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Abstract: This paper presents application of a neural 
network in the task of planning a mobile robot 
trajectory. First part contains a review of literature 
focused on the mobile robots’ orientation and overview 
of artificial neural networks’ application in area of 
robotics. In these sections devices and approaches for 
collecting data of mobile robots environment have been 
specified. In addition, the principle of operation and use 
of artificial neural networks in trajectory planning tasks 
was also presented. The second part focuses on the 
mobile robot that was designed in a 3D environment 
and printed with PLA material. The main onboard 
logical unit is Arduino Mega. Control system consist of 
8-bits microcontrollers and 13 Mpix camera. Discussion 
in part three describes the system positioning capability 
using data from the accelerometer and magnetometer 
with overview of data filtration and the study of the 
artificial neural network implementation to recognize 
given trajectories. The last chapter contains a summary 
with conclusions.

Keywords: artificial neural network, mobile robot, ma-
chine vision

1.	 Introduction 
The idea of artificial neural networks (ANN) was 

taken from natural neurons, which are the basic el-
ements of the nervous system of living organisms, 
including humans. Neural networks has become the 
subject of research for various specialties and fields of 
science, discovering newer and more creative forms 
of their use. Researchers around the world are devel-
oping ANN capabilities, striving to achieve efficien-
cy comparable to living organisms. The number of 
neurons used is the main comparative scale in these 
studies. However, unlike real counterparts, they do 
not transfer signals only, but allow their processing, 
e.g. by making calculations. The ANN’s ability to car-
ry out its tasks is determined by the learning process. 
The combination of ANN issues and mobile robotics is 
one of the main currents in the development of mod-
ern mechatronics. Planning the trajectory of a mobile 
robot using SSN requires an approach to two issues. 

The first is the network itself, which is to recognize 
the given trajectory. The second is a robot that maps 
it, which must determine its location in space in a spe-
cific way, while avoiding obstacles.

1.1.	 Orientation of Mobile Robots in Space
Autonomous navigation of mobile robots is one of 

the main problems faced by their designers, mainly 
due to the problem of its definition in an unspecified 
area. To accomplish this task, it is necessary to equip 
the mobile robot with the sensors to collect data about 
the environment and its location. Their selection is re-
lated to the tasks the robot will perform, and thus the 
positioning accuracy and type of obstacles, which are 
mainly characterized by a specific geometry or color 
are mandatory to be known. Low cost solutions are 
based on Ultrasonic Sensors (US). The main disadvan-
tages of proposed system was the angle restrictions 
at which the sound wave falls on the detected surface 
of the obstacle and the material of which it is made 
[1]. Nevertheless, they are one of the basic types of 
sensors used in mobile robots, especially for the im-
plementation of obstacle avoidance tasks [2] and in 
indoor tasks [3]. It is also possible to track ultrasonic 
beacons in real time [4] by becoming a transmitter 
looking for receivers or being a receiver itself. Second 
popular device is infrared sensor (IR). Characteristic 
features of obstacles force adjustment of their recog-
nition strategy. The rational approach is to use both 
ultrasonic and infrared sensors, due to the possibility 
of mutual complementarity in the detection capabil-
ities [5]. In the case of small mobile robots, the ba-
sic environment detection system includes elements 
such as ultrasonic sensors, infrared sensors, camer-
as and microphones [6,7]. Global Positioning System 
(GPS) allows locating receivers based on determining 
their distance from satellites (at least three) in which 
they are located, giving data in a quasi-spherical co-
ordinate system (due to the fact that the Earth is not 
an ideal sphere), which are geodetic coordinates such 
as: geodetic latitude and longitude and ellipsoidal 
height or in geographical coordinates: longitude and 
latitude [8]. The GPS system is designed to locate ob-
jects on a larger scale of displacements, expressed in 
kilometers (square kilometers). That is why it works 
well with vehicles covering considerable distances 
in a relatively short time, moving at a much high-
er speed than mobile robots, being able at the same 
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continuous assessment of the object’s position using 
data from susceptible sensors (such as gyroscope and 
accelerometer) in relation to the initial position. Not 
least is also the approach to control the motor drives 
in accordance with terrain environment [24].

