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Abstract:
In this contribution we want to present the concept of
uncertainty area of classifiers and an algorithm that uses
uninorms to minimize the area of uncertainty in the pre‐
diction of new objects by complex classifiers.
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1. Introduction
Themain task of the classi�ication constituting one

of the important methods of data mining is the crea‑
tion of models, called classi�iers (also classifying algo‑
rithms or decision algorithms), describing dependen‑
cies between the given class (category) of objects and
their characteristics. �iscovered classi�ication models
are then used to classify new objects of the unknown
class membership (see e.g., [27]). We will consider a
problem of approximation of concepts (classes) based
on a �inite set of observations containing examples of
positive andnegative concepts. This �inite set of obser‑
vations may be represented using data tables. In this
representation individual observations correspond to
rows of a given data table and attributes to columns
of a given data table. In this paper, we consider deci‑
sion tables of the form T = (𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈𝑈𝑈 in Pawlak’s sense
(cf. [23]) for representation of data tables, where 𝑈𝑈 is
a set of objects (rows) in the data table, 𝐴𝐴 is a set of
attributes or columns in the data table, and 𝑑𝑑 is a dis‑
tinguished attribute from the set 𝐴𝐴 called a decision
attribute (in this paper, we consider problems for the
case of a 2‑class classi�ication, e.g., for decision classes
YES and NO or for decision classes 0 and 1, etc.).

The classi�ier assigns to the object a certainweight
(classi�ication coef�icient) to classify the object. For a
set range of the threshold parameter 𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡, if the
classi�ication weight of the test object obtained from
the classi�ier is greater than t, the object is classi�ied
into the main class (e.g., YES). However, if the weight
is less than or e�ual to t, then the object is classi�ied
into a subordinate class (e.g., NO). However, for some
neighborhood threshold 𝑡𝑡 very small differences in the
classi�icationweight can lead to opposing decisions. In
order to avoid the incorrect classi�ication, we propose
to introduce an uncertainty area,which if the classi�ier
returns the classi�ication weight from a certain neig‑
hborhood of threshold, will lead to abstain from the
decision. When classifying objects, we can construct
different classi�iers. Often the decisions obtained dif‑
fer for a some elements. Therefore, a con�lict appears

between the classi�iers that operate on the basis of dif‑
ferent sources or parameters, which must be resolved
in order to �inally classify the test object. For this pur‑
posewe suggest aggregation of values obtained by the
individual classi�iers using uninorms. �s a result, we
build a new compound classi�ier, which additionally
reduces the measure of uncertainty area.

The paper is structured as follows. In Section 2, no‑
tions connected with aggregation operators are recal‑
led. In Section 3, the motivation to consider new ver‑
sions of classi�ier are provided aswell as a description
of them is given.

2. Agregations Operators
Firstly, we recall de�inition of an aggregation

function. More details can be found in [5,7,8,19,28]
�e�������� 1 (cf. [6]). A function 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 𝐴𝑛𝑛 → [0,1] ,
𝑛𝑛 𝑛 𝑛, 𝑛𝑛 𝑛 𝑛, which is increasing in each variable, i.e.

(∀1≤𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖 ≤ 𝑡𝑡𝑖𝑖) ⇒ 𝐴𝐴𝐴𝐴𝐴1, … , 𝑠𝑠𝑛𝑛) ≤ 𝐴𝐴𝐴𝐴𝐴1, … , 𝑡𝑡𝑛𝑛), (1)
for all 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 ∈[0,1]   is called an aggrega‑
tion function (aggregation operator) if 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    ,
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    .
�e�������� � ( [6]). Let 𝑛𝑛 𝑛 𝑛. 𝐴𝐴 𝐴 R𝑛𝑛 → R is a mean
(average function) if it is increasing and idempotent, i.e.

∀𝑠𝑠𝑠𝑠𝑠𝑠R𝑛𝑛 (∀1≤𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 ≤ 𝑡𝑡𝑘𝑘) ⇒ 𝐴𝐴𝐴𝐴𝐴1, ..., 𝑠𝑠𝑛𝑛) ≤ 𝐴𝐴𝐴𝐴𝐴1, ..., 𝑡𝑡𝑛𝑛),
and

∀𝑡𝑡𝑡R𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   
Lemma 1. For every mean 𝐴𝐴 we have

∀𝑡𝑡 𝑡 R𝑛𝑛 min
1≤𝑘𝑘𝑘𝑘𝑘

𝑡𝑡𝑘𝑘 ≤ 𝐴𝐴𝐴𝐴𝐴1, ..., 𝑡𝑡𝑛𝑛) ≤ max
1≤𝑘𝑘𝑘𝑘𝑘

𝑡𝑡𝑘𝑘. (2)

From the above lemmawesee that themean canbe
restricted to any interval. Our domain of interest is the
interval [0,1] . In this case, themean is the aggregation
function.
Example 1. Let 𝜑𝜑 𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑      be an increasing
bijection and 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡𝑛𝑛 . We remind here two im‑
portant examples of aggregation function: the quasi‑
arithmetic mean (cf. [1])

𝐴𝐴𝐴𝐴𝐴1, ..., 𝑡𝑡𝑛𝑛) = 𝜑𝜑−1(1𝑛𝑛

𝑛𝑛

�
𝑘𝑘𝑘𝑘

𝜑𝜑𝜑𝜑𝜑𝑘𝑘)),

and the generalized weighted average (cf. [6])

𝐴𝐴𝐴𝐴𝐴1, ..., 𝑡𝑡𝑛𝑛) = 𝜑𝜑−1(
𝑛𝑛

�
𝑘𝑘𝑘𝑘

𝑤𝑤𝑘𝑘𝜑𝜑𝜑𝜑𝜑𝑘𝑘)).
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𝑈𝑈 is given as follows:

𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈

⎧
⎪

⎨
⎪
⎩

min(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 or
(𝑦𝑦𝑦  𝑦𝑦𝑦𝑦𝑦𝑦 and 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥𝑥𝑥

max(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 or
(𝑦𝑦𝑦  𝑦𝑦𝑦𝑦𝑦𝑦 and 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥𝑥𝑥

𝑥𝑥 or 𝑦𝑦 if 𝑦𝑦𝑦  𝑦𝑦𝑦𝑦𝑦𝑦 and 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥𝑥

being commutative on the set of points (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  such
that 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥.

