Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

DEVELOPING A MULTIPLATFORM CONTROL ENVIRONMENT

Submitted: 15 July 2019; accepted: 20" December 2019

Dariusz Rzovica, Jan Sadolewski, Andrzej Stec, Zbigniew Swider, Bartosz Trybus, Leszek Trybus

DOI: 10.14313/JAMRIS/4-2019/40

Abstract:

IEC 61131-3 control environment is called multiplatform
if source programs can be executed by various proces-
sors, beginning from 8-bit microcontrollers up to 32/64-
bit efficient CPUs. This implies that virtual machine (VM),
i.e. a software implemented processor, is used as runtime
by the host CPU. The VM executes certain intermediate
code into which IEC 61131-3 programs are compiled. En-
vironment of this type called CPDev has been gradually
developed by the authors over the last decade, begin-
ning with initial report in this journal in 2008 [47]. Howe-
ver, technical implementations of its functionalities have
not been described so far. This involves such matters as
intermediate language, parametrization of the compiler
and VM, multiproject runtime, translators of graphical
languages, device-independent HMI, target platform and
communication interfacing, which are presented in com-
pact form in this paper. Some characteristic industrial im-
plementations are indicated.

Keywords: /EC 61131-3 environment, virtual machine,
intermediate language, parametrized compiler, interfa-
cing, HMI, industrial controllers

1. Introduction

There is a common opinion among practising en-
gineers and university staff that runtime engineering
environments based on IEC 61131-3 standard [22]
will remain state of industrial practice long into the
next decade (e.g. [52], [56]). The standard defines five
programming languages, i.e. textual IL, ST, graphic LD,
FBD and mixed SFC, with time-triggered scan cycle
execution. IL, LD and SFC are preferred in manufac-
turing based on PLCs, whereas general automation
favours ST, FBD and also SFC. Edition 3.0 (2013) of
the standard has introduced object-oriented program-
ming by extending the original function block concept.

Open architecture for distributed control and au-
tomation focused on interoperability of the devices
configured by multiple tools, with function blocks as
reusable software components, is defined in another
IEC 61499 control standard [23]. Runtime software
is event-driven. Code measures have shown [17] that
IEC 61499 is more appropriate for sequential controls,
but [EC 61131-3 suits better general applications. Ho-
wever, due to insufficient support by commonly used
tools and runtimes IEC 61499 has not been gene-
rally accepted by industry so far [52], although some
successful applications particularly in energy sector
have been reported (e.g. [10]).

Compilers of control languages are basic compo-
nents of IEC 61131-3 tools. A compiler translates
source program into machine code executed by run-
time software of the controller processor. Three ap-
proaches to compilation are encountered in practice.
In the first one, most common, IEC 61131-3 programs
are directly translated into machine code. Execution
is fast, so the approach is applied by leading manu-
facturers of control equipment, such as Siemens, ABB,
Schneider, Rockwell, Omron and others. Some tools
from independent software providers, namely CODE-
SYS [1] (market leader) and LogicLab [2] also directly
translate source programs into machine code. It is ho-
wever a single platform solution since change of CPU
requires a new compiler.

Contrary to the direct translation the second ap-
proach involves two steps. At first IEC 61131-3 pro-
grams are translated to C/C++ and then another tool
generates the machine code. Academic open-source
Beremiz [53] and independent GEB [16] apply this ap-
proach which due to common C/C++ tools suits multi-
ple platforms, not just one as before. The approach is
particularly suitable for education, however necessity
of another C/C++ translation limits somewhat com-
mercial applications.

In the third approach, source programs are compi-
led into binary code of a dedicated intermediate lan-
guage executed by specially designed virtual machine
(VM), i.e. a software processor. The VM is in fact the
runtime program of the target controller. The appro-
ach does not need translation to C/C++ and may be
applied to multiple platforms. It was originally intro-
duced in ISaGRAF environment [21] with intermedi-
ate Target Independent Code. STRATON [9] (indepen-
dent) also applies this approach, however details re-
main confidential. VMs are typical for academic solu-
tions reviewed in the next section. Nevertheless, time
efficiency of the approach is lower due to overhead im-
posed by the VM.

The other IEC 61499 standard is supported by se-
veral engineering tools of which nxtControl [38] used
at academic institutions may be an example. Also [Sa-
GRAF provides now IEC 61499 programming option.

The authors began developing an I[EC 61131-3 en-
vironment over a decade ago encouraged by an equip-
ment manufacturer and because of teaching needs. It
was actually a next step from earlier works on multi-
function controllers (e.g. [7]). Application of the first
version of the environment called Control Program
Developer (CPDev) was reported in this journal [47]
(also shown at Automation 2008 Fair). The first ver-

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

sion compiled ST programs into intermediate Virtual
Machine Assembler (VMASM) executed by runtime
VM on AVR and MCS51 8-bit microcontrollers. It alre-
ady involved certain provisions to facilitate porting to
different hardware and interfacing communications.

Over the following years CPDev has been exten-
ded on 32/64-bit processors, augmented with transla-
tors of graphical languages, HMI design tool and multi-
project runtime (initially applied in FPGA [18]). PhD
research has been supported by Model Driven Deve-
lopment and unit-testing extensions [29], [27]. So far
several Small and Medium Scale (SMES) manufactu-
rers use the environment.