1.2.	 Artificial Neural Networks
Artificial neural networks have been a field strong-

ly developed over the years among other things in the 
form of so-called open source projects. Currently, Ten-
sorFlow libraries, designed by Google, in November 
2015 are one of the most frequently used open source 
libraries. The vast majority of C ++ were used to write 
these libraries. Moreover they can use GPU (Graphics 
Processing Unit) for calculations, what significantly 
speeds them up. Another advantage of this software 
is the ability to work on less efficient Raspberry Pi 
devices or smartphones. ANNs are very often used 
for all sorts of image classification. Neural networks 
presented at the International Conference on New 
Trends in Information Technology[25] is a good ex-
ample. They can recognize both Arabic script and fac-
es. The architecture of the text recognition network is 
based on four hidden layers, and its diagram is shown 
in Fig. 1.

Fig. 1. Network architecture for text recognition [25]

This network was taught based on numbers from 
zero to ten in 60,000 samples. The image fed at the 
entrance had a size of 28x28 pixels, which gives a to-
tal of 784 pixels for each sample. The value of the 
number of pixels determines the number of network 
input neurons shown in Fig. 1. The learning algorithm 
was based on the back propagation method of the 
network response error. The network designed in this 
way has the ability to recognize the images given on 
its input with an efficiency of 98.46%, which is a high 
result when it comes to OCR. The second network 
described in this article is the Convolutional Neural 
Network (CNN). The architecture of this network is 
shown in Fig. 2.

Fig. 2. Convolutional neural network architecture for 
face recognition [25]

time to predict its location by projecting the vehicle’s 
direction of movement onto a road map. Robot dis-
placements are much smaller and therefore require 
greater accuracy [3]. 

To create maps of the environment, LiDAR sensors 
are used. They allow to detect objects by measuring 
laser pulses which are proportional to their distance 
from the source. For example, determining the posi-
tion of a robot by measuring distance and angle rela-
tive to another robot, using measurements obtained 
from raw data provided by two laser rangefinders in 
a 2D plane [9], positioning and orientation of the mo-
bile robot in 3D space, using a laser head measuring 
the position relative to photoelectric reference points, 
deployed in the room [10] or the use of an industrial 
laser navigation system to collect information about 
the distance between the rotating measuring head 
and the markers located on the perimeter of the laser 
beam plane in the area of robot operation [11]. The 
practical application of LiDAR technology can be au-
tonomous navigation of an agricultural robot in con-
ditions without access to GPS-based solutions [12] or 
mapping of the environment, through its hybrid rep-
resentation and robot location [13].

One of the popular devices used to navigate mo-
bile robots has become the Microsoft Kinect system, 
which is an accessory for the Xbox game console [14]. 
It’s a vision-based system. Kinect is a common tool for 
navigating a mobile robot, enabling it to avoid obsta-
cles while supplying data, e.g. to an artificial neural 
network, which deals with environmental recognition 
and makes decisions about choosing a specific path 
[14, 15]. An additional advantage of vision system 
was the creation of algorithms that allow simultane-
ous localization and building of a map, such as SLAM 
(Simultaneous Localization and Mapping) [16] and 
all related solutions such as S-PTAM (SLAM – Paral-
lel Tracking and Mapping) [17]. Solutions for locating 
robots in a confined space include those based on all 
kinds of mutual radio communications between mo-
bile robots or reference points. Simple location meth-
ods using a local wireless network allow the deter-
mination of Euclidean distance between the sample 
signal vector and references stored in the database 
[18]. Another use of a wireless network is the use of 
defined access points to locate an object by measur-
ing signal strength using a compressive sampling the-
ory [19], it enables effective reconstruction of signals 
from a small amount of data [20]. The considerations 
to date on the ways of navigating mobile robots are 
based on different ways of obtaining location data. 
As previously noted, popular space location and ori-
entation systems such as GPS exhibit lower indoor 
efficiency. In turn, solutions based on defined refer-
ence points limit the robot to operate only in space 
covered by them. Especially when operating indoor, 
they give way to other information-based solutions 
from magnetometers, accelerometers and gyroscopes 
[21].The data obtained by these sensors can mutually 
compensate for their errors [22], and in some cases 
inertial navigation may be valuable [23]. It is based on 
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The network shown in Fig. 2 has eight weave layers 
in four connecting layers, two fully connected layers 
and an output layer. As the layer activation functions, 
except for the output layer, where the sigmoidal func-
tion was used, the ReLu functions were used. A learning 
database for the CNN network were photos taken for 
10 different students, 50 photos per student. Pictures 
were taken in different orientations and then subject-
ed to resolution reduction to 90x160 pixels. The photos 
prepared in this way allowed to start the CNN learning 
process. The results obtained are shown in Fig.3. The 
graph shows that for 11 learning epochs the network 
was able to recognize a given face at about 80%, after 
31 epochs it was already about 90%, and for 41 ep-
ochs CNN possibilities already reached about 98% and 
changed further in the learning process slightly.