Example 3. The operations𝑈𝑈1 and𝑈𝑈2 from Example 2
are idempotent uninorms.

As it turns out, there are no continuous uninorms
with the neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. Therefore, there is
considered continuity on some subset.

Theorem4 ( [18]). Let𝑈𝑈 𝑈 𝑈𝑈𝑈 𝑈𝑈2 → [0,1]  be a binary
operation and 𝑒𝑒 𝑒𝑒𝑒𝑒 𝑒𝑒. The following statements are
equivalent:

(i) 𝑈𝑈 is a uninorm with neutral element 𝑒𝑒 that is strictly
increasing on ]0,1[ 2 and continuous on [0,1] 2 ⧵
{(0,1),(1,0)   }.

(ii) There exists a strictly increasing bijection 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢  
[−∞,+∞] with 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   such that for all (𝑥𝑥𝑥𝑥𝑥𝑥𝑥 
[0,1] 2 it holds that 𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈 𝑈𝑈−1(𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝑢𝑢𝑢,
where in case of a conjunctive uninorm 𝑈𝑈, we adopt
the convention (+∞) + (−∞)=  −∞, while in case
of a disjunctive uninorm, we adopt the convention
(+∞) + (−∞)=  +∞.

If this representation holds, then the function 𝑢𝑢 is uni‑
quely determined by 𝑈𝑈 up to a positive multiplicative
constant, and it is called an additive generator of the
uninorm 𝑈𝑈.

Example 4. Let 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. The following operations
are uninorms satisfying the conditions of above Theo‑
rem.

𝑈𝑈3𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈 �
0 if 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥𝑥� 1𝑒𝑒−1�(1−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

otherwise,

𝑈𝑈4𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈 �
1 if 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥𝑥� 1𝑒𝑒−1�(1−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

otherwise.

3. Classifiers
�uring classi�ication, the classi�ier assigns a cer‑

tain classi�icationweight to the object.   For a set range
of the threshold parameters 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡  , the test objects
are tested in such away that if the classi�icationweight
of the test object obtained from the classi�ier is greater
than 𝑡𝑡, the object is classi�ied into the main class (e.g.,
YES). However, if the weight is less than or equal to
𝑡𝑡, then the object is classi�ied into a subordinate class
(e.g., NO). In this way, we obtain the decision value for
the test object, which may be correct (consistent with

the actual decision in the test table) or incorrect (we
make a mistake in the classi�ication).

To calculate the global classi�ication quality of a gi‑
ven classi�ier with the �ixed parameter 𝑡𝑡 we use the
accuracy of the classi�ication which is the quotient of
the number of correct classi�ications to the number of
all classi�ications. Accuracy calculated for the test ob‑
jects from the main class is called sensitivity, and the
accuracy calculated for the test objects from a subor‑
dinate class we call speci�icity.

If the sensitivity is unsatisfactory,   e.g., in medi‑
cine when trying to predict the occurrence of a dise‑
ase of a patient, it may turn out that the sensitivity of
the classi�ication to themain class ”sick” is too low, we
can balance between sensitivity and speci�icity, i.e. in‑
creasing sensitivity at the expense of decreasing spe‑
ci�icity. This approach leads to the concept of the ROC
curve, where each point of the ROC curve corresponds
to one setting of the classi�ier�s performance (the pa‑
rameter 𝑡𝑡).

ROC shows the dependence of sensitivity on error
of the �irst type (oneminus speci�icity) during calibra‑
tion of the classi�ier (at various threshold settings).

For classi�iers with this property (sensitivity and
speci�icity regulation), the AUC parameterwas used to
assess their quality. AUC is the measure of the quality
of a classi�ier which is the area under the ROC curve
(cf. [16,26]). The greater is the AUC value the better is
the classi�ier.
3.1. Uncertainty Area

As it wasmentioned above, in themethod of sensi‑
tivity and speci�icity regulation, the sensitivity of the
classi�ier can be increased at the expense of the de‑
crease in speci�icity. This is not always an acceptable
situation. It may happen that in the case of two deci‑
sion classes main (eg. YES) and subordinate (eg. NO)
instead of obtaining a higher sensitivity for the main
class and reducing the speci�icity for the subordinate
class, wewould prefer that the classi�ier does not clas‑
sify some cases by agreeing to reduce the coverage of
the entire test data.

In other words, in the case of classifying test ob‑
jects, the so‑called area of   uncertainty for which we
abstain from the decision because we are not sure
enough about it. Thanks to this, the classi�ier may
make fewer mistakes while classifying, but from time
to time, instead of the decision value, the classi�ier re‑
turns ”I do not make decisions” or ”I do not know”.