The early paper [47] and the others have focu-
sed on CPDev functionalities rather than on explaining
how they have been created. Therefore the purpose of
this paper is to present technical aspects of:

- portability of the compiler and VM to different CPUs

- implementation of interfaces for various target plat-
forms

- translators of graphical languages
- structure of device-independent HMI tool

- data for binding variables to communication inter-
faces.

This paper is thus organized as follows. Next
section reviews related work concerning [EC 61131-
3 environments. Section 3 summarizes basic features
of CPDev. Section 4 overviews VMASM language, pa-
rametrized compiler and presents example running
throughout the paper. Architecture of the VM, im-
plementation of target platform interfaces and multi-
project runtime are described in Section 5. Section 6
presents translators of graphical languages and struc-
ture of the HMI tool. List of data required to bind varia-
bles to communication interfaces and some characte-
ristic industrial implementations are shown in Section
7.

2. Related Work

An interest in virtual machines, i.e. abstract pro-
cessors for specific languages implemented by soft-
ware on particular hardware platforms has been in-
creasing since Java Virtual Machine (JVM) appeared
over 20 years ago [55], followed later by Common Lan-
guage Runtime (CLR) for .NET framework [46]. In par-
ticular, most of ARM-based mobile phones implement
JVM processors in Jazelle technology.

VM-based control solutions with the standard IL as
the intermediate language appeared in literature in si-
milar time as the early paper [47] (besides commer-
cial ISaGRAF). VM of [58] was written in C and app-
lied in 8-bit C8051 CPU. Whimori CDU [48] educati-
onal tool translated LD into IL. UniSim [11], although
restricted to a few data types, provided graphical pro-
gramming. IL was also used in [57] for VM implemen-
tation of ARM-based softcontroller.

More recently, IEC 61131-3 applications have been
executed by CLR, i.e. a .NET VM [5]. Development
of various educational tools continues. For example,
WEB PLC Simulator [41] executes control algorithm

and plant model written in ST. HT-PLC [26] runs LD
programs on Arduino with Ethernet. Among relevant
solutions in other areas one may mention security-
oriented loT environment [32] involving SIL interme-
diate language, C/C++/]Java-to-SIL compiler and VM.

Scan cycle, important particularly in manufactu-
ring, can be decreased by direct execution at a dedi-
cated processor, as shown in [39] for a Toshiba CPU.
Nowadays hardware processors are designed in FPGA
technology, as demonstrated by early double proces-
sor for a PLC [6] and in [42], [35] for current multi-
core solutions. Comparison of execution times for a
few PLCs and FPGA has been presented in [18]. Anum-
ber of FPGA designs can be found in the proceedings
of PDES conferences (Programmable Devices and Em-
bedded Systems).

Details of IEC 61131-3 compilers are typically not
disclosed. As an exception the early paper [31] descri-
bes structure of the compiler, code optimization and
support of logic operations by a programmable de-
vice. Nevertheless, one may generally expect that most
of the compilers apply Static Single Assignment (SSA)
syntax and corresponding translation described for
instance in [8]. Occasionally semantic-driven transla-
tion can also be encountered [13]. SSA syntax has been
recently applied for inference of types in dynamic lan-
guages [45], such as Python. Parametrization of GCC
compiler due to limited resources has been presented
in [44].

Activity on Vertex (AOV) graph transformation al-
gorithms are typically used to translate LD diagrams
into IL or ST [12], [20]. Direct translation of AOV into
ST is applied in CPDev. More advanced Enhanced Data
Flow Graphs from [36] can implement IL, LD and SFC
programs.

Parametrized formal semantics for execution of
SFC diagrams has been proposed in [4] to avoid am-
biguities of IEC 61131-3 standard. Unsafe components
of SFCs created using CODESYS semantics (also app-
lied in CPDev) can be detected by static analysis [49].

Principles of HMI design for control applicati-
ons have been described in [14]. German standard
VDI/VDO 3699 [51] also covers this area. Future ad-
vanced solutions may involve 3D graphics and virtual
reality [50]. Some features of industrial operator pa-
nels and in-vehicle infotainment systems [34] are cle-
arly the same.

Implementation guidelines and technical details
concerning industrial communications can be found
for instance in [59]. Comparison of industrial and pu-
blic networks taking into account control, standardi-
zation and dependability is discussed in [15].

3. CPDev Overview

The CPDev tool, initially providing just ST pro-
gramming, supports now all [EC 61131-3 languages,
HMI design, documentation generator and research-
oriented extensions. Multi-project runtime for com-
plex software is also available. Steps of control pro-
gram processing are shown in Fig. 1. ST and IL pro-
grams are compiled into mnemonics of the intermedi-

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

ate VMASM. LD, FBD and SFC diagrams are translated
to ST and then compiled. Assembler converts the mne-
monics into executable binary code uploaded into VM.
The VM is written in C, so may be implemented in va-
rious CPUs.

SFC FBD LD

Translators

fk

Hf

VMASM
mnemonics

Assembler

*

Binary
code

-

Fig. 1. Processing of control programs

Basic functionalities of CPDev are practically the
same as in other control environments. Automatic
connections provided by LD and FBD editors may be
an exception (A* algorithm [19]). HMI tool applies
components from device-independent libraries. Data
for interfacing communications and [/Os are genera-
ted by the compiler as an XML file.