Fig. 3. Graph of CNN recognition capabilities [25]

The MLP deep learning network was used to rec-
ognize digits from the MINST database, which contains 
60,000 handwritten digits [26]. This network was 
based on the input layer, with the number of neurons 
in accordance with the number of pixels present in the 
image, five hidden layers with the number of neurons, 
respectively: 2500, 2000, 1500, 1000 and 500, and the 
output layer consisting of 10 neurons. Backward prop-
agation was used to teach the network and the hyper-
bolic tangent function was used as an activation func-
tion. The network in this configuration achieved very 
good results, where the error was only 0.35%.

2.	 Control System
The built-in system allows to choose one of three ro-

bot driving modes, by the use of the RC equipment. Re-
mote control, object tracking and ANN pattern recogni-
tion. The robot control system is divided into two parts. 
The first part consists of all the elements in the composi-
tion of the mobile robot and includes sensors, a 13 Mpix 
camera and microcontroller applications for collecting 
and viewing information (Fig. 4). The second part is the 
launcher application on a Windows PC (Fig. 5). The ap-
plication has individual algorithms of an artificial neu-
ral network with a multilayer perceptron architecture. 
Artificial neural network analyses the image sent from 
a mobile phone camera and on its basis send the tasks to 
the microcontroller via UART interface.
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Fig. 4. Placement of robot components
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• Control signals in object 
tracking and trajectory 
recognition using ANN. 

• Camera data 

 

Fig. 5. Block diagram of the overall work of the PC – 
robot – RC apparatus

3.	 Mobile Robot Movement

3.1.	 Data Filtration
In accordance to the information from chapter 2, 

the robot has been equipped with an accelerometer 
(MPU6050) and a magnetometer (HMC5883L). The 
data collected using these two sensors allowed to 
determine the displacement and direction of robot 
movement. The device measuring linear or angular 
acceleration, by measuring it along each axis of the 
three-dimensional coordinate system: X, Y, Z [27]. In 
this case accelerometer has measured linear acceler-
ation and, in the process of double integration, it is 
converted into a displacement [28]. Measurements 
are recorded only for one axis because the robot’s 
movement is considered in its coordinate system 
(fig. 6). 

Calibration process of the magnetometer bases 
on data from the MPU6050 accelerometer [29]. This 
is extremely important because devices of this type 
are burdened with an error when tilting the system 
relative to the XY plane. Having regard to presence 
of the accelerometer it is possible to get an informa-
tion about angular inclination in the range of 45º. 
The compensation procedure determines the rel-
ative position of the devices to one each other and 
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therefore adjusts the calibration offset. Lack of offset 
may cause elliptical readings instead of circular thus 
in some ranges the angle will increase much faster, 
in others slower. Accelerometer and magnetometer 
are prone to high noise and external factors such as 
vibrations, slight tilting. It is therefore necessary to 
filter the data provided.