Since the most errors of classi�ication are made
when the classi�icationweight is close to the threshold
parameter, we will refrain from the decision for this
area. In this situation, the aforementioned ROC curve
generation concept canbemodi�iedby introducing the
uncertainty area. For this purpose, instead of simple
threshold parameter 𝑡𝑡, we consider parameter 𝜀𝜀 such
that 𝜀𝜀 𝜀𝜀𝜀𝜀 min(𝑡𝑡𝑡𝑡𝑡  𝑡𝑡𝑡𝑡. For the set value of parame‑
ters 𝑡𝑡 and 𝜀𝜀, classi�ication of the test objects is perfor‑
med in such a way that if the classi�ication weight of
the test object obtained from the classi�ier is greater
than 𝑡𝑡 𝑡𝑡𝑡  , then the object is classi�ied into the main
class (eg YES). On the other hand, if the classi�ication
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Uninorms are a special kind of aggregation functi‑
ons that generalise both t‑norms and t‑conorms (see
[18, 21]). Uninorms are increasing, commutative and
associative binary operators on the unit interval ha‑
ving a neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. They appear for the
�irst time using the term uninorm in [29] (although
the very related operators called Dombi’s operators
were already studied in [11]) with the idea of allo‑
wing certain kind of aggregation operators combining
themaximum and theminimum, depending on an ele‑
ment 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. This idea was deeper studied in [18],
where the structure of such operators was analysed
and two �irst classes of uninorms were introduced:
uninorms in 𝒰𝒰min and 𝒰𝒰max, and representable uni‑
norms (extremely related with Dombi’s operators in‑
troduced in [11]). We will assume the basic theory of
t‑norms and t‑conorms. The de�initions, notations and
results on themcanbe found in [2,21].Wewill just give
in this section some basic facts about uninorms. More
details can be found in [10,14,18,20,25].
�e������o� 3 ( [29]). Operation 𝑈𝑈 𝑈 𝑈𝑈𝑈𝑈𝑈 2 → [0,1]  is
called a uninorm if it is commutative, associative, incre‑
asing and has a neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. A uninorm
with neutral element 𝑒𝑒 𝑒 𝑒 is called a triangular norm
and a uninorm with neutral element 𝑒𝑒 𝑒 𝑒 is called a
triangular conorm.

the general structure of the uninorm can be repre‑
sented by the following theorems (cf. Figure 1).
Theorem 1 ( [18]). If a uninorm 𝑈𝑈 has a neutral ele‑
ment 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒, then there exist a triangular norm 𝑇𝑇
and a triangular conorm 𝑆𝑆 such that

𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈  �
𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒 ,

𝑦𝑦
𝑒𝑒 ) if (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    2,

𝑒𝑒 𝑒 𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥1−𝑒𝑒 ,
𝑦𝑦𝑦𝑦𝑦
1−𝑒𝑒 ) if (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    2,

Lemma2 (cf. [18]). If𝑈𝑈 is increasing and has a neutral
element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒, then

min ≤ 𝑈𝑈 𝑈 max in 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴

Furthermore, if 𝑈𝑈 is associative, then 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 
{0,1 }.

𝑇𝑇∗

𝑆𝑆∗min≤𝑈𝑈𝑈max

min≤𝑈𝑈𝑈max

0 𝑒𝑒

𝑒𝑒

1

1

Fig. 1. The structure of uninorms

The most studied classes of uninorms are:
• Uninorms in 𝒰𝒰min (respectively 𝒰𝒰max), those gi‑

venbyminimum(respectivelymaximum) in𝐴𝐴𝐴𝐴𝐴𝐴, that
were characterized in [18].

• Representable uninorms, those that have addi‑
tive generators. They were �irstly introduced in [18]
and then they were characterized as those uninorms
that are continuous in [0,1] 2 ⧵ {(0,1),(1,0)   } in [24]
and also as those uninorms that are strictly increasing
and continuous in the open unit square in [17].

• Uninorms continuous in the open unit square
(0,1) 2, thatwere characterized in [12,20] and that cle‑
arly includes the representables ones.

• Idempotent uninorms, those such that 𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈
𝑥𝑥 for all 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . Their characterization was given
in [25].

• Locally internal uninorms, those such that
𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈 𝑈𝑈𝑈 for all (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . This class has
been studied in [12,13,15] and a recent characteriza‑
tion of uninorms in this class having continuous un‑
derlying operators has been given in [14]. This class
includes all idempotent uninorms.

•Uninormswith continuous underlying operators.
This class is characterized via the ordinal sum con‑
struction of Clifford [22]. Again it is clear that this class
includes all the previous ones except for the case of
uninorms in 𝒰𝒰min and 𝒰𝒰max and for the case of locally
internal uninorms.

In what follows we recall some results about the
structure of several classes of uninorms.

Theorem 2. ( [18]) Let 𝑈𝑈 𝑈 𝑈𝑈𝑈𝑈𝑈 2 → [0,1]  be a uni‑
normwith neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. Then, the sections
𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  and 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  are continuous at each
point except perhaps at 𝑒𝑒 if and only if𝑈𝑈 is given by one
of the following formulas:

(a) If 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   , then

𝑈𝑈𝑒𝑈𝑈𝑒 𝑈𝑈𝑒 𝑒 �
𝑒𝑒𝑒𝑒 �𝑥𝑥𝑒𝑒 ,

𝑦𝑦
𝑒𝑒 � if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   

𝑒𝑒 𝑒 𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒 �𝑥𝑥𝑥𝑥𝑥1−𝑒𝑒 ,
𝑦𝑦𝑦𝑦𝑦
1−𝑒𝑒 � if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   

min(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  

(b) If 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   , then the same structure holds, chan‑
ging minimum by maximum in 𝐴𝐴𝐴𝐴𝐴𝐴.

Example 2. Let 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. The following operations
are uninorms satisfying the conditions of Theorem 2.