Model Driven Development extension translates
SysML diagrams [40] into templates of programs or
communication tasks [29]. Another extension sup-
ports unit testing of POUs (Program Organization
Units) [27]. All CPDev modules have XML interfaces
to enable agile and round-trip software development
[28].

Extended runtime environment besides the VM for
control functions involves HMI runtime for the inter-
face. The VM and HMI runtime are executed in parallel
exchanging data by means of global variables.

4. Intermediate VMASM and Compilation
4.1. Overview of VMASM

As an [EC 61131-3-oriented language, Virtual Ma-
chine Assembler accepts all elementary data types
except WSTRING. Number of types required by parti-
cular application may be restricted by parametrizing
the compiler. VMASM instructions consist of functions
and procedures. Functions are the same as in the stan-
dard, so ADD, OR, EQ, CONCAT, EXPT, etc. They admit

up to 16 operands where the first one denotes the re-
sult. Procedures shown in Table 1 (examples) are ty-
pical for machine languages, so they control program
flow, call subprograms, copy memory, etc.

Tab. 1. Procedures of the VMASM language

Mnemonic | Meaning

JMP Unconditional jump

JZ Conditional jump

JR Unconditional relative jump
CALB Subroutine call

RETURN Return from subroutine
MCD Initialize data

MEMCP Copy memory block

FPAT Fill memory block

Syntax of VMASM instructions is the following:
[:1abel] instruction [operandl]

[,operand2] [,operand3]...

Label is optional, instruction specifies number of
operands, i.e. variables, labels or constants. Since in
case of functions operand1 denotes a variable (result),
so the syntax expresses memory-to-memory type of
operation. Question mark 7 at the beginning indicates
label or in ?LR? prefix a temporary variable created by
the compiler. Dot operator (.) selects components of
arrays or structures.

Note that in IL language, often used as intermedi-
ate (Sec. 2), result of a command is kept in Current Re-
sult (CR) register equivalent to accumulator. Later the
CRis copied into a variable. By placing the resultin the
operandl, VMASM combines these two steps into one.
The notion of accumulator does not exist in VMASM.

4.2. Parametrized Compiler

To ensure portability of implementations one has
to take primarily into account sizes of addresses requi-
red by CPUs, so typically 16 or 32 bits. Also some data
types may be not needed. To provide such features
the CPDev compiler is parametrized by means of an
XML Library Configuration File (LCF) involving defi-
nitions of hardware resources, data types, instructions
and conversions. Given the parametrized LCFs dedica-
ted compilers and VMs for particular platforms can be
created from one general compiler and generic VM.

<HARDWARE>
<AddressSize>2</AddressSize>
<MaxCodeAddress>0xFFFF</MaxCodeAddress>
<MaxDataAddress>0xFFFF</MaxDataAddress>
</HARDWARE>
<TYPES>
<type name="UINT" implement="alias">
<alias name="WORD"/>
</type>
<deny-type name="LREAL" />
</TYPES>

Fig. 2. Specification of hardware and data types

Sample specification of <Hardware> resources in

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

the LCF file is shown in Fig. 2 (upper part) with
AddressSize and MaxAddresses of code and data me-
mories available for VM. 2 as AddressSize means 2
bytes needed for 16-bit addressing of up to 64 kB me-
mory (0xFFFF). 4 represents 32-bit addressing of 4
GB. Note that the AddressSize defines addressing for
VM only, so 16-bit VM may be executed by a 32 or 64-
bit CPU.

<TYPES> part of the LCF file (Fig. 2) defines data
types available in particular implementation. By using
deny-type one can remove not needed types, for in-
stance LREAL. The deny-type option enables confi-
guration of the environment for so-called made-to-
measure PLCs, suitable particularly for [oT and Indu-
stry 4.0 applications.

Given the LCF file, scanner and parser of the com-
piler translate the source program into a file with
VMASM mnemonics. By using another set of keywords
the ST scanner also processes IL, where ad hoc tempo-
rary variables replace CR register. The parser applies
top-down syntax-directed translation [8]. Basic com-
ponents of the compiler are defined as classes in C#
language. Internal data are kept in lists.

4.3. Compilation Example

ST program for switching OUT on-and-offin 3+2 se-
conds cycle while IN is a active, and VMASM transla-
tion of the first TON1 call are shown in Fig. 3. Awarning
light may be triggered in this way.

IN

ouTH1| [I O
3s |25
TON1(IN:=IN AND NOT TON2.Q, PT:=T#3s);
TON2(IN:=IN AND TON1.Q, PT:=T#2s);
OUT := IN AND NOT TON1.Q;

JZ IN, :7WARN7AN10

NOT ?LR7AN11, TON2.Q

JZ 7LR7AN11, :7WARN7AN10

MCD TON1.IN, #01, #01

JMP :7?WARN7EA14
: 7WARN7AN10

MCD TON1.IN, #01, #00
: 7WARN7EA14

MCD TON1.PT, #04, #B80B0000

CALB TON1, :7IEC_61131.TON7CODE

Fig. 3. ST code and part of VMASM translation

The compiler translates Boolean expressions in-
volving infix operations like IN AND TON2.Q by me-
ans of value testing and jumps. Hence the VMASM
translation begins with jump JZ to :?WARN?7AN10 la-
bel if IN is zero. If not, NOT of TON2.Q is evaluated
in 7LR7AN11 temporary variable, followed by anot-
her JZ to the same label if the variable is zero. If
not, MCD instruction sets 1 byte (first #01) at TON1.IN
to 1 (second #01), followed by unconditional JMP to
: 7WARN?7EA14. At the : 7WARN?AN10 label another MCD
sets TON1.INto O (#00). The third MCD at : 7WARN?7EA14

initializes TON1.PT (4 bytes, TIME) with #B80B000O,
i.e. 2000 ms (little endian form). Final CALB calls code
of TON1 block from IEC_61131 library. Value testing
and jumps could be avoided by writing the Boolean ex-
pression in function form as AND (IN,TON2.Q)).