Linear acceleration cannot be filtered using Kal-
man or Complementary Filters that on the other hand 
can be used in case of angular acceleration. Fig. 7a 
shows three characteristics. The blue one represents 

raw data recorded by the accelerometer during 1st 
driving straight with 0,2s braking. There is a sudden 
increase in acceleration in the first phase of move-
ment, as a result of powering the engines, overcom-
ing the friction resistance of the wheels against the 
ground and putting the wheels in motion (Fig. 7a – 
section 1). At a later stage, its value oscillates in the 
range of 1-2 m/s2 to start the braking procedure after 
a second (Fig. 7a – section 2). Then the acceleration is 
negative and the robot’s movement ends in 1.2-sec-
ond (Fig. 7a – section 3). In the range of 1.2-1.5 sec-
onds, an acceleration value of approximately 1.4 m/s2 
is visible (Fig. 7a – section 4). This is the zero refer-
ence necessary to take into account in the calibration 
and filtration process due to the geometry of the sur-
face on which the robot is operating. At the beginning, 
10 measurement samples are averaged, the table in 
which these data are stored is each time supplement-
ed with a new acceleration indication and reduced 
with the oldest. The data filtered at this stage are 
shown in Fig. 7a in green. The measurement of sur-
face geometry is made by collecting 50 samples of 
accelerometer indications at a standstill within 8 ms 
intervals, and then their arithmetic mean is recalcu-
lated. The introduction of calibration of the acceler-
ation value at standstill determines the efficiency of 
the robot displacement calculation. Failure to use cali-
bration would result in excessive acceleration values, 
and thus erroneous readings when counting the nu-
merical integral.

Known acceleration value at standstill position is 
set to compensate indications while driving. An addi-
tional, experimentally determined zero cut-off value 
of 0.18 allows to reduce noise by creating a deadband. 
Thanks to this procedure, acceleration of 0 is clearly 
noted, and the system is less susceptible to interfer-
ence (Fig. 7a, orange line). Fig. 7b shows a ride of ap-
proximately 2s with a zero cut-off value of 0.24. The 
blue line characteristic presents the raw data read 
from the accelerometer and the orange one after fil-
tration. Increasing the value of the zero cutoff factor 
caused a significant decrease in acceleration com-
pared to the raw data. Reduced values would cause 
incorrect displacement estimation.

The magnetic meridian direction (magnetic 
heading) is determined on the basis of the Earth’s 
magnetic field value in two vectors. The magneto-
meter reads vectors in the X and Y axes. The direc-
tion in radians is calculated by calculating the arc 
tangent of the two variables mentioned above. Mag-
netometers are very susceptible to the presence 
of ferromagnetics, which are hidden in the form of 
pipes arranged in the ground of the room, or other 
elements present in the laboratory. The global ob-
stacle to the universal use of magnetometers is the 
need to take into account the diverse position of the 
Earth’s magnetic pole, which clearly does not follow 
changes in the geographical pole. Magnetometer 
data is used to orient the robot in a given direction. 
It is therefore beneficial to keep the indications as 
real as possible with adequate stability. Averaging 

 

f(x) 

x 
Fig. 6. The robot’s coordinate system (xR, yR)

 

 

 

 

a) 

b) 

Fig. 7. Implementation of acceleration data filtration: 
a) course with a zero cut-off factor equal to: 0.18 
(1.2 s), b) passage with a factor equal to: 0.24 (2 s)



17

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  14,      N°  1       2020

Articles 17

averaged samples were used. The second noticeable 
aspect is that the robot reaches a comparable final 
angle value with the initial one. Driving over a dis-
tance of 90 cm over an uneven surface shows a lot 
of noise (Fig. 8c). Signal filtration at such indications 
is very difficult. In addition, the problem of uneven 
operation of all four engines is illustrated. The initial 
direction is around 148 °. After traveling 90 cm, the 
robot is positioned at an angle of about 133°. This 
gives about 15 cm of discrepancy over a length of 
less than a meter.

    

    

 

a) b) 

c) d) 

e) 

Fig. 9. Implementation of the trajectory of a square 
with a side length of 50 cm (blue line – the expected 
shape, red line – the actual shape): a) starting point, 
b) first 50 cm pass with a 90° turn, c) second 50 cm pass 
with a 90° turn, d) third pass 50 cm with a 90° turn, 
e) fourth pass 50 cm with a 90° turn – return to the 
starting point

Fig. 9 shows the process of implementing 
a 500 mm square trajectory. The starting point was 
marked in Fig. 9a. A card with a number was set up 
in front of the robot for further recognition by the 
neural network. After the recognition process, the 
ride begins in front of the specified distance. Then 
a 90 degree rotation is made (Fig. 9b). These two op-
erations are repeated three more times (Fig. 9c, d), 
with the robot finishing the journey in the starting 
position (Fig. 9e). 

