 
(MP) is GE’s component that allows generating solu-
tions (phenotypes) that are guaranteed to be syntac-
tically correct from an integer string (genotype) [8]. 
This MP can be seen as an abstraction of the DNA, is 
the conversion of a chromosome (genotype) to a solu-
tion (phenotype) [9]. 

The original MP used in GE was the Depth-First 
(DF) MP [6]. DF creates the phenotype by taking in 
linear order one codon value to select one grammar’s 
production rule applying an equation. Breadth-First 
(BF) MP [10] was proposed later. The only difference 
between these two MPs is the order in which the ex-
pansion is carried out. 

DF and BF are considered the classic MPs, and 
both use a Backus Naur Form Grammar (BNF-Gram-
mar); since then, many other approaches have been 
proposed, like the πGrammatical Evolution (πGE) 
[11], it employs two codons rather than just one: 
the first codon is used to select the non-terminal to 
expand (main difference with the classic MPs), and 
the second codon is used in the same way as the last 
MPs to select a production rule from the grammar; 
the Tree-Adjunct Grammatical Evolution (TAGE) [12] 
uses a tree-adjunct grammar instead of a BNF-Gram-
mar to create the phenotype; the Univariate Mod-
el-Based Grammatical Evolution (UMBGE) [13] uses 
probabilistic context-free grammars and replaces the 
original genetic operators with the sampling from 
the distribution of the best solutions; Structured 
Grammatical Evolution (SGE) [14] uses a different 
genotypic representation for GE, where each gene is 
explicitly linked to a non-terminal of the grammar 
with the purpose of increasing locality; among others. 
There exist some studies about the performance of 
these different MPs [15, 16, 10] used to solve various 
types of problems, such as the Symbolic Regression 
Problem (SRP), The Santa Fe Ant Trail, and the Even-
five Parity Problem. In the classic MPs, the mapping 
is performed by taking each integer value of the gen-
otype (called codon), and an equation to choose the 
corresponding production rule. It is created a deriv-
ative tree from this process, and the solution taken 
from it. The order-taking for the genotype’s codons in 
the classic MPs DF and BF is sequential. 

In this paper, we propose a modification in the or-
der-taking of the genotype’s codons for the MPs DF 
and BF. The obtained results are compared with these 
traditional MPs applied to the SRP using a statistical 
test. The paper is structured as follows: Section 2 
gives a brief introduction to GE and its components, 
in Section 3 is presented the proposed approach, the 
selected setup that was used in the experiments is ex-
plained in Section 4; Section 5 presents the obtained 
results and the statistical analysis, and, finally the con-
clusions and future work are discussed in Section 6.
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[15, 10], the Santa Fe Ant Trail (SFAT) problem [15, 
10], Data Classification [20], the design of the topolo-
gy of Artificial Neural Networks [21, 22], the Flexible 
Job Shop Scheduling Problem [23], and the SRP [24, 
25, 26, 15] have been tried to get solved with GE. 

The Problem used in the present work is SRP, ex-
plained in Section 2.1.1.

Symbolic Regression Problem. The SRP [1] is 
one of the most requested problem domains in the 
GP community [5]. Techniques like GP [27, 28] and GE 
[24] have been used to solve such task. 

SRP intends to find a mathematical expression 
that represents (with the minimal error) a given set of 
data that takes as a base the rules of accuracy, simplic-
ity, and generalization [28]. The obtained mathemat-
ical expression can be seen as a function that takes 
the values of the variables as an input and returns an 
output [1].

Fig. 2. Used GE’s methodology based on [18]

2.2. Backus Naur Form Grammar
BNF-Grammar is a type of grammar employed in 

GE. The next tuple form this type of grammar [2]: 

 G = {NT, T, R, S} 
where: 
NT is the set of non-terminal symbols. 
T is the set of terminal symbols.
R corresponds to the production rules.
S corresponds to the start symbol, S ∈ NT.

Initially, a BNF-Grammar must be defined. This 
grammar specifies the structure that the possible 
solutions produced by GE must have. 

The BNF-Grammar consist of two types of sym-
bols, the non-terminal (NT) symbols, and the termi-
nal (T) symbols. The first type can be expanded into 
NT or T symbols (according to the production rules of 
the grammar); the second type corresponds to the set 
that contains the symbols that are allowed to appear 
in the final expression. The last one, the start symbol 
S indicates where is the starting point in the gram-
mar. As an example, in Grammar 1 the NT is the set 
described by NT = {<e>, <v>, <o>}, and the set of T is 
described by T = {X, Y, -, +}. 

2. Grammatical Evolution
GE is a variant of GP that takes inspiration from 

the biological evolutionary process (a comparative is 
shown in Figure 1), in GE the DNA is represented as 
an integer string; to replicate the process, GE uses an 
MP and a type of grammar to produce the phenotypic 
solution [6]. 

 

 

 

 
 

Fig. 2. Used GE's methodology based on [18] 

Fig. 1. Comparison between the GE approach and 
a biological genetic system [6]

Traditionally, a BNF-Grammar is used to create 
syntactically correct solutions [6]. The BNF-Grammar 
provides the necessary rules to produce the pheno-
type according to the specific problem that is trying 
to solve [17]. GE has three main components [18], 
but for the aim of this work, it has been added the MP 
as the fourth component. Figure 2 presents the used 
methodology for GE, it needs four main components: 
the Problem Instance, a BNF-Grammar, the Search En-
gine, and the MP. 

Due to the modular nature of GE, each one of the 
components used in GE can be switched [19], from 
the Problem Instance to the MP. 

GE produces as an output a phenotype, which 
represents the solution found, later, this solution is 
evaluated with the objective function, and the process 
continues until the stopping condition is met. The Al-
gorithm 1 shows GE’s algorithm.

2.1. Problem Instance
The Problem Instance refers to the type of issue 

that is trying to get solved. For example, problems like 
the Bin Packing Problem (BPP) [18], Even-5-parity 
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Each NT has its corresponding production rules 
(separated by the symbol “ ”), and each production 
rule is separated by the symbol “|”.

 

 

 
 

 
Fig. 3. Used GE's methodology based on [18] 
 

Grammar 1. Example of a simple BNF-Grammar

2.3. Search Engine
The main intention of the Search Engine (SE) is to 

evolve the candidates throw a search algorithm to find 
the best one [6]. To achieve that, the SE evaluates each 
candidate with the objective function, this evaluation 
is called fitness and represents the performance of an 
individual to solve a determinate problem [29, 30, 6].

Genetic Algorithm. In this work is used the Ge-
netic Algorithm (GA) as SE. The reason to use the GA 
is that it represents the canonical search algorithm 
used in GE’s initials [6]. GA is a metaheuristic inspired 
by the evolutionary process proposed in its initials by 
Darwin [31]; Holland later proposed the algorithm for 
the GA [32]. Algorithm [2] shows the process of GA.

2.4. Mapping Process
The MP is the procedure of creating a derivative 

tree with the help of a grammar. GE uses the Equation 
1, a grammar and the genotype (an integer string) to 
transform the genotype into a phenotype. In Figure 3 
is shown an example of this process.

 ProdRule = CodonVal % NumOfProdRule for the NT.  
(1)

To exemplify each MP, it is used the example Gram-
mar 1, and the following genotype:

Genotype = 2,12,7,9,3,15,23,1,11,4,6,13,2,7,8,3,35,19,2,6

Fig. 3. Used GE’s methodology based on [18]

Depth-First Mapping Process. The DF MP [6] 
starts from the start symbol and makes the corre-
sponding expansion by taking the left-most NT in 
the derivative tree. Equation 1 is used to choose the 
appropriate production rule, by substituting the 
corresponding codon value of the genotype and the 
number of production rules of the current NT. This 
process is presented in Figure 4 (the numbers out of 
the parenthesis indicate the expansion order in the 
derivative tree). In the example we start with the NT 
<e>; using the Eq. 1 we substitute the corresponding 
values, taking the first codon value: 2, and the number 
of production rules for <e>: 2, the result is 0, which 
indicates that the next production rule is the one that 
corresponds to the position zero. And now, there are 
three new available NTs in the list: <e>, <o> and 
<e>; the next NT to expand is <e>. We repeat this 
same process until there no more NTs remain in the 
derivative tree. The phenotype is obtained by travers-
ing the end nodes of the expansion tree. The obtained 
phenotype for this example is “Y-Y-X”. DF is considered 
the classic MP for GE [6]. The corresponding algo-
rithm for this MP is shown in Algorithm 3.

Breadth-First Mapping Process. The second 
MP used in this work is the BF MP [10]. This MP dis-
tinguishes from the DF only by the order in which 
the expansion is executed. It uses the same equation 
to choose the corresponding production rule (Eq. 1) 
but makes the expansion level by level in a left to 
right order. 

In the same way as the last process, the mapping 
initiates with the start symbol <e> (specified in the 
grammar). Applying the module rule the correspond-
ing expansion is <e><o><e>. The expansion continues 
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by taking every NT in a level of the tree from left to 
right until no more NTs remain. In this case, the re-
trieved phenotype is “Y-X-Y”. The example of this pro-
cess is shown in Figure 5, and its corresponding algo-
rithm in Algorithm 4.

3. Proposed Approach
In the classical MPs BF and DF, the codons are 

taken sequentially. It means that each codon value is 
used one by one in order of appearance as is shown in 
the example Figure 6. The figure shows the genotype 
(represented as an integer string in the first row), its 
corresponding sequential order-taking for the codons 
(second row), the BNF-Grammar employed, and the 
correspondent derivative process. In this last, the list 
of NTs is placed at the left side, and on the right side 
is indicated the order in which the codons are taken. 
Before the “→” symbol, the corresponding substituted 
values are shown for the Equation 1.

In the proposed approach, we change the or-
der-taking for the codons in the MPs BF and DF. To set 
this order-taking is employed a random permutation. 

Figure 7 shows an example of the proposal used 
in the DF MP. The figure shows the genotype (repre-
sented as an integer string in the second row), its cor-
responding order-taking for the codons (third row), 
the original index for the genotype (first row), the 
BNF-Grammar employed, and the derivative process. 

 
 

 

 

 

 
 

Fig. 4. Example of Depth-First Mapping Process [6]

 
 

 

 

 

 
 Fig. 5. Example of Breadth-First Mapping Process

 
 

 
 

 

 

 

 

 
Fig. 6. Example of the transformation genotype-to-
phenotype using the classic MP DF
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In this last, the list of NTs is placed at the left side, 
and on the right side is indicated the order in which 
the codons are taken. Note that it is used the permu-
tation (perm) to choose the index of the gen. After the 
“→” symbol, the corresponding substituted values are 
shown for the Equation 1.

4. Experimental Analysis

4.1. Benchmark Functions
Experiments were performed to evaluate the per-

formance of the proposal using a set of ten functions 
of the SRP. Table 1 shows the ten functions used in the 
experimental analysis. These functions were taken 
from [24, 33].

Tab. 1. Symbolic Regression functions used as instance 
set [24, 33]

Function Fit Cases

F1
3 2= + +x x x

20 random 
points  

x ∈ [-1,1]

F2
4 3 2= + + +x x x x

F3
5 4 3 2= + + + +x x x x x

F4
6 5 4 3 2= + + + + +x x x x x x

F sin cos5
2 1= −( ) ( )x x

F sin sin6
2= +( ) ( )x x x

F7
21 1= +( ) + +( )log logx x 20 random 

points x ∈ [0,2]

F8 = x
20 random 

points x ∈ [0,4]

F9
2= ( ) + ( )sin sinx y 200 random 

points ∈ [-1,1], x 
∈ [-1,1],  

y ∈ [-1,1]
F10 2= ( ) ( )sin cosx y

4.2. Parameter Setup
We employed a GA as a Search Engine for the GE 

in the experiments to make the evolutionary process 
of the genotypes. The used parameters were set em-
pirically. Table 2 shows the corresponding parameter 
values for the GA.

Grammar 2 shows the grammar used in the exper-
iments. This grammar was taken from [24].

 
 

 
 

 

 

 

 

 

Fig. 7. Example of the transformation genotype-to-
phenotype using the proposal with the DF MP 

Tab. 2. Parameter settings used in the GA

Parameter Value

Population size 300 individuals

Initial genotype length 100 codons (random init)

Stopping condition 25,000 function calls

Selection Method Binary tournament

Crossover Operator 2 points

Mutation Operator Flip bit

Replacement Strategy Generational with elitism 
(best individual)

Tab. 3. Medians and variances for the best fitness in classical MPs (DF and BF) and these MPs using the proposal applied 
to the SRP

Function
Classic DF Classic BF DF Proposal BF Proposal

Median Var Median Var Median Var Median Var

 F1 0.0056 0.0001 0.0045 0.0001 0.0066 1.85E-05 0.0056 9.50E-06

 F2 0.0845 0.0229 0.0101 0.0014 0.0266 0.0002 0.0239 0.0003

 F3 0.0260 0.0014 0.0116 0.0003 0.0125 7.70E-05 0.0159 2.62E-05

 F4 0.1452 0.0714 0.0345 0.0062 0.0211 0.0007 0.0211 0.0003

 F5 0.0032 0.0001 0.0034 5.72E-05 0.0025 1.81E-06 0.0024 1.58E-06

 F6 0.0065 0.0024 0.0140 0.0008 0.0132 7.02E-05 0.0220 0.0001

 F7 0.0013 7.79E-05 0.0029 0.0017 0.0018 2.63E-07 0.0016 2.94E-07

 F8 0.0177 0.0025 0.0122 0.0008 0.0039 2.14E-05 0.0039 1.46E-05

 F9 0.0028 0.0011 0.0081 0.0012 0.0023 1.56E-06 0.0023 8.94E-07

 F10 0.0030 0.0012 0.0023 0.0015 0.0030 1.67E-07 0.0030 8.62E-07
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Grammar 2. Grammar used for the SRP

The Mean Root Squared Error (MRSE) given by 
Equation 2 was used as objective function to evaluate 
the candidate expressions obtained by the GE.

 
MRSE

y F x
N
i ii

N

=
−

=∑ ( ( ))2

1

  (2)
where: 
N is the number of data points. 
yi is the real value. 
F(xi) corresponds to the obtained value.

5. Results and Statistical Analysis
33 individual experiments were performed to 

evaluate the performance of the proposal. Table 3 
shows the obtained results (the median and variance 
of the best fitness values achieved) using the classical 
MPs and the MPs with the proposal to solve each func-
tion in Table 1. 

A Friedman non-parametrical test was used to 
know if there exists a significant difference between 
the proposal and the classical MPs. The obtained 
p-value for the medians of the best fitness was 0.5163. 

The same test was performed for the variances of 
the best fitness. The obtained p-value was 1.87E-05. 
Table 4 shows the average ranking obtained with the 
variances.

Tab. 4. Average rankings of the MPs

Mapping Process Ranking

DF Proposal 1.4

BF Proposal 1.6

Classic DF 3.3

Classic BF 3.7

6. Conclusion
A new approach for the order-taking of codons 

in the MPs Depth-First and Breadth-First applied to 
the SRP was proposed. The obtained results were 
compared with the well-known MPs Depth-First and 
Breadth-First using the Friedman non-parametrical 
test. 

Derived from the obtained results with the Fried-
man test we could conclude that there is no evidence 
to differentiate between the performance (regarding 
with the median) of the standard MPs, and this same 
MPs using the proposal. 

However, there is statistical evidence to discern 
between the performance of the MPs concerning the 
variance. The results indicate that the proposal pro-
vides the algorithms of BF and DF MPs with higher 
consistency. 

As future work, it is proposed to search for a meth-
odology that helps to find the best permutation for 
the order-taking of the codons in GE’s MPs.
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