Translation of TON2 call is similar. OUT statement
is translated in the same way as the expression for
TON1.IN.Optimization of the mnemonic translation to
minimize the number of temporary variables precedes
generation of binary code.

5. Binary Code and Virtual Machine
5.1. Assembling the Mnemonics

To generate the binary code, VMASM instructions
are defined in the LCF file by means of digital identi-
fiers vmcode composed of group ig and type it sub-
identifiers as shown in Fig. 4a. In case of functions
ig indicates name, so ADD, MUL, AND, EQ, etc., whereas
it refers to data type, BOOL, INT, TIME and so on.
In this way type-specific functions such as ADD: INT,
AND:BOOL and others may be expressed in digital form.
Fig. 4b (upper part) shows definition of AND:BOOL
where ig=08 denotes AND and it=*0 indicates BOOL
(0) and varying number of inputs (*).

All VMASM procedures belong to one group ig=1C
with it choosing specific procedure. Definition of MCD
that initializes data memory beginning from DST (des-
tination) relative label (:rdlab) with imm1 bytes (im-
mediate value) from the source imm2 of varying type
(%) is also in Fig. 4b (lower part).

ig it
group identifier | type identifier
(a)

<function name="AND" vmcode="08%0" return="BOOL">
<args>
<arg no="*" name="arg*" type="BOOL"/>
</args>
<comment>Binary AND of BOOL operands</comment>

</function>

<sysproc name="MCD" vmcode="1C15">
<args>
<arg no="0" name="DST" type=":rdlabel"/>
<arg no="1" name="imml" type=":imm.BYTE"/>
<arg no="2" name="imm2" type=":imm.*"/>
</args>
<comment>Initializes data at arg0 address with area
size argl and source pattern arg2.</comment>

</sysproc>

(b)

Fig. 4. a) Structure of vmcode, b) specification of
function and procedure

Having the file with VMASM mnemonics all pro-
gram modules are consolidated and assembled into bi-
nary code by replacing:

- instruction mnemonics by digital identifiers vimcode
(igand it)

- names of variables by addresses in data memory

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

- labels by addresses in code memory:.
Binary code assembled from the first four VMASM
instructions in Fig. 3 looks as follows:

1C02 0000 B90O
0510 0200 2100
1C02 0200 B90O
1C15 0800 0101

The vmcodes of JZ, NOT and MCD instructions are 1C02,
0510, 1C15, respectively. IN is allocated to address 0
in data memory, TON2.Q to 21 (hexadecimal), tem-
porary 7LR7AN11 to 2, and TON1.IN to 8. The label
: ?WARN?7AN15 indicates B9 in the code memory.

5.2. Virtual Machine

General architecture of CPDev virtual machine in-
volving code and data memories, instruction proces-
sing module, and target platform interface is shown in
Fig. 5. The module fetches instructions from code me-
mory, executes them acquiring operands from data or
code memories (variables or constants) and in case of
functions stores the results in data memory. Procedu-
res change internal state of VM. Target platform inter-
face in the generic VM consists of specifications of low-
level functions filled in by appropriate code while por-
ting. VM components are implemented as 16 or 32-bit
according to AddressSize.

Code Instruction processing Data
stack a7 module " stack
P
Code Data
memory memory
Target platform interface

Prototypes of low-level
functions

Fig. 5. General architecture of the virtual machine

Generic part of VM is written in standard C, so suits
any general purpose CPU. Note that the VMs mentio-
ned in Section 2 are mostly written in C. The VM ope-
rates as an interpreter executing successive lines of
code. Overloaded functions such as AND, MUL, GT, etc.
accept all meaningful data types. Variable number of
operands is handled by a for loop. A procedure indi-
cated by ig=1C is selected by switch(it) command.

Specifications of low-level functions included into
the generic VM are expressed by function prototypes
(empty), independent of CPU and hardware solution.
Initial set of prototypes has been presented in [54] ba-
sed on experience with multifunction instruments [7]
and industrial controllers. Some of the prototypes are
listed below:

- VMP_LoadConfiguration - loads task parameters
(cycle, number of POUs, etc.), binary code and allo-
cates memory for data

- VMP_PreRunConfiguration - initializes hardware
and stores the initial state (time, parameters)

- VMP_PreCycle - updates program variables from
external inputs before calculations, stores initial
state of system clock

- VMP_PostCycle - updates external outputs with re-
sults of calculations; if time is left triggers tests or
other activities

- VMP_CurrentTime - returns current value of system
clock to determine TIME variables.

In case of cycle time overrun, the VMP_PostCycle sets

a flag in the VM status. The VM checks the flag and ta-

kes appropriate steps (failure LED, safe outputs, etc.).