The shape of the implemented figure is clearly 
distorted. It is influenced by many factors discussed 

 

 

 
Fig. 8. Measurement of α angle with a magnetometer: 

a) when the robot is stationary, b) dynamic rotation 
10°-120°-10°, c) straight travel – 90 cm

a)

b)

c)

many samples, therefore, becomes fruitless because 
it would introduce a considerable delay compared to 
the robot’s physical activities. Positioning accuracy 
does not require decimal or hundredths, because the 
robot being tested is not able to reach the position 
with such precision. Initial filtration can therefore be 
achieved by using a variable to which data from the 
magnetometer is saved, in integer form, not a float-
ing point (Fig. 8a, blue and orange characteristics).
The second stage of filtration is averaging data from 
three samples and it is a low-pass filter. In this way 
we get relatively stable indications that affect the ro-
bot’s operation (Fig. 8a, green course). Fig. 8b shows 
the course with dynamic rotation of the robot from 
the indicated position 10° to 120° and back. As can 
be seen, filtration helps stabilize the noise resulting 
from the rapid movement of the robot. An example 
would be smoothing the rapid change of indications 
in the range of 0.2-0.3 s, and the filtered data are not 
simultaneously delayed in relation to the original 
signal. This type of problem could arise if too many 
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earlier in this work, with a detailed analysis of spe-
cific components. The gradient of the ground has 
a negative effect on the accelerometer, which cali-
brates during standstill. Changing it along the ro-
bot’s motion path causes erroneous readings that 
are difficult to filter out. The error accumulates due 
to the necessity of performing the ride and turn four 
times. Another problem is the stress that occurs 
when mounting the motors to the frame. Tightly 
folded elements cause the wheels to lose alignment. 
Working at constant speed, they can cause the ro-
bot to drift to either side as well as error resulting 
from uneven operation of the motors. Although the 
Authors compensate it accordingly for each pair of 
motors (by adjusting the PWM signal fill separately 
for the motors on the right and left), supplying them 
with the same voltage does not guarantee repeata-
bility of rotational speeds.

3.2.	 ANN Recognition
For the task of recognizing the trajectory of the ro-

bot’s movement, the Authors decided to use a unidi-
rectional neural network. Networks of this type occur 
in the literature under the name MLP (Multilayer Per-
ceptron), because this network is actually made up of 
layers called successively the input, hidden and out-
put. The network architecture was shown in Fig. 10.

 Input layer Hidden layer Output layer 

IE1 

IE2 

IE3 

IE4 

O1 

O2 

Fig. 10. Artificial neural network architecture [30]

A characteristic feature of this type of ANN is the 
method of connecting subsequent neurons, which 
in this case causes that each neuron of the preced-
ing layer is connected to each neuron of the next 
layer. This method allows the influence of a single 
neuron on the network input on all neurons of sub-
sequent layers. Such connection causes every neu-
ron at the network input is just as important, which 
is an undoubted advantage. The disadvantages of 
this solution include the number needed to calcu-
late and save the weights of the neural network. As 
we can see from the network architecture, in case 
of image recognition, a single pixel is the input for 
the corresponding input layer neuron. For images, 
i.e. with a resolution of 80x120, the neural network 
needs 9600 neurons at the input. The Authors of 
the work decided that numbers from 0 to 9 will be 

recognized and responsible for planning the appro-
priate trajectory of the mobile robot. There are 10 
such digits, hence the multilayer perceptron needs 
to work properly with 10 neurons in the output 
layer. Each neuron of the output is responsible for 
classifying the corresponding pattern in the form 
of an image.