𝑈𝑈1(𝑥𝑥𝑥𝑥𝑥𝑥𝑥   �min(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
max(𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑈𝑈2(𝑥𝑥𝑥𝑥𝑥𝑥𝑥   �max(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥
min(𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

The whole characterization of idempotent uni‑
norms was de�initively given in [25] as follows.

Theorem 3. ( [25]) Consider 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. The following
items are equivalent:

(i) 𝑈𝑈 is an idempotent uninorm with neutral element 𝑒𝑒.
(ii) There exists a decreasing function 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔    

with �ixed point 𝑒𝑒, which is Id‑symmetrical, such that
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𝑈𝑈 is given as follows:

𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈

⎧
⎪

⎨
⎪
⎩

min(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 or
(𝑦𝑦𝑦  𝑦𝑦𝑦𝑦𝑦𝑦 and 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥𝑥𝑥

max(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 or
(𝑦𝑦𝑦  𝑦𝑦𝑦𝑦𝑦𝑦 and 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥𝑥𝑥

𝑥𝑥 or 𝑦𝑦 if 𝑦𝑦𝑦  𝑦𝑦𝑦𝑦𝑦𝑦 and 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥𝑥

being commutative on the set of points (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  such
that 𝑥𝑥𝑥𝑥𝑥  2(𝑥𝑥𝑥.

Example 3. The operations𝑈𝑈1 and𝑈𝑈2 from Example 2
are idempotent uninorms.

As it turns out, there are no continuous uninorms
with the neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. Therefore, there is
considered continuity on some subset.

Theorem4 ( [18]). Let𝑈𝑈 𝑈 𝑈𝑈𝑈 𝑈𝑈2 → [0,1]  be a binary
operation and 𝑒𝑒 𝑒𝑒𝑒𝑒 𝑒𝑒. The following statements are
equivalent:

(i) 𝑈𝑈 is a uninorm with neutral element 𝑒𝑒 that is strictly
increasing on ]0,1[ 2 and continuous on [0,1] 2 ⧵
{(0,1),(1,0)   }.

(ii) There exists a strictly increasing bijection 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢  
[−∞,+∞] with 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   such that for all (𝑥𝑥𝑥𝑥𝑥𝑥𝑥 
[0,1] 2 it holds that 𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈 𝑈𝑈−1(𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝑢𝑢𝑢,
where in case of a conjunctive uninorm 𝑈𝑈, we adopt
the convention (+∞) + (−∞)=  −∞, while in case
of a disjunctive uninorm, we adopt the convention
(+∞) + (−∞)=  +∞.

If this representation holds, then the function 𝑢𝑢 is uni‑
quely determined by 𝑈𝑈 up to a positive multiplicative
constant, and it is called an additive generator of the
uninorm 𝑈𝑈.

Example 4. Let 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. The following operations
are uninorms satisfying the conditions of above Theo‑
rem.

𝑈𝑈3𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈 �
0 if 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥𝑥� 1𝑒𝑒−1�(1−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

otherwise,

𝑈𝑈4𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈 �
1 if 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥

� 1𝑒𝑒−1�
2
𝑥𝑥𝑥𝑥𝑥� 1𝑒𝑒−1�(1−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

otherwise.

3. Classifiers
�uring classi�ication, the classi�ier assigns a cer‑

tain classi�icationweight to the object.   For a set range
of the threshold parameters 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡  , the test objects
are tested in such away that if the classi�icationweight
of the test object obtained from the classi�ier is greater
than 𝑡𝑡, the object is classi�ied into the main class (e.g.,
YES). However, if the weight is less than or equal to
𝑡𝑡, then the object is classi�ied into a subordinate class
(e.g., NO). In this way, we obtain the decision value for
the test object, which may be correct (consistent with

the actual decision in the test table) or incorrect (we
make a mistake in the classi�ication).

To calculate the global classi�ication quality of a gi‑
ven classi�ier with the �ixed parameter 𝑡𝑡 we use the
accuracy of the classi�ication which is the quotient of
the number of correct classi�ications to the number of
all classi�ications. Accuracy calculated for the test ob‑
jects from the main class is called sensitivity, and the
accuracy calculated for the test objects from a subor‑
dinate class we call speci�icity.

If the sensitivity is unsatisfactory,   e.g., in medi‑
cine when trying to predict the occurrence of a dise‑
ase of a patient, it may turn out that the sensitivity of
the classi�ication to themain class ”sick” is too low, we
can balance between sensitivity and speci�icity, i.e. in‑
creasing sensitivity at the expense of decreasing spe‑
ci�icity. This approach leads to the concept of the ROC
curve, where each point of the ROC curve corresponds
to one setting of the classi�ier�s performance (the pa‑
rameter 𝑡𝑡).

ROC shows the dependence of sensitivity on error
of the �irst type (oneminus speci�icity) during calibra‑
tion of the classi�ier (at various threshold settings).

For classi�iers with this property (sensitivity and
speci�icity regulation), the AUC parameterwas used to
assess their quality. AUC is the measure of the quality
of a classi�ier which is the area under the ROC curve
(cf. [16,26]). The greater is the AUC value the better is
the classi�ier.
3.1. Uncertainty Area

As it wasmentioned above, in themethod of sensi‑
tivity and speci�icity regulation, the sensitivity of the
classi�ier can be increased at the expense of the de‑
crease in speci�icity. This is not always an acceptable
situation. It may happen that in the case of two deci‑
sion classes main (eg. YES) and subordinate (eg. NO)
instead of obtaining a higher sensitivity for the main
class and reducing the speci�icity for the subordinate
class, wewould prefer that the classi�ier does not clas‑
sify some cases by agreeing to reduce the coverage of
the entire test data.