By assumption, the code that fills the prototypes
is written in C/C++ by implementation engineer and
consolidated with the generic VM. Some other har-
dware functions may be added.

Asindicated in the introduction the use of VM leng-
thens the execution cycle as compared to direct trans-
lation to machine code or to C/C++. To evaluate the
overhead, execution times of standard function blocks
such as flip-flops, edge detectors, counters and timers
have been measured, at first implemented in ST and
then in C by means of so-called native blocks (Sec. 7.1).
By average, the VM solution has turned out about four
times slower than translation to C/C++ [16], [53]. So
the use of native blocks reduces the overhead consi-
derably.

5.3. Runtime for Complex Software

The generic VM described above executes single
project involving one task. However, deployment of
a few VMs in a multi-core FPGA has been tested al-
ready [18], leading the way to development of multi-
project runtime needed for a supervisory computer or
software processing station. To make implementation
relatively simple it has been assumed that operating
system of the computer will take care of scheduling or
multitasking of the VMs.

This concept has been recently transferred into
runtime for industrial PC with Windows Embedded
operating system. The runtime is called WinController
and can execute complex software composed of pro-
jects run by corresponding VMs with different or the
same cycles. The VMs exchange data through global
variables. Field devices, namely PLCs, PACs, 1/0 cards
etc. are interfaced by means of special [/O and Data
adapters. The WinController is implemented as a ser-
vice in the Windows service system functionality. It
runs nonstop in the background and starts automati-
cally when the computer is switched on.

The service is configured by WinController Ma-
nager with relevant part of main window shown in
Fig. 6. Besides Service status, I/0 and Data adapters,
the window includes two VMs running AUTOPILOT
and HMI projects. Data exchange is configured by /0
mappings.

6. Graphical Translators and HMI Tool
6.1. LD and FBD Translators to ST

Although LD and FBD diagrams look different, CP-
Dev editors are similar partly due to the same A*

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

" CPDev:WinController Manager

EI--M CPDev::WinController localhost)
-, Service status

1/0 adapters

Data adapters

-y AUTOPILOT

i $=xy CPDev project

P _J| Control tasks
iz /0 mapping
=Py HMI

2 CPDev project
_i Control tasks
..-228 /0 mapping

Fig. 6. Configuration window of WinController Manager

pathfinding algorithm used for automatic connections
[19]. Translation replaces the connections by auxili-
ary local variables to display ’'live” diagrams in the
online mode. Actually the vertices of corresponding
AOV graph represent diagram elements whereas vir-
tual nodes denote connections. Each line of ST pro-
gram reflects the node.

Three-rung LD version of the running example fol-
lowed by ST translation of the first rung is shown
in Fig. 7. The auxiliary variables beginning with
out_contact_ are declared automatically in VAR . ..
END_VAR section. Besides the connections the varia-
bles represent branch points and outputs of function
blocks or functions.

out_contact_IN_80_80 := IN;

out_contact_TON2Q_140_80 := out_contact_IN_80_80 AND NOT TON2Q:

TON1 (IN:=out_contact_TON2Q 140_80,PT:=T
TON1Q := out_TONl_Q:

,G=>out_TON1_Q);

Fig. 7. FBD diagram and ST translation

FBD diagram and corresponding translation are
shown in Fig. 8. Here the prefix out_ indicates auxili-
ary variables. Except for such variables the translation
does not differ from the ST original in Fig. 3.

To make the automatically created connections
looking more or less like drawn "by hand” the original
A* algorithm has been extended to penalize path cros-
sings and direction changes [13]. Note also that after
each correction of the diagram the algorithm calcula-
tes all paths anew, so they may be alittle different than
before.

out_andl := AND(NOT out_TON2_Q, IN):

TON1 (IN:=out_andl, PT:=T Q=>out_TON1 Q)
TON2 (IN:=out_TON1_Q, PT:=T ,@=>out_TON2_Q):
out_and2 := AND(NOT out_TON1_Q, IN):

OUT := out_and2;

Fig. 8. LD diagram and ST translation

6.2. SFC Translation

SFC diagram for the running example is shown
in Fig. 9. Actions set or reset the OUT output. The
diagrams composed of steps, transitions, jumps, se-
quence selections and simultaneous sequences are
kept in memory as trees. The first three elements cre-
ate the last two. Actions bound to steps are defined by
qualifiers such as N Normal/Non-stored, S Set, R Reset,
L time Limited, D Delayed and other [22].

Init —N InitAction
— 1 Trans1
IN
Step2 ’»N Action2
| Trans2 Trans3
(Step2. T>=T#3s) AND IN NOT IN
Jump1
Init
Step3 N Action3
_ | Trans4 Trans5
(Step3.T>=T#2s) AND IN NOT IN
Jump2
Init
Jump3
Step2

Fig. 9. SFC diagram for the running example

Translation of SFC to ST is supported by
two system function blocks, SFC_STEP and
SFC_ACTION_CONTROL, connected as in Fig. 10.
The first one determines step activity according to the
next_step_flag. The outputs X, T indicate activity
and time elapsed since activation (see Fig. 9). By
means of the A output the second block triggers action
(code) bound to the step according to given qualifier.
This is provided by connecting the output X of the
first block to the input of the second block indicated
by the qualifier (N, S,R, L, D, ...).

ST translation of SFC diagram begins with
declarations of the instances of SFC_STEP and
SFC_ACTION_CONTROL, and next_step_flags.
PROGRAM section consists of three parts:

- activation of step blocks by next_step_flags

- execution of actions bound to active steps

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

next_step_flag

IN
SFC STEP

]
SRLD ..
SFC ACTION CONTROL

<—> 2

IF A THEN action_code
END_IF

Fig. 10. Execution of step-action pair

- setting next_step_flags by evaluation of transi-
tion conditions.
The first two parts correspond to Fig. 10 while the
last one creates the tree structure according to SFC
diagram. Simultaneous sequence may set/reset a few
next_step_flags by a single preceding transition.
As explained in [4], SFC diagrams may exhibit
unreachable and unsafe behaviour. Unreachability is
partially restricted by the editor but the designer’s
task is to avoid unsafe diagrams.

6.3. Human Machine Interface

Small control systems based on PLCs and PACs of-
ten include graphical operator panels. The panels may
be integrated with controllers, as in case of Horner,
Unitronix, Beckhoff and others.

HMI software for such panels consists of two parts
related to visualization and behaviour. Visualization
involves a set of displays built from graphic objects se-
lected from libraries. Behaviour is determined by HMI
programs that select displays and specify appearance
of the objects. To do so, relevant variables are exchan-
ged between the controller and panel. The variables
are bound to attributes of the objects during confi-
guration. If control and HMI programs belong to the
same project they access common global variables to
exchange data.

Features outlined above are provided in the envi-
ronment by CPVis tool involving a dedicated graphic
editor for defining displays, adding objects, moving
them, etc. Attributes of the objects are determined by
global variables or constants. XML data of the project
converted into binary code are used in the runtime en-
vironment where VM and CPVis runtime jointly pro-
vide control and HMI functions. Example of display for
power management at a ship is shown in Fig. 11.

By splitting the HMI software into device-
dependent and device-independent parts proposed
in [30], visualizations created by CPVis can be dis-
played by different devices, i.e. TFT or LCD panels,
monitors or tablets. The device-dependent parts are
specified by common prototypes of low-level drawing
functions called drawing primitives. Codes of graphic
objects call the prototypes by name only, so they
are device-independent, as depicted in Fig. 12. Two
drawing primitives concerning a rectangle are shown

SYSTEM HEALTHY

233 w
@-=-4

Hz [auTO

A Hr
pf Z
[__|

Fig. 11. TFT display for power management at a ship [43]

below:
- DrawRectangle: position, size, border color and
width

- FillRectangle: position, size, fill color.

By assigning a variable to FillRectangle’s size
the two primitives may create a bargraph. DrawArc,
FillPie,FillTriangle,ProcessValue are examples
of other primitives.

) CPVis Runtime
Device
independent
Graphic object library
(declarations & definitions)
A
; Drawing primitives
Device -
External graphic
dependent library

Fig. 12. Structure of the HMI tool

Implementation of CPVis for particular display de-
vice requires filling the drawing primitives with ap-
propriate code using the mechanisms and library spe-
cific for the device, for instance RamTex, GLCD or GDI+.
Custom graphic objects are created by writing the
code in C with calls of drawing primitives. Such ob-
jects can be displayed by another device provided that
the drawing primitives are prepared for it. Notice that
the concept of drawing primitives is similar to the pro-
totype functions specified for the target platform in-
terface (Sec. 5.2).

7. Communication and Implementations
7.1. Structure of Communication Data

By the original assumptions, the implementa-
tion engineers themselves develop configuration tools
while porting the environment to particular platforms
(along with target platform interfaces). To support
this the compiler-generated XML file (DCP extension),
besides binary code and VMASM mnemonics (for de-
bugging), also contains relevant data on global varia-
bles. The data are kept in VAR entities, such as those

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

in Fig. 13 for IN and OUT variables from the running
example. The successive entries denote:
- LName - local name inside current variable scope

- PName - physical name including project name scope

- Addr - hexadecimal address (16-bit version in
Fig. 13)

- AddrType - address type; :gdlabel means global
data label

- Size - variable size in bytes
- Type - variable type

- PType - physical type; $Default scope involves sy-
stem elements

- VarFlags - flags related to variable.

Variables imported from libraries have
LIBRARY.VARIABLE as physical name to avoid con-
flicts. Besides elementary types, AddrTypes include
data label relative to current POU (:rdlabel), global
or relative labels to code (:gclabel, :rclabel),
array and structures indicated by 7ARRAY?NUM and
?STRUCT?NUM (unique NUM). Flags involve: 1 - retain,
4 - constant, 8 - variable with address defined by
AT, 0x4000 - global, 0x800000 - data channel. Other
flags may be defined.

<VAR LName="IN" PName="RevSwitchST.IN" Addr="0000"
AdrType="gdlabel" Size="1" Type="BOOL"
PType="$DEFAULT.BOOL" VarFlags="00004000" />

<VAR LName="QUT" PName="RevSwitchST.0UT" Addr="0001"
AdrType="gdlabel" Size="1" Type="BOOL"
PType="$DEFAULT.BOOL" VarFlags="00004000" />

Fig. 13. <VAR> entities in the DCP file

Depending on software solution, local or physical
names and addresses may be used by configuration
tools to bind variables to interfaces. The original pa-
per [7] presented CPCon tool to interface remote 1/0s
by means of physical data. Local data sufficed to con-
figure SCADA InTouch for supervisory PC.

An OPC server can also be designed given XML DCP
file. In fact, simple server adapted from publicly avai-
lable LightOPC [33] is built-in into the CPDev softcon-
troller.

Besides the DCP-based configuration tool a few va-
riables can be interfaced to dedicated external ports
by using native block concept (as in Java Native Inter-
face or .NET Platform Invoke). It was originally descri-
bedin [54] and applied for GPS module with NMEA se-
rial communication. Native blocks are function blocks
written in C/C++ but, unlike typical function blocks,
they are deployed on the target platform as compo-
nents of the VM, similarly as the target platform inter-
face. To some extent they resemble hardware blocks
from multifunction instruments. Software algorithms
implemented as C/C++ native blocks are executed
much faster than blocks written in I[EC 61131-3 lan-
guages (Sec. 5.2).

7.2. Characteristic Implementations

As may be concluded from above, the implementa-
tion engineer can port CPDev environment to particu-
lar platform after development of:

- target platform interface

- communication and I/0 configuration tool

- deployment module to upload the binary code and
configuration data into the controller.
Upgrading existing devices such as dedicated con-
trollers, distributed 1/0 units or data loggers with
IEC 61131-3 capabilities has been the main purpose
of the implementations so far. Therefore the engineers
could use major portions of low-level software while
porting. Deployment has involved Ymodem for serial,
ftp or tftp for Ethernet and GSM/GPRS for wireless.
Power management, propulsion control, heading
control and other subsystems belonging to Mega-
Guard ship automation and navigation system from
Praxis [43] are most significant implementations of
CPDev. Each subsystem involves a control processor,
[/0 unit (units) and TFT touch-panel (as in Fig. 11), all
of them equipped with ARM CPUs. CAN is applied for
communication with I/0 and Ethernet (redundant)
for TFT. The processor for controlling a setup com-
posed of diesel engine, electric generator and circuit
breaker is shown in Fig. 14. Praxis software is writ-
ten in ST. TFT displays consist of components from
user-defined libraries. NMEA serial /Ethernet protocol
is used by marine electronic devices.

CONSUMER BLOCK
ACCEPT 1

CONSUMER BLOCK

CONSUMER BLOCK
REQUEST 1
CONSUMER BLOCK
REQUEST 2 ACCEPT 2
CONSUMER BLOCK CONSUMER BLOCK
REQUEST 3 ACCEPT 3
—

SAFETY SYSTEM
SHUTDOWN
BUS TIE CLOSED PREFERENTIAL

(GX AND GX-1) TRIP 1

CB OPEN PREFERENTIAL
ALL GENERATORS TRIP 2

D))

PP

35

=)=

=

e
%%

=
=

1

R

EIEIEIEI)E)
PG PO

REV. POWER TRIP
c8
SHORT CIRCUIT TRIP
CB
STATUS
ENGINE
RUNNING
ENGINE
START FAIL
READY
T0 START
SWBD|PMS
SELECT
ENGINE
REMOTE CTRL

ABNORMAL TRIP
B
AUTO SYNC. FAIL
cB
CLOSE
cB
OPEN
ENGINE
INC. SPEED
ENGINE
DEC. SPEED
ENGINE
START
ENGINE
STOP

=

= CHECEE CEECHE
[~ [)

™

‘sacoDE LaBeL PRODUCT LABEL

CURRENT L1
GENERATOR VOLTAGE
GENERATOR

CURRENT L2
GENERATOR

VOLTAGE
CURRENT L3 BUSBAR
GENERATOR

Fig. 14. Power management processor [43]

Substation automation and medium voltage Grid
control is provided by Remote Telecontrol Units
(RTUs) from iGrid T&D [24] shown in Fig. 15. RTUs
consist of ARM processor, [/O board and communi-
cation interfaces for a number protocols including

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

IEC 60870 and 61850 dedicated for power systems.
Documentation generation with complicated FBD and
LD diagrams is important.

Fig. 15. Remote Telecontrol Unit [24]

Mini-DCS system from LUMEL described in [7]
was the first domestic implementation of CPDev (also
found in Philippines [25]). StTr-PLC controller from
NiT [37] for control of communal facilities distributed
over large area, such as water supplies, heating stati-
ons or sewage pumps, is another one. StTr-PLCs are
monitored by GSM/GPRS integrated communication
platform also used for mobile applications. Recently
developed PLC1 controller from BartCom [3] with lo-
cal or distributed I/Os (Modbus, Profibus) is dedicated
for intelligent homes and general automation.

8. Conclusions

Technical aspects of current features of CPDev
multi-platform engineering environment have been
presented. The runtime is based on virtual machine
executing intermediate VMASM code into which ST
and IL programs are compiled. Programs written in
graphical languages are translated into ST. Parame-
trization of the compiler and VM for commonly used
16- and 32-bit addressing and for eventual restriction
of data types is provided by the Library Configura-
tion File. Implementations on diverse hardware plat-
forms are supported by prototypes of low-level functi-
ons introduced into the generic VM. HMI projects split
into device-independent and device-dependent parts
may be displayed by different devices. General pur-
pose XML file with compiler-generated data on glo-
bal variables support configuration of communicati-
ons and I/0s. Native blocks may considerably decre-
ase the VM overhead. Implementations have shown
that equipment manufacturers themselves are able to
port the environment to relevant devices.

Object-oriented programming and moving the
multi-project runtime into multi-core processors,
with each core executing a single project, are currently
under investigation.

AUTHORS

Dariusz Rzonca* - Department of Computer and Con-
trol Engineering, Rzeszow University of Technology,
ul. W. Pola 2, 35-959 Rzeszow, Poland, e-mail: dr-
zonca@kia.prz.edu.pl.

Jan Sadolewski - Department of Computer and
Control Engineering, Rzeszow University of Techno-
logy, ul. W. Pola 2, 35-959 Rzeszow, Poland, e-mail:
js@kia.prz.edu.pl.

Andrzej Stec - Department of Computer and Con-
trol Engineering, Rzeszow University of Technology,
ul. W. Pola 2, 35-959 Rzeszow, Poland, e-mail: as-
tec@kia.prz.edu.pl.

Zbigniew Swider - Department of Computer and
Control Engineering, Rzeszow University of Techno-
logy, ul. W. Pola 2, 35-959 Rzeszow, Poland, e-mail:
swiderzb@kia.prz.edu.pl.

Bartosz Trybus - Department of Computer and Con-
trol Engineering, Rzeszow University of Technology,
ul. W. Pola 2, 35-959 Rzeszow, Poland, e-mail: btry-
bus@kia.prz.edu.pl.

Leszek Trybus - Department of Computer and Con-
trol Engineering, Rzeszow University of Technology,
ul. W. Pola 2, 35-959 Rzeszow, Poland, e-mail: ltry-
bus@kia.prz.edu.pl.

*Corresponding author

ACKNOWLEDGEMENTS

Help from Marcin Jamro a few years ago is ackno-
wledged.

This project is financed by the Minister of Science
and Higher Education of the Republic of Poland within
the "Regional Initiative of Excellence” program for ye-
ars 2019 - 2022. Project number 027 /RID/2018/19,
total amount granted 11 999 900 PLN.

REFERENCES

[1] 3S-Smart Software Solutions GmbH. “CODESYS”.
www . codesys. com. Accessed on: 2020-02-28.

[2] Axel S.rl. “Logiclab”. www.axelsoftware.it/
en/. Accessed on: 2020-02-28.

[3] Bart-Com.
2020-02-28.

[4] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell.
“A Unifying Semantics for Sequential Function
Charts”. In: H. Ehrig, W. Damm, J. Desel, M. Grof3e-
Rhode, W. Reif, E. Schnieder, and E. Westkamper,
eds., Integration of Software Specification Techni-
ques for Applications in Engineering: Priority Pro-
gram SoftSpez of the German Research Founda-
tion (DFG), Final Report, Lecture Notes in Com-
puter Science, 400-418. Springer, Berlin, Heidel-
berg, 2004, 10.1007/978-3-540-27863-4_22.

[5] S. Cavalieri, G. Puglisi, M. S. Scroppo, and
L. Galvagno, “Moving IEC 61131-3 applicati-
ons to a computing framework based on CLR

www.bart-com.pl. Accessed on:

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Virtual Machine”. In: 2016 IEEE Z21st In-
ternational Conference on Emerging Technolo-
gies and Factory Automation (ETFA), 2016, 1-8,
10.1109/ETFA.2016.7733632.

M. Chmiel and E. Hrynkiewicz, “Concurrent ope-
ration of processors in the bit-byte CPU of a PLC”,
Control and Cybernetics, vol. 39, no. 2, 2010, 559-
579.

J. Cisek, W. Mikluszka, Z. Swider, and L. Try-
bus, “A Low-Cost DCS with Multifunction Instru-
ments and CAN Bus1”, IFAC Proceedings Volumes,
vol. 34, no. 29, 2001, 64-69, 10.1016/S1474-
6670(17)32794-5.

K. D. Cooper and L. Torczon, Engineering a
Compiler, Morgan Kaufmann: Boston, 2012,
10.1016/C2009-0-27982-7.

COPA-DATA France. “STRATON-PLC”. www.
straton-plc.com. Accessed on: 2020-02-28.

W. Dai, V. Vyatkin, J. H. Christensen, and V. N.
Dubinin, “Bridging Service-Oriented Architec-
ture and IEC 61499 for Flexibility and In-
teroperability”, IEEE Transactions on Industrial
Informatics, vol. 11, no. 3, 2015, 771-781,
10.1109/TI1.2015.2423495.

G. De Tommasi and A. Pironti, “An educational
open-source tool for the design of [EC 61131-3
compliant automation software”. In: Automation
and Motion 2008 International Symposium on Po-
wer Electronics, Electrical Drives, 2008, 486-491,
10.1109/SPEEDHAM.2008.4581144.

G. Fen and W. Ning, “A Transformation Algorithm
of Ladder Diagram into Instruction List Based
on AOV Digraph and Binary Tree”. In: TENCON
2006 - 2006 IEEE Region 10 Conference, 2006, 1-
4,10.1109/TENCON.2006.343937.

E. Ferreira, R. Paulo, C. D. Da, and P. Henriques,
“Integration of the ST language in a model-based
engineering environment for control systems:
An approach for compiler implementation”, Com-
puter Science and Information Systems, vol. 5, no.
2