 
 
 

1 

3 

2 

1 – Wi-fi wireless communication,  
2 – UART communication, 3 – PWM signal 

Picture with 
resolution of 

80x120 
 

Camera 
module  

 

Computer based 
controller with MLP 

implementation 

DC motor 
control unit 

8-bit controller DC motor 
/transmission 

Fig. 11. Blok diagram of system structure

The block diagram in Fig. 11 shows how the plan-
ning process of the mobile robot’s movement is car-
ried out. The key element in this task is the multilay-
er perceptron. Due to the relatively large size of the 
network, and the necessary image analysis, it was 
decided to use the computer as a calculation unit for 
the network used. The network that meets the condi-
tions for recognizing digits from 0 to 9 and with a res-
olution of 80x120 pixels, is a multilayer perceptron 
with an architecture of 9600-705-10. The number of 
neurons at the input is determined by the image res-
olution. The number of neurons at the output results 
from the number of classified patterns, in our case the 
digits. However, the number of neurons in the hidden 
layer was determined on the basis of research, the re-
sults of which are presented in chapter 4 of this work. 
The authors decided to use the sigmoidal function as 
a function of neuron activation.

4.	 ANN Examination
Because of artificial neural networks reflected 

architecture in the operation of human neural cells, 
they are one of the best tools for solving classifica-
tion tasks. Classifications of numbers, animals, veg-
etables and fruits, road signs, faces and many other 
elements or things are known in the literature. In 
the work considerations, it was decided to use the 
neural network to classify the image in the form of 
a digit, and then, depending on the recognized digit, 
drive the mobile robot to overcome the appropriate 
trajectory. The Authors claim that machine vision 
based on artificial neural network technology is 
an area that is unrivaled in comparison with other 
image classification algorithms. The principle of 
classification and operation of the network, which 
is referred to at work, i.e. MLP (Multilayer Percep-
tron), is very similar for all these cases. Multilayer 



19

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  14,      N°  1       2020

Articles 19

perceptron differ in the number of layers, neurons, 
activation functions and parameters such as learn-
ing coefficient or function parameters determining 
the shape of the curve. In software design, the most 
difficult thing is choosing the right learning rate, 
curve shape and number of neurons in the hidden 
layer. The most common way of selecting the pa-
rameters mentioned above is the test method, rely-
ing on existing networks or on own experience in 
neural network design. The work focuses on archi-
tecture networks with one hidden layer. This kind 
of multilayer perceptron was used due to the fact 
that in the design of the neural network, we strive 
not only to reduce the error of the neural network 
response, but also to the smallest possible number 
of neurons in the hidden layer. This is because over-
sizing the number of neurons in this layer leads to 
an increase in the number of calculations, and thus 
time to teach MLP. Due to the use of MLP to deter-
mine the trajectory of the mobile robot, it was de-
cided to carry out tests to calculate the number of 
hidden layer neurons, depending on the number of 
neurons of the input layer and output. The authors 
did not find in the literature a formula that allows 
to estimate what number of neurons in the hidden 
layer allows to complete the task of teaching a net-
work of specific patterns.

 

pixel 1 

pixel 2 

pixel 3 

pixel n 

Input layer Hidden layer Output layer 

Fig. 12. Architecture of tested networks

Fig. 13. Architecture 300-15-5, angle parameter of the 
activation function curve 0.2

The research aims to develop a formula that will 
determine the number of neurons in the hidden layer. 
This will allow easy redesign of the neural network 
in the event of a change in the number of classified 

patterns that affect the number of output neurons, 
and in the case of a change in the resolution of the 
analysed image that affects the number of neurons in 
the input layer. Images analysed by neural networks 
usually have low resolutions to limit the time need-
ed for learning. An example is the network trained on 
the MNIST database, which is a database of 60,000 
hand-drawn digits with a resolution of 28x28 pixels, 
in case of the target network presented in the work 
this resolution is 120x180 pixels. Due to the fact that 
the network learning time in case of MLP as shown 
in the literature example in Fig. 15, for the optimal 
case is 114 hours for a resolution of 29x29 pixels. Re-
search on networks with a lower resolution than the 
target 120x180, saved a few hundred or several thou-
sand hours selection of the appropriate number of 
neurons in the hidden layer. In addition, the research 
allowed to estimate the value of other parameters, 
i.e. the shape of the sigmoidal curve as a function of 
activation, and the learning rate factor. Research was 
began with small artificial neural networks, while in 
subsequent iterations the number of neurons in the 
hidden and input layers were increased by increasing 
the resolution of the analysed image. Sample results 
are shown in the following illustrations.