In other words, in the case of classifying test ob‑
jects, the so‑called area of   uncertainty for which we
abstain from the decision because we are not sure
enough about it. Thanks to this, the classi�ier may
make fewer mistakes while classifying, but from time
to time, instead of the decision value, the classi�ier re‑
turns ”I do not make decisions” or ”I do not know”.

Since the most errors of classi�ication are made
when the classi�icationweight is close to the threshold
parameter, we will refrain from the decision for this
area. In this situation, the aforementioned ROC curve
generation concept canbemodi�iedby introducing the
uncertainty area. For this purpose, instead of simple
threshold parameter 𝑡𝑡, we consider parameter 𝜀𝜀 such
that 𝜀𝜀 𝜀𝜀𝜀𝜀 min(𝑡𝑡𝑡𝑡𝑡  𝑡𝑡𝑡𝑡. For the set value of parame‑
ters 𝑡𝑡 and 𝜀𝜀, classi�ication of the test objects is perfor‑
med in such a way that if the classi�ication weight of
the test object obtained from the classi�ier is greater
than 𝑡𝑡 𝑡𝑡𝑡  , then the object is classi�ied into the main
class (eg YES). On the other hand, if the classi�ication
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Uninorms are a special kind of aggregation functi‑
ons that generalise both t‑norms and t‑conorms (see
[18, 21]). Uninorms are increasing, commutative and
associative binary operators on the unit interval ha‑
ving a neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. They appear for the
�irst time using the term uninorm in [29] (although
the very related operators called Dombi’s operators
were already studied in [11]) with the idea of allo‑
wing certain kind of aggregation operators combining
themaximum and theminimum, depending on an ele‑
ment 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. This idea was deeper studied in [18],
where the structure of such operators was analysed
and two �irst classes of uninorms were introduced:
uninorms in 𝒰𝒰min and 𝒰𝒰max, and representable uni‑
norms (extremely related with Dombi’s operators in‑
troduced in [11]). We will assume the basic theory of
t‑norms and t‑conorms. The de�initions, notations and
results on themcanbe found in [2,21].Wewill just give
in this section some basic facts about uninorms. More
details can be found in [10,14,18,20,25].
�e������o� 3 ( [29]). Operation 𝑈𝑈 𝑈 𝑈𝑈𝑈𝑈𝑈 2 → [0,1]  is
called a uninorm if it is commutative, associative, incre‑
asing and has a neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. A uninorm
with neutral element 𝑒𝑒 𝑒 𝑒 is called a triangular norm
and a uninorm with neutral element 𝑒𝑒 𝑒 𝑒 is called a
triangular conorm.

the general structure of the uninorm can be repre‑
sented by the following theorems (cf. Figure 1).
Theorem 1 ( [18]). If a uninorm 𝑈𝑈 has a neutral ele‑
ment 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒, then there exist a triangular norm 𝑇𝑇
and a triangular conorm 𝑆𝑆 such that

𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈  �
𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒 ,

𝑦𝑦
𝑒𝑒 ) if (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    2,

𝑒𝑒 𝑒 𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥1−𝑒𝑒 ,
𝑦𝑦𝑦𝑦𝑦
1−𝑒𝑒 ) if (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    2,

Lemma2 (cf. [18]). If𝑈𝑈 is increasing and has a neutral
element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒, then

min ≤ 𝑈𝑈 𝑈 max in 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴

Furthermore, if 𝑈𝑈 is associative, then 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 
{0,1 }.

𝑇𝑇∗

𝑆𝑆∗min≤𝑈𝑈𝑈max

min≤𝑈𝑈𝑈max

0 𝑒𝑒

𝑒𝑒

1

1

Fig. 1. The structure of uninorms

The most studied classes of uninorms are:
• Uninorms in 𝒰𝒰min (respectively 𝒰𝒰max), those gi‑

venbyminimum(respectivelymaximum) in𝐴𝐴𝐴𝐴𝐴𝐴, that
were characterized in [18].

• Representable uninorms, those that have addi‑
tive generators. They were �irstly introduced in [18]
and then they were characterized as those uninorms
that are continuous in [0,1] 2 ⧵ {(0,1),(1,0)   } in [24]
and also as those uninorms that are strictly increasing
and continuous in the open unit square in [17].

• Uninorms continuous in the open unit square
(0,1) 2, thatwere characterized in [12,20] and that cle‑
arly includes the representables ones.

• Idempotent uninorms, those such that 𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈
𝑥𝑥 for all 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . Their characterization was given
in [25].

• Locally internal uninorms, those such that
𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈 𝑈𝑈𝑈 for all (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . This class has
been studied in [12,13,15] and a recent characteriza‑
tion of uninorms in this class having continuous un‑
derlying operators has been given in [14]. This class
includes all idempotent uninorms.

•Uninormswith continuous underlying operators.
This class is characterized via the ordinal sum con‑
struction of Clifford [22]. Again it is clear that this class
includes all the previous ones except for the case of
uninorms in 𝒰𝒰min and 𝒰𝒰max and for the case of locally
internal uninorms.

In what follows we recall some results about the
structure of several classes of uninorms.

Theorem 2. ( [18]) Let 𝑈𝑈 𝑈 𝑈𝑈𝑈𝑈𝑈 2 → [0,1]  be a uni‑
normwith neutral element 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. Then, the sections
𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  and 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  are continuous at each
point except perhaps at 𝑒𝑒 if and only if𝑈𝑈 is given by one
of the following formulas:

(a) If 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   , then

𝑈𝑈𝑒𝑈𝑈𝑒 𝑈𝑈𝑒 𝑒 �
𝑒𝑒𝑒𝑒 �𝑥𝑥𝑒𝑒 ,

𝑦𝑦
𝑒𝑒 � if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   

𝑒𝑒 𝑒 𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒 �𝑥𝑥𝑥𝑥𝑥1−𝑒𝑒 ,
𝑦𝑦𝑦𝑦𝑦
1−𝑒𝑒 � if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   

min(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  

(b) If 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   , then the same structure holds, chan‑
ging minimum by maximum in 𝐴𝐴𝐴𝐴𝐴𝐴.

Example 2. Let 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. The following operations
are uninorms satisfying the conditions of Theorem 2.

𝑈𝑈1(𝑥𝑥𝑥𝑥𝑥𝑥𝑥   �min(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
max(𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑈𝑈2(𝑥𝑥𝑥𝑥𝑥𝑥𝑥   �max(𝑥𝑥𝑥𝑥𝑥𝑥  if 𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥
min(𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

The whole characterization of idempotent uni‑
norms was de�initively given in [25] as follows.

Theorem 3. ( [25]) Consider 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒. The following
items are equivalent:

(i) 𝑈𝑈 is an idempotent uninorm with neutral element 𝑒𝑒.
(ii) There exists a decreasing function 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔    

with �ixed point 𝑒𝑒, which is Id‑symmetrical, such that
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Algorithm2: Classi�ication of a test object by
the 𝑈𝑈 classi�ier
Input:
1) training data set represented by decision table

T = (𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈𝑈𝑈,
2) collection 𝐶𝐶1, ..., 𝐶𝐶𝑚𝑚 of classi�iers,
3) test object 𝑢𝑢,
4) uninorm 𝑈𝑈,
5) threshold parameters 𝑡𝑡 and 𝜀𝜀.
Output: The membership of the object 𝑢𝑢 to

the ”main class” or to the
”subordinate class” or ”no decision”

1 begin
2 for 𝑖𝑖 𝑖𝑖 𝑖 to𝑚𝑚 do
3 Compute a certain weight (”main class”

membership probability) for the
given test object 𝑢𝑢 using the classi�ier
𝐶𝐶𝑖𝑖 and assign it to 𝑝𝑝𝑖𝑖

4 end
5 Determine the �inal weight 𝑝𝑝 for the object

𝑢𝑢 by aggregating (with a use of the
uninorm 𝑈𝑈 e.g., representable uninorm )
the weights 𝑝𝑝1,...,𝑝𝑝𝑚𝑚 .

6 if 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝 then
7 return 𝑢𝑢 belongs to the ”main class”
8 else
9 if 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝 then
10 return 𝑢𝑢 belongs to the

”subordinate class”
11 else
12 return we abstain from the decision
13 end
14 end

15 end

cases, the object can be classi�ied to the subordinate
class or to the uncertainty area.

If theweights𝑝𝑝1 and𝑝𝑝2 belong to the interval [𝑡𝑡𝑡𝑡 𝑡,
then the classi�ier 𝑈𝑈 assigns the classi�ication weight
of the object, which is greater than or equal to the
max(𝑝𝑝1, 𝑝𝑝2). Thismeans that if at least one of theweig‑
hts 𝑝𝑝1, 𝑝𝑝2 is greater than 𝑡𝑡 𝑡𝑡𝑡 , then this object will be
assigned to the main class. In other cases, the object
can be classi�ied to themain class or to the uncertainty
area.

In both cases the degree of membership of the ob‑
ject to themain class or subordinate class is increased.
If the object is classi�ied to the uncertainty area with
weights 𝑝𝑝1 and 𝑝𝑝2, such that 𝑝𝑝1 < 𝑡𝑡 𝑡𝑡𝑡 2, then the
classi�ier 𝑈𝑈 will classify the object to the uncertainty
area.

4. Conclusion
In this paper, we presented the concept of uncer‑

tainty area and the algorithm allowing the creation of
a new classi�ier based on the known classi�iers, which
should signi�icantly reduce themeasureof uncertainty

area. The next stepwill be to implement the algorithm
and test the quality of the created classi�ier based on
the actual data.
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weight is less than or equal to 𝑡𝑡 𝑡 𝑡𝑡, then the object is
classi�ied into a subordinate class (e.g., �O).
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Fig. 2. The uncertainty area

In other cases, the object is classi�ied into the so‑
called uncertainty area (see Figure 2). Similarly as be‑
fore, for the calculation of the global classi�ication qua‑
lity of the given classi�ier with the parameters 𝑡𝑡 and
𝜀𝜀, we use classi�ication accuracy for objects from the
main class called sensitivity and accuracy calculated
for the test objects from a subordinate class (speci‑
�icity). In addition, for each experiment we obtain a
third parameter, whichwe call ameasure of the uncer‑
tainty of classi�ication, which is a quotient of the num‑
ber of test objects classi�ied to the uncertainty area
and the number of all test objects.

3.2. Two Versions of the Classifier
When classifying objects, we can construct diffe‑

rent classi�iers (based on different systems or based
on different data sources, e.g., using several diagnos‑
tic devices ‑ see [3,4,9]). Often the decisions obtained
differ for a certain class of test elements. Therefore,
a con�lict appears between the classi�iers that ope‑
rate on the basis of different sources or parameters,
which must be resolved in order to �inally classify the
test object. To get a �inal decision, we should create a
new classi�ier that will take into account previous re‑
sults. For this purpose we suggest aggregation of va‑
lues obtained by the individual classi�iers. As a result,
we build a new compound classi�ier.

In this article, we suggest aggregating of the classi‑
�icationweights obtained by individual classi�iers, and
we propose two algorithms.

The �irst is whenwe use themeans, denoted by the
Algorithm𝑀𝑀 (Algorithm 1) and, in fact, we get a com‑
plex classi�ier.

Unfortunately, if we apply a quality assessment
method that takes into account the uncertainty area,
then it turns out that the measures of the uncertainty
area for the𝑀𝑀 classi�ier is very high.

This is due to the Lemma 1, because for example,
for two classi�ierswith classi�icationweights𝑝𝑝1 and𝑝𝑝2
that classify an object to the uncertainty area (weights
𝑝𝑝1, 𝑝𝑝2 belong to the interval [𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡) our classi‑
�ier 𝑀𝑀 will classify the object to the uncertainty area
(the weight 𝑝𝑝 of the aggregated � classi�ication will
belong to the same interval). In addition, if only one

Algorithm1: Classi�ication of a test object by
the𝑀𝑀 classi�ier
Input:
1) training data set represented by decision table

T = (𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈𝑈𝑈,
2) collection 𝐶𝐶1, ..., 𝐶𝐶𝑚𝑚 of classi�iers,
3) test object 𝑢𝑢,
4) aggregation𝑀𝑀,
5) threshold parameters 𝑡𝑡 and 𝜀𝜀.
Output: The membership of the object 𝑢𝑢 to

the ”main class” or to the
”subordinate class” or ”no decision”

1 begin
2 for 𝑖𝑖 𝑖𝑖𝑖  to𝑚𝑚 do
3 Compute a certain weight (”main class”

membership probability) for the
given test object 𝑢𝑢 using the classi�ier
𝐶𝐶𝑖𝑖 and assign it to 𝑝𝑝𝑖𝑖

4 end
5 �etermine the �inal weight 𝑝𝑝 for the object

𝑢𝑢 by aggregating (with a use of the mean
𝑀𝑀 e.g., arithmetic mean) the weights
𝑝𝑝1,...,𝑝𝑝𝑚𝑚 .

6 if 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝   then
7 return 𝑢𝑢 belongs to the ”main class”
8 else
9 if 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝   then
10 return 𝑢𝑢 belongs to the

”subordinate class”
11 else
12 return we abstain from the decision
13 end
14 end

15 end

of the weights will belong to the interval [𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡,
theweight of the �inal classi�icationmay belong to that
interval.

Thus, by creating a classi�ier in this way, we incre‑
ase the measure of the uncertainty area, not necessa‑
rily signi�icantly increasing the accuracy of classi�ica‑
tion of the new classi�ier𝑀𝑀 in relation to the accuracy
of aggregated classi�iers.

Therefore, in this paper, we propose also another
method for aggregating classi�iers based on the so‑
called a neutral element being a value from the inter‑
val (0, 1). Thismethodwill be denoted by Algorithm𝑈𝑈
(Algorithm 2).

We assume here that the neutral element 𝑒𝑒 of uni‑
norm 𝑈𝑈 will be equal to the threshold parameter 𝑡𝑡.
Then, using Lemma 2 and Theorem 1, for example,
for two classi�iers with classi�ication weights 𝑝𝑝1 and
𝑝𝑝2 belonging to the interval [0, 𝑡𝑡𝑡 our classi�ier 𝑈𝑈 as‑
signs the classi�ication weight of the object, which is
less than or equal to the min(𝑝𝑝1, 𝑝𝑝2). That is, if at least
one of the weights 𝑝𝑝1, 𝑝𝑝2 is less than 𝑡𝑡 𝑡𝑡𝑡 then the ob‑
ject will be classi�ied to the subordinate class. In other
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Algorithm2: Classi�ication of a test object by
the 𝑈𝑈 classi�ier
Input:
1) training data set represented by decision table

T = (𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈𝑈𝑈,
2) collection 𝐶𝐶1, ..., 𝐶𝐶𝑚𝑚 of classi�iers,
3) test object 𝑢𝑢,
4) uninorm 𝑈𝑈,
5) threshold parameters 𝑡𝑡 and 𝜀𝜀.
Output: The membership of the object 𝑢𝑢 to

the ”main class” or to the
”subordinate class” or ”no decision”

1 begin
2 for 𝑖𝑖 𝑖𝑖 𝑖 to𝑚𝑚 do
3 Compute a certain weight (”main class”

membership probability) for the
given test object 𝑢𝑢 using the classi�ier
𝐶𝐶𝑖𝑖 and assign it to 𝑝𝑝𝑖𝑖

4 end
5 Determine the �inal weight 𝑝𝑝 for the object

𝑢𝑢 by aggregating (with a use of the
uninorm 𝑈𝑈 e.g., representable uninorm )
the weights 𝑝𝑝1,...,𝑝𝑝𝑚𝑚 .

6 if 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝 then
7 return 𝑢𝑢 belongs to the ”main class”
8 else
9 if 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝 then
10 return 𝑢𝑢 belongs to the

”subordinate class”
11 else
12 return we abstain from the decision
13 end
14 end

15 end

cases, the object can be classi�ied to the subordinate
class or to the uncertainty area.

If theweights𝑝𝑝1 and𝑝𝑝2 belong to the interval [𝑡𝑡𝑡𝑡 𝑡,
then the classi�ier 𝑈𝑈 assigns the classi�ication weight
of the object, which is greater than or equal to the
max(𝑝𝑝1, 𝑝𝑝2). Thismeans that if at least one of theweig‑
hts 𝑝𝑝1, 𝑝𝑝2 is greater than 𝑡𝑡 𝑡𝑡𝑡 , then this object will be
assigned to the main class. In other cases, the object
can be classi�ied to themain class or to the uncertainty
area.

In both cases the degree of membership of the ob‑
ject to themain class or subordinate class is increased.
If the object is classi�ied to the uncertainty area with
weights 𝑝𝑝1 and 𝑝𝑝2, such that 𝑝𝑝1 < 𝑡𝑡 𝑡𝑡𝑡 2, then the
classi�ier 𝑈𝑈 will classify the object to the uncertainty
area.

4. Conclusion
In this paper, we presented the concept of uncer‑

tainty area and the algorithm allowing the creation of
a new classi�ier based on the known classi�iers, which
should signi�icantly reduce themeasureof uncertainty

area. The next stepwill be to implement the algorithm
and test the quality of the created classi�ier based on
the actual data.
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weight is less than or equal to 𝑡𝑡 𝑡 𝑡𝑡, then the object is
classi�ied into a subordinate class (e.g., �O).
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Fig. 2. The uncertainty area

In other cases, the object is classi�ied into the so‑
called uncertainty area (see Figure 2). Similarly as be‑
fore, for the calculation of the global classi�ication qua‑
lity of the given classi�ier with the parameters 𝑡𝑡 and
𝜀𝜀, we use classi�ication accuracy for objects from the
main class called sensitivity and accuracy calculated
for the test objects from a subordinate class (speci‑
�icity). In addition, for each experiment we obtain a
third parameter, whichwe call ameasure of the uncer‑
tainty of classi�ication, which is a quotient of the num‑
ber of test objects classi�ied to the uncertainty area
and the number of all test objects.

3.2. Two Versions of the Classifier
When classifying objects, we can construct diffe‑

rent classi�iers (based on different systems or based
on different data sources, e.g., using several diagnos‑
tic devices ‑ see [3,4,9]). Often the decisions obtained
differ for a certain class of test elements. Therefore,
a con�lict appears between the classi�iers that ope‑
rate on the basis of different sources or parameters,
which must be resolved in order to �inally classify the
test object. To get a �inal decision, we should create a
new classi�ier that will take into account previous re‑
sults. For this purpose we suggest aggregation of va‑
lues obtained by the individual classi�iers. As a result,
we build a new compound classi�ier.

In this article, we suggest aggregating of the classi‑
�icationweights obtained by individual classi�iers, and
we propose two algorithms.

The �irst is whenwe use themeans, denoted by the
Algorithm𝑀𝑀 (Algorithm 1) and, in fact, we get a com‑
plex classi�ier.

Unfortunately, if we apply a quality assessment
method that takes into account the uncertainty area,
then it turns out that the measures of the uncertainty
area for the𝑀𝑀 classi�ier is very high.

This is due to the Lemma 1, because for example,
for two classi�ierswith classi�icationweights𝑝𝑝1 and𝑝𝑝2
that classify an object to the uncertainty area (weights
𝑝𝑝1, 𝑝𝑝2 belong to the interval [𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡) our classi‑
�ier 𝑀𝑀 will classify the object to the uncertainty area
(the weight 𝑝𝑝 of the aggregated � classi�ication will
belong to the same interval). In addition, if only one

Algorithm1: Classi�ication of a test object by
the𝑀𝑀 classi�ier
Input:
1) training data set represented by decision table

T = (𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈𝑈𝑈,
2) collection 𝐶𝐶1, ..., 𝐶𝐶𝑚𝑚 of classi�iers,
3) test object 𝑢𝑢,
4) aggregation𝑀𝑀,
5) threshold parameters 𝑡𝑡 and 𝜀𝜀.
Output: The membership of the object 𝑢𝑢 to

the ”main class” or to the
”subordinate class” or ”no decision”

1 begin
2 for 𝑖𝑖 𝑖𝑖𝑖  to𝑚𝑚 do
3 Compute a certain weight (”main class”

membership probability) for the
given test object 𝑢𝑢 using the classi�ier
𝐶𝐶𝑖𝑖 and assign it to 𝑝𝑝𝑖𝑖

4 end
5 �etermine the �inal weight 𝑝𝑝 for the object

𝑢𝑢 by aggregating (with a use of the mean
𝑀𝑀 e.g., arithmetic mean) the weights
𝑝𝑝1,...,𝑝𝑝𝑚𝑚 .

6 if 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝   then
7 return 𝑢𝑢 belongs to the ”main class”
8 else
9 if 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝   then
10 return 𝑢𝑢 belongs to the

”subordinate class”
11 else
12 return we abstain from the decision
13 end
14 end

15 end

of the weights will belong to the interval [𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡,
theweight of the �inal classi�icationmay belong to that
interval.

Thus, by creating a classi�ier in this way, we incre‑
ase the measure of the uncertainty area, not necessa‑
rily signi�icantly increasing the accuracy of classi�ica‑
tion of the new classi�ier𝑀𝑀 in relation to the accuracy
of aggregated classi�iers.

Therefore, in this paper, we propose also another
method for aggregating classi�iers based on the so‑
called a neutral element being a value from the inter‑
val (0, 1). Thismethodwill be denoted by Algorithm𝑈𝑈
(Algorithm 2).

We assume here that the neutral element 𝑒𝑒 of uni‑
norm 𝑈𝑈 will be equal to the threshold parameter 𝑡𝑡.
Then, using Lemma 2 and Theorem 1, for example,
for two classi�iers with classi�ication weights 𝑝𝑝1 and
𝑝𝑝2 belonging to the interval [0, 𝑡𝑡𝑡 our classi�ier 𝑈𝑈 as‑
signs the classi�ication weight of the object, which is
less than or equal to the min(𝑝𝑝1, 𝑝𝑝2). That is, if at least
one of the weights 𝑝𝑝1, 𝑝𝑝2 is less than 𝑡𝑡 𝑡𝑡𝑡 then the ob‑
ject will be classi�ied to the subordinate class. In other
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