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Abstract:
The navigation system of a robot requires sensors to per‐
ceive its environment to get a representation. Based on
this perception and the state of the robot, it needs to take
an action to make a desired behavior in the environment.
The actions are defined by a system that processes the
obtained information. This system can be based on deci‐
sion rules defined by an expert or obtained by a training
or optimization process. Fuzzy logic controllers are based
on fuzzy logic on which degrees of truth are used on sy‐
stem variables and has a rule‐base that stores the kno‐
wledge about the operation of the system. In this paper
a fuzzy logic controller is made with the Python fuzzylab
library which is based on the Octave Fuzzy Logic Toolkit,
and with the Robot Operating System (ROS) for autono‐
mous navigation of the TurtleBot3 robot on a simulated
and a real environment using a LIDAR sensor to get the
distance of the objects around the robot.

Keywords: Fuzzy controller, Mobile robot navigation, Ob‐
stacle avoidance

1. Introduction
The goal of autonomousmobile robotics is to build

physical systems that can move without human inter‑
vention in real world environments [13]. One of the
mosts important tasks of an autonomous system of
any kind is to acquire knowledge about its environ‑
ment. This is done by takingmeasurements using sen‑
sors and then extractingmeaningful information from
those measurements [14].

The controllers of the robots are the mechanism
to handle the actuators based on what is received by
the sensors. There aremany kind of controllers for au‑
tonomous robot navigation but in this paper we use
fuzzy logic controllers (FLCs) for this task. There are
many works that use FLCs for robot navigation where
in most of them the controller is implemented only
in a simulated way [6, 11, 12], leaving the uncertainty
about the behavior that controller could have in a real
environment, but also there are works where physi‑
cal robots are used [7]. In this paper a FLC is crea‑
ted working in both a simulate and real environment.
This work pretends to be a starting point to use the
fuzzylab library for creating fuzzy logic controllers in
Python language for ROS, showing that it is possible
create FLCs that operate successfully in real environ‑
ments. In the next sections we will talk about why use
fuzzy logic in controllers andhowto create abasic con‑
troller for the TurtleBot3 robot.

1.1. Many‐valued Logic
Imagine a sensor that can detect the presence of an

object up to a distance of 3 meters (m), in the absence
of an object the sensor sends a voltage of 0 volts and
in the presence of an object within the range it sends a
voltage of 5. This is an example of two‑valued or biva‑
lent logic because only two values are obtained from
the sensor. Now imagine a sensor that cannot only de‑
tect the presence of an object, but also measure the
distance from the sensor, the sensor sends a voltage
depending on the distance to the object. This is an ex‑
ample of many‑valued logic where the number of va‑
lues depends of the sensor resolution.

Usually, when a person talks about the distance to
an object using terms such as near or far, it does not
mention the exact distance that it has to the object be‑
cause it does not really know it. With the visual dis‑
tance perception to an object we can determine if the
object is near or far depending of our own criteria, the‑
refore, it is relative for each person. Going back to the
previous example, for a person, near could be a dis‑
tance around or less than 0.75m and far could be a
distance around or more than 2.25m, but, what hap‑
pens between those values? is a distance of 1.5m near
or far? or is the distance half near and half far?. This
uncertainty can be processed and interpreted by fuzzy
logic that is a form of many‑valued logic.

Considering the distance sensor as the eyes of a
mobile robot, we canmake the robot interpret the dis‑
tance as a linguistic variable with the linguistic values
near and far [18] and not only numerical, bringing it
closer to amore human rationing. In the ”Fuzzy Logic”
section we will see how to handle this linguistic varia‑
bles with fuzzy logic.

1.2. Linear and Nonlinear Systems
Suppose thatwewant to control the linear velocity

of a mobile robot depending of the distance to an ob‑
ject in front of it, simulating a breaking system. The ro‑
bot has a maximum linear velocity of 0.22 m/s which
it can go to if it is above the maximum distance that
can be detected by the distance sensor that is 3m and
as it gets closer to an object its speed will decrease.

The velocity (v) can be determined with a linear
correspondence to the distance (d) described in the
Eq. 1.

v =
0.22

3
d (1)

The sensor can sense distances above 0.12m, this
detects when it is out of range and the distance varia‑
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ble gets the valueof 0or3when this happens as shown
in Fig. 1.

Fig. 1. Velocity control with distance linear relation

The linear behavior of the velocity in respect to the
distance is a simple model of how we can determine
the velocity, but, what if wewant the velocity to have a
different behavior in respect to the distance, maybe a
smoother transition when the distance changes from
3.1m to 2.9m (see Fig. 1) for example, it is necessary
to implement nonlinear models when the system be‑
havior cannot bemodeledmathematically. Fuzzy logic
allows us to create nonlinear systems depending on
how the system designer wants the system to behave.
In the ”Fuzzy Logic” section we will see the behavior
of a nonlinear system.

1.3. Fuzzy Logic
Fuzzy logic and fuzzy setswere introduced by Lofti

Zadeh [17] in 1965, these are usefully tomodel the be‑
havior of nonlinear systems. In fuzzy logic the linguis‑
tic values are not entirely true or false, they have some
degree of membership de�ined bymembership functi‑
ons (MFs).

If we section the distance perceived by a robot
using a distance sensor in the regions near and far, we
can de�ine partitions with a full membership of each
linguistic value. This kind of partitions are called crisp
partitions that are a zero‑order uncertainty partition
[10] where the degree of membership in each region
is 1 as shown in Fig. 2, therefore, they do not allow any
uncertainty between near and far linguistic values.

Fig. 2. Crisp distance partitions

This generates a sharp transition from one term to
the next. Fig. 3 shows the transition from near to far.

Fig. 3. Sharp transition between linguistic values

�ith fuzzy logic we can de�ine regions where the
degree of membership of the regions are not always 1,
this is done using MFs for each linguistic value. There
are many different kinds of membership functions,
in control tasks, the most used are the trapezoidal‑
shaped and triangular‑shaped MFs. The gaussian MF
generates smoother transitions but requires more
computational resources but for a better smoother
transition visualization we will use it for the example
of velocity control. The gaussian function depends on
two parameters, σ for standard deviation and center
(mean) value.

� rule‑based fuzzy system contains rules, fuzzi�ier,
inference, and output processor components. Rule an‑
tecedents are in terms of variables that can be obser‑
vedormeasured [10], therefore, in the velocity control
example the distance is an antecedent variable.

In Fig. 4 two gaussian MFs are de�ined for distance
linguistic value that form a part of the inference pro‑
cess and in Fig. 5 the output of the fuzzy inference
system (FI�) that de�ines the value of the velocity is
shown.

Fig. 4.MFs of d (distance) = {near, far}

In ”Design of the Fuzzy Logic Controller” section
we explain how to create fuzzy systems with Python
language.
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Fig. 5. Smooth transition between linguistic values

2. Turtlebot3 Robot and Robot Operating Sy‐
stem

2.1. Robot Operating System
ROS is a platform for robot software development,

it is helpful to test algorithms for robot tasks like mo‑
bile robot navigation.With Gazebo softwarewe can si‑
mulate a robot and create virtual realistic stages, that
can be based on real stages. The advantage of working
in a simulated environment is that we can avoid da‑
mage to the robot due to improper behaviors when
testing, in our case, controllers for the autonomousna‑
vigation of a mobile robot.
2.2. Turtlebot3 Mobile Robot

TurtleBot is consider the ROS standard platform
robot and we used the TurtleBot3 robot burger ver‑
sion that is a differential drivemobile robot, its compo‑
nents are shown in Fig. 6. This has a maximum linear
velocity of 0.22m/s and a maximum angular velocity
of 2.84rad/s.

Fig. 6. TurtleBot3 Burger components

The key sensor that we used is the LIDAR sensor
with which we can acquire 360 distance readings (di
for i = 0, . . . , 359) to the objects around itwith a range
of 0.12m to 3.5m. Based on thework of Boubertakh [3]
we created 3 groups of readings to reduce the number
of inputs for the robot controller designed in the next
section. The �irst reading starts in front of the robot
and taken counterclockwise. The left group SL consists
of di for i = 43, . . . , 48, di for i = 368, 359, 0, 1, 2 for

the front group SF and di for i = 313, . . . , 318 for the
right group SR as shown in Fig. 7.

Fig. 7. Groups of sensor readings

The distances measured by the the three groups
SL, SF and SR denoted by dL, dF and dR respectively
are expressed as follows:





dL = mean(di=43,...,48)

dF = mean(di=2,1,0,359,358)

dR = mean(di=313,...,318)

(2)

3. Design of the Fuzzy Logic Controller
There are many software tools for working with

fuzzy logic. TheMATLAB Fuzzy Logic Toolbox is one of
themost used but this is a proprietary software so it is
necessary to buy a license in order to use it. The disad‑
vantage of sharing codes developed with proprietary
software is that not everyone can replicate your work,
it is necessary that the other person has a valid license
of the software used and as we want for anyone to re‑
plicate those made in this paper we opted to use free
software tools. The Python programming language is a
interpreted language similar to MATLAB. Scikit‑fuzzy
is a fuzzy logic toolkit written on Python but it was
not used in the experiments because it does not im‑
plement the creation of Sugeno‑type fuzzy inference
systems, for this reason a Python library called fuzzy‑
lab [1] based on the source code of the Octave Fuzzy
Logic Toolkit [9] was developed.
3.1. Creating the FIS of the FLC

In this section we will explain step by step the cre‑
ation of a fuzzy controller using the fuzzylab library
for the TurtleBot3 robot. The Goal of the controller is
for the robot to navigate in a stage without hitting the
walls. First a sugfis object is de�ined with the fuzzy‑
lab library:

>>> fis = sugfis()

The controller has the task to determine the angu‑
lar velocity dependingofdL,dF anddRdistances obtai‑
ned by Eq. 2 that are the antecedent variables and the
inputs of the FIS. To say that an object is near or far to
the robot we need to de�ine the range that the object�s
distance can be expected to vary. TheminimumLIDAR
sensor range is 0.12m and has a considered distance
reading error of 0.01m. The input range setting for the
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LIDAR sensor is from 0.13 to the maximum range that
is 3.5. With this information we can add an input to
fis:

>>> minr = 0.13
>>> maxr = 3.5
>>> fis.addInput([minr, maxr],Name='dF')

�ow we de�ine the membership functions for the
fuzzy variabledF. Basedon theworkofBoubertakh [3]
we use trapezoidal membership functions and de�ine
dm, the minimum permitted distance to an obstacle
and ds, the safety distance beyond with which the ro‑
bot canmove at high speed. Those valueswere de�ined
by experimentation, choosing those that generated an
appropriatemovement according to our own conside‑
ration.

>>> dm = 0.3
>>> ds = 0.7
>>> fis.addMF('dF','trapmf',
... [minr, minr, dm, ds],Name='N')
>>> fis.addMF('dF','trapmf',
... [dm, ds, maxr, maxr],Name='F')

The MFwith the name N is the MF for near linguis‑
tic value and the MF with the name F is the MF for far
linguistic value. Fig. 8 shows the plot of the members‑
hip functions of dF using the plotmf function:

>>> plotmf(fis,'input',0)

Fig. 8.Membership functions of dF variable

In the same way, we add dL, dR variables and the
membership functions with the same parameters:

>>> fis.addInput([minr, maxr],Name='dL')
>>> fis.addMF('dL','trapmf',
... [minr, minr, dm, ds],Name='N')
>>> fis.addMF('dL','trapmf',
... [dm, ds, maxr, maxr],Name='F')
>>> fis.addInput([minr, maxr],Name='dR')
>>> fis.addMF('dR','trapmf',
... [minr, minr, dm, ds],Name='N')
>>> fis.addMF('dR','trapmf',
... [dm, ds, maxr, maxr],Name='F')

It is necessary to set some parameters for the ro‑
bot and others for the controller for the navigation
task. For the robot, we �ixed the linear velocity (0 <
v ≤ 0.22) with the value of 0.15 (m/s) and we de‑
�ine the angular velocity range (−2.84 ≤ ω ≤ 2.84)
at which the robot can rotate with the value of ±1.5
(rad/s). Those values were chosen based on the Turt‑
leBot3 Machine Learning tutorial. We add the angu‑
lar velocity consequent variable to fiswith valuesNB
(Negative Big), ZR (Zero) and PB (Positive Big):
>>> lin_vel = 0.15
>>> min_ang_vel = -1.5
>>> max_ang_vel = 1.5
>>>
>>> fis.addOutput([min_ang_vel,
... max_ang_vel],Name='ang_vel')
>>> fis.addMF('ang_vel','constant',
... min_ang_vel,Name='NB')
>>> fis.addMF('ang_vel','constant',
... 0,Name='ZR')
>>> fis.addMF('ang_vel','constant',
... max_ang_vel,Name='PB')

Suppose a simple FIS where the task is to avoid
only objects in front, the robot needs to rotate to left
(PB) or right (NB). If we de�ine two simple rules saying
that ”If dF is N then ang_vel is PB” and ”If dF is F then
ang_vel is ZR”, the FIS will have the behavior to incre‑
ase the angular velocity as the distance decreases as
shown in Fig. 9, depending on the dm and ds values.

Fig. 9. The angular velocity increase as dF decreases

In this case there is a linear relation between dF
and the angular velocity as in the case of Fig. 5, but the
complexity of the FIS behavior increases when there
aremore thanone antecedent variable because the an‑
gular velocity is determined depending on the value of
dL, dF, dR and the rules de�ined in the FIS as shown in
Fig 10.

The de�inition of the FIS rules require the use of
expert knowledge, with these, we say how the angu‑
lar velocity wewant to be determined considering the
different values that can be the antecedent variables.

There are 8 perceptual situations that the robot
can have with three input groups and two linguistic
values as shown in Fig. 11 and is associate a reaction
to each of these situations de�ined by 8 simple rules:
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Fig. 5. Smooth transition between linguistic values

2. Turtlebot3 Robot and Robot Operating Sy‐
stem

2.1. Robot Operating System
ROS is a platform for robot software development,

it is helpful to test algorithms for robot tasks like mo‑
bile robot navigation.With Gazebo softwarewe can si‑
mulate a robot and create virtual realistic stages, that
can be based on real stages. The advantage of working
in a simulated environment is that we can avoid da‑
mage to the robot due to improper behaviors when
testing, in our case, controllers for the autonomousna‑
vigation of a mobile robot.
2.2. Turtlebot3 Mobile Robot

TurtleBot is consider the ROS standard platform
robot and we used the TurtleBot3 robot burger ver‑
sion that is a differential drivemobile robot, its compo‑
nents are shown in Fig. 6. This has a maximum linear
velocity of 0.22m/s and a maximum angular velocity
of 2.84rad/s.

Fig. 6. TurtleBot3 Burger components

The key sensor that we used is the LIDAR sensor
with which we can acquire 360 distance readings (di
for i = 0, . . . , 359) to the objects around itwith a range
of 0.12m to 3.5m. Based on thework of Boubertakh [3]
we created 3 groups of readings to reduce the number
of inputs for the robot controller designed in the next
section. The �irst reading starts in front of the robot
and taken counterclockwise. The left group SL consists
of di for i = 43, . . . , 48, di for i = 368, 359, 0, 1, 2 for

the front group SF and di for i = 313, . . . , 318 for the
right group SR as shown in Fig. 7.

Fig. 7. Groups of sensor readings

The distances measured by the the three groups
SL, SF and SR denoted by dL, dF and dR respectively
are expressed as follows:




dL = mean(di=43,...,48)

dF = mean(di=2,1,0,359,358)

dR = mean(di=313,...,318)

(2)

3. Design of the Fuzzy Logic Controller
There are many software tools for working with

fuzzy logic. TheMATLAB Fuzzy Logic Toolbox is one of
themost used but this is a proprietary software so it is
necessary to buy a license in order to use it. The disad‑
vantage of sharing codes developed with proprietary
software is that not everyone can replicate your work,
it is necessary that the other person has a valid license
of the software used and as we want for anyone to re‑
plicate those made in this paper we opted to use free
software tools. The Python programming language is a
interpreted language similar to MATLAB. Scikit‑fuzzy
is a fuzzy logic toolkit written on Python but it was
not used in the experiments because it does not im‑
plement the creation of Sugeno‑type fuzzy inference
systems, for this reason a Python library called fuzzy‑
lab [1] based on the source code of the Octave Fuzzy
Logic Toolkit [9] was developed.
3.1. Creating the FIS of the FLC

In this section we will explain step by step the cre‑
ation of a fuzzy controller using the fuzzylab library
for the TurtleBot3 robot. The Goal of the controller is
for the robot to navigate in a stage without hitting the
walls. First a sugfis object is de�ined with the fuzzy‑
lab library:

>>> fis = sugfis()

The controller has the task to determine the angu‑
lar velocity dependingofdL,dF anddRdistances obtai‑
ned by Eq. 2 that are the antecedent variables and the
inputs of the FIS. To say that an object is near or far to
the robot we need to de�ine the range that the object�s
distance can be expected to vary. TheminimumLIDAR
sensor range is 0.12m and has a considered distance
reading error of 0.01m. The input range setting for the
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LIDAR sensor is from 0.13 to the maximum range that
is 3.5. With this information we can add an input to
fis:

>>> minr = 0.13
>>> maxr = 3.5
>>> fis.addInput([minr, maxr],Name='dF')

�ow we de�ine the membership functions for the
fuzzy variabledF. Basedon theworkofBoubertakh [3]
we use trapezoidal membership functions and de�ine
dm, the minimum permitted distance to an obstacle
and ds, the safety distance beyond with which the ro‑
bot canmove at high speed. Those valueswere de�ined
by experimentation, choosing those that generated an
appropriatemovement according to our own conside‑
ration.

>>> dm = 0.3
>>> ds = 0.7
>>> fis.addMF('dF','trapmf',
... [minr, minr, dm, ds],Name='N')
>>> fis.addMF('dF','trapmf',
... [dm, ds, maxr, maxr],Name='F')

The MFwith the name N is the MF for near linguis‑
tic value and the MF with the name F is the MF for far
linguistic value. Fig. 8 shows the plot of the members‑
hip functions of dF using the plotmf function:

>>> plotmf(fis,'input',0)

Fig. 8.Membership functions of dF variable

In the same way, we add dL, dR variables and the
membership functions with the same parameters:

>>> fis.addInput([minr, maxr],Name='dL')
>>> fis.addMF('dL','trapmf',
... [minr, minr, dm, ds],Name='N')
>>> fis.addMF('dL','trapmf',
... [dm, ds, maxr, maxr],Name='F')
>>> fis.addInput([minr, maxr],Name='dR')
>>> fis.addMF('dR','trapmf',
... [minr, minr, dm, ds],Name='N')
>>> fis.addMF('dR','trapmf',
... [dm, ds, maxr, maxr],Name='F')

It is necessary to set some parameters for the ro‑
bot and others for the controller for the navigation
task. For the robot, we �ixed the linear velocity (0 <
v ≤ 0.22) with the value of 0.15 (m/s) and we de‑
�ine the angular velocity range (−2.84 ≤ ω ≤ 2.84)
at which the robot can rotate with the value of ±1.5
(rad/s). Those values were chosen based on the Turt‑
leBot3 Machine Learning tutorial. We add the angu‑
lar velocity consequent variable to fiswith valuesNB
(Negative Big), ZR (Zero) and PB (Positive Big):
>>> lin_vel = 0.15
>>> min_ang_vel = -1.5
>>> max_ang_vel = 1.5
>>>
>>> fis.addOutput([min_ang_vel,
... max_ang_vel],Name='ang_vel')
>>> fis.addMF('ang_vel','constant',
... min_ang_vel,Name='NB')
>>> fis.addMF('ang_vel','constant',
... 0,Name='ZR')
>>> fis.addMF('ang_vel','constant',
... max_ang_vel,Name='PB')

Suppose a simple FIS where the task is to avoid
only objects in front, the robot needs to rotate to left
(PB) or right (NB). If we de�ine two simple rules saying
that ”If dF is N then ang_vel is PB” and ”If dF is F then
ang_vel is ZR”, the FIS will have the behavior to incre‑
ase the angular velocity as the distance decreases as
shown in Fig. 9, depending on the dm and ds values.

Fig. 9. The angular velocity increase as dF decreases

In this case there is a linear relation between dF
and the angular velocity as in the case of Fig. 5, but the
complexity of the FIS behavior increases when there
aremore thanone antecedent variable because the an‑
gular velocity is determined depending on the value of
dL, dF, dR and the rules de�ined in the FIS as shown in
Fig 10.

The de�inition of the FIS rules require the use of
expert knowledge, with these, we say how the angu‑
lar velocity wewant to be determined considering the
different values that can be the antecedent variables.

There are 8 perceptual situations that the robot
can have with three input groups and two linguistic
values as shown in Fig. 11 and is associate a reaction
to each of these situations de�ined by 8 simple rules:
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Fig. 10. Controller fuzzy inference system

R1 : IF (dL, dF, dR) is (N,N,N) THEN ω isNB
R2 : IF (dL, dF, dR) is (N,N, F ) THEN ω isNB
R3 : IF (dL, dF, dR) is (N,F,N) THEN ω is ZR
R4 : IF (dL, dF, dR) is (N,F, F ) THEN ω isNB
R5 : IF (dL, dF, dR) is (F,N,N) THEN ω is PB
R6 : IF (dL, dF, dR) is (F,N, F ) THEN ω isNB
R7 : IF (dL, dF, dR) is (F, F,N) THEN ω is PB
R8 : IF (dL, dF, dR) is (F, F, F ) THEN ω is ZR

Fig. 11. Different perceptual situations with three inputs
and two linguistic values

>>> ruleList = [
... [0, 0, 0, 0, 1, 1], # Rule 1
... [0, 0, 1, 0, 1, 1], # Rule 2
... [0, 1, 0, 1, 1, 1], # Rule 3
... [0, 1, 1, 0, 1, 1], # Rule 4
... [1, 0, 0, 2, 1, 1], # Rule 5
... [1, 0, 1, 0, 1, 1], # Rule 6
... [1, 1, 0, 2, 1, 1], # Rule 7
... [1, 1, 1, 1, 1, 1]] # Rule 8

The �irst columns specify input membership
function indices, the following specify output mem‑
bership function indices, the penultimate the rule
weight and the last the antecedent fuzzy operator,
where 1 speci�ies the �and� operator. The rules are
added to fis with the addRule method:

fis.addRule(ruleList)

With all the previous steps a FIS is createdwith the
fuzzylab library, we only need to determine dL, dF and
dR from the sensor readings and evaluate this values
in the �is with the evalfis function. This will be ex‑
plained in the next section.
3.2. The Fuzzy Logic Controller

A controller has the task to determine the actions
to take based on the perception of some sensor to re‑
solve some problems. In our case, the controller has
the task to calculate the angular velocity at which the
robot needs to go based on the readings of the LIDAR
distance sensor in order to not hit an object. This task
is carried outmostly by the FIS created in the previous
section, but part of the controller tasks is to process
the sensor readings and to re�lect their actions in the
system, for this, ROS offers an easy API to realize those
actions. Toget the readingsof the sensor andde�inedL,
dF and dR values we use:
>>> dists = rospy.wait_for_message(
... 'scan', LaserScan)
>>>
>>> dL = mean(dists[43:48])
>>> dF = mean(dists[:3] + dists[-2:])
>>> dR = mean(dists[313:318])

Once the distances are determined, the new angu‑
lar velocity is calculated from the FIS and re�lects the
result by publishing the value using the ROS functions:
>>> new_ang_vel = evalfis(fis, [dL,dF,dR])
>>>
>>> twist = Twist()
>>> twist.linear.x = lin_vel
>>> twist.angular.z = new_ang_vel
>>>
>>> cmd_pub = rospy.Publisher(
... 'cmd_vel', Twist, queue_size=1)
>>> cmd_pub.publish(twist)

It is necessary that the robot is initialized to re‑
ceive the updates. More detailed documentation can
be found in the paper tutorial 1 inside the fuzzylab re‑
pository, this contains information about the neces‑
sary con�igurations needed to test the controller in the
robot, simulated and physical.

4. Experiments and Results
A real stage based on the stage 1 of the TurtleBot3

ML tutorial 2 was created, this is a 4x4 map with no
obstacles as shown in Fig. 12(a). In �irst instance the
stagewasmadewith blackwalls as shown in Fig. 12(c)
but when bad readings were observed as seen in Fig.
12(d) they were painted white having better readings
as shown in Fig. 12(b).

The controller worked correctly in simulated and
real environments, causing the robot tomove on stage
without hitting the walls, both in the simulated envi‑
ronment shown in Fig. 13(a) and in the real environ‑
ment shown in Fig 13(b). Different behaviors can be
observed manipulating dm and ds values. A lower dm
value makes the robot has a closer approximation to
the objects.
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(a) Stage with white walls (b) Data acquisiton from 12(a)

(c) Stage with black walls (d) Data acquisiton from 12(c)

Fig. 12. Physical stage. Data acquisition is better in Fig. 12(a) than Fig. 12(c)

(a) Behavior of the robot in the simulated stage. (b) Behavior of the robot in the real stage.

Fig. 13. Behavior of the robot in the simulated and real stage

5. Conclusion

The FLC created with the fuzzylab library works
correctly in the obstacle avoidance task with the Turt‑
leBot3 robot. In future work more complex control‑
lers can be designed to work in more complex stages,
implementing optimization algorithms and evaluating
the ef�iciency in some tasks. For the simplicity of the
stage created, the manipulation of the linear velocity
wasnot consideredbut inmore complex stages the de‑
termination of the linear velocity could be considered.

Reinforcement learning (RL), an area of machine
learning, is a computational approach to understan‑
ding and automating goal‑directed learning and de‑
cision making [15]. Many of the RL algorithms such
as Q‑Learning [16] have been used to optimize fuzzy
logic controllers, starting with the adaptation of the
Q‑learning algorithm for fuzzy inference systems by
Glorennec [8] and Berenji [2] and more recent works
[3–5] for control robot navigation. For these reasons,

its use in future works with use of the fuzzylab library
and the ROS platform has been contemplated.
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Fig. 10. Controller fuzzy inference system

R1 : IF (dL, dF, dR) is (N,N,N) THEN ω isNB
R2 : IF (dL, dF, dR) is (N,N, F ) THEN ω isNB
R3 : IF (dL, dF, dR) is (N,F,N) THEN ω is ZR
R4 : IF (dL, dF, dR) is (N,F, F ) THEN ω isNB
R5 : IF (dL, dF, dR) is (F,N,N) THEN ω is PB
R6 : IF (dL, dF, dR) is (F,N, F ) THEN ω isNB
R7 : IF (dL, dF, dR) is (F, F,N) THEN ω is PB
R8 : IF (dL, dF, dR) is (F, F, F ) THEN ω is ZR

Fig. 11. Different perceptual situations with three inputs
and two linguistic values

>>> ruleList = [
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... [0, 0, 1, 0, 1, 1], # Rule 2
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... [0, 1, 1, 0, 1, 1], # Rule 4
... [1, 0, 0, 2, 1, 1], # Rule 5
... [1, 0, 1, 0, 1, 1], # Rule 6
... [1, 1, 0, 2, 1, 1], # Rule 7
... [1, 1, 1, 1, 1, 1]] # Rule 8

The �irst columns specify input membership
function indices, the following specify output mem‑
bership function indices, the penultimate the rule
weight and the last the antecedent fuzzy operator,
where 1 speci�ies the �and� operator. The rules are
added to fis with the addRule method:

fis.addRule(ruleList)

With all the previous steps a FIS is createdwith the
fuzzylab library, we only need to determine dL, dF and
dR from the sensor readings and evaluate this values
in the �is with the evalfis function. This will be ex‑
plained in the next section.
3.2. The Fuzzy Logic Controller

A controller has the task to determine the actions
to take based on the perception of some sensor to re‑
solve some problems. In our case, the controller has
the task to calculate the angular velocity at which the
robot needs to go based on the readings of the LIDAR
distance sensor in order to not hit an object. This task
is carried outmostly by the FIS created in the previous
section, but part of the controller tasks is to process
the sensor readings and to re�lect their actions in the
system, for this, ROS offers an easy API to realize those
actions. Toget the readingsof the sensor andde�inedL,
dF and dR values we use:
>>> dists = rospy.wait_for_message(
... 'scan', LaserScan)
>>>
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>>> dF = mean(dists[:3] + dists[-2:])
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Once the distances are determined, the new angu‑
lar velocity is calculated from the FIS and re�lects the
result by publishing the value using the ROS functions:
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>>>
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>>> twist.angular.z = new_ang_vel
>>>
>>> cmd_pub = rospy.Publisher(
... 'cmd_vel', Twist, queue_size=1)
>>> cmd_pub.publish(twist)

It is necessary that the robot is initialized to re‑
ceive the updates. More detailed documentation can
be found in the paper tutorial 1 inside the fuzzylab re‑
pository, this contains information about the neces‑
sary con�igurations needed to test the controller in the
robot, simulated and physical.

4. Experiments and Results
A real stage based on the stage 1 of the TurtleBot3

ML tutorial 2 was created, this is a 4x4 map with no
obstacles as shown in Fig. 12(a). In �irst instance the
stagewasmadewith blackwalls as shown in Fig. 12(c)
but when bad readings were observed as seen in Fig.
12(d) they were painted white having better readings
as shown in Fig. 12(b).

The controller worked correctly in simulated and
real environments, causing the robot tomove on stage
without hitting the walls, both in the simulated envi‑
ronment shown in Fig. 13(a) and in the real environ‑
ment shown in Fig 13(b). Different behaviors can be
observed manipulating dm and ds values. A lower dm
value makes the robot has a closer approximation to
the objects.
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(a) Stage with white walls (b) Data acquisiton from 12(a)

(c) Stage with black walls (d) Data acquisiton from 12(c)
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(a) Behavior of the robot in the simulated stage. (b) Behavior of the robot in the real stage.
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the ef�iciency in some tasks. For the simplicity of the
stage created, the manipulation of the linear velocity
wasnot consideredbut inmore complex stages the de‑
termination of the linear velocity could be considered.

Reinforcement learning (RL), an area of machine
learning, is a computational approach to understan‑
ding and automating goal‑directed learning and de‑
cision making [15]. Many of the RL algorithms such
as Q‑Learning [16] have been used to optimize fuzzy
logic controllers, starting with the adaptation of the
Q‑learning algorithm for fuzzy inference systems by
Glorennec [8] and Berenji [2] and more recent works
[3–5] for control robot navigation. For these reasons,

its use in future works with use of the fuzzylab library
and the ROS platform has been contemplated.
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