Fig. 14. Architecture 300-15-5, angle parameter of the 
activation function curve 0.3

Fig. 14 shows to what extent the learning fac-
tor affects the learning speed of the artificial neural 
network. With a learning factor of 0.6, the network 
learned to the assumed error rate after 75 learning 
epochs. However, when the value of this coefficient 
was 0.5, the network already needed 94 learning 
epochs.

In Fig. 13 to 17 one can observe the learning pro-
gress of the neural network with a variable learning 
coefficient and a variable parameter of the slope of 
the sigmoidal curve. It was noted that the impact of 
these parameters is significant. For small values, the 
artificial neural network did not show learning pro-
gress. However, when these values were too large, the 
network learned chaotically. Analyzing the previous 
graphs of learning progress, we can see that both the 
learning rate and the coefficient of the sigmoid curve 
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angle affect the learning speed. Appropriate selection 
of these parameters allows to optimize the learning 
process of the artificial neural network.

Fig. 15. Architecture 300-15-5, angle parameter of the 
activation function curve 0.4

Fig. 16. Architecture 300-15-5, angle parameter of 
the activation function curve 0.5

Fig. 17. Architecture 300-15-5, angle parameter of the 
activation function curve 0.6

Fig. 18. Architecture 1200-50-5, angle parameter of the 
activation function curve 0.5

Fig. 19. Architecture 1200-75-5, angle parameter of the 
activation function curve 0.5

Fig. 20. Architecture 1200-100-5, angle parameter of 
the activation function curve 0.5

In the first part, Authors have analysed the effect 
of the learning rate and the slope angle parameter of 
the sigmoidal curve as a function of the activation of 
each neurons. In Fig. 18 to 20, however, can be seen 
how the number of neurons in the hidden layer has 
an impact on the learning process. During the study, 
it was also noticed that increasing the number of 
neurons in the hidden layer caused an increase in 
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learning speed. However, this process was saturated 
and in case of further increase in the number of neu-
rons in the hidden layer, the multilayer perceptron 
did not learn faster. Hence, network design is not 
a simple process.

Fig. 21. Trend line graph generated using Excel software 
for data obtained from networks with architectures 
with 10 neurons on the output

Basing on performed tests, authors proposed 
a graph showing the number of hidden layer neurons 
depending on the examined resolution of the classi-
fied image. The results are presented in Fig. 21.

5.	 Conclusion
Implementation of artificial neural networks in 

the task of mobile robot navigation as well as machine 
vision has a crucial value in a way of modern robot-
ics development. Captured image can simultaneously 
allow robot to avoid obstacle, follow the marker and 
provide information to navigate. Artificial intelligence 
methods, including the multilayer perceptron de-
scribed in the paper, are perfect for this type of tasks. 

An example application of the proposed system 
is an autonomous mobile trolley in warehouses. Ro-
bot controller performs scanning of a label placed on 
a cargo and further proceed an assigned trajectory to 
deliver it to its destination point.

The designed network allowed to obtain the ex-
pected results in terms of path recognition. The al-
gorithm can classify a specific number with certainty 
above 97% for digits written by a person whose hand-
writing has been included in the database of learning 
network. In order to recognize the letter better, it 
would be necessary to supplement it with samples of 
a larger number of people.

The use of low cost electronic components for rel-
atively precise robot movement over short distances 
was a big challenge. For the sensors used, the Authors 
observed a large discrepancy in the raw results. The 
proposed filtration methods allowed to obtain satis-
factory results. The main sources of interference are 
the dynamic movements of the entire robot platform 
and the fact that the sensors are rigidly attached to 
the structure. Vibrations generated by engines even 
during standstill meant that the data obtained are af-
fected by errors. Nevertheless, the analysis of acceler-
ometer data while driving allowed defining the nature 
of the indications depending on the state of the robot 
(acceleration, driving at a constant speed, braking). 
To improve the precision of trajectory implementa-
tion, it would be necessary to equip the robot in parts 
with greater accuracy, which would be associated 
with a higher price for the device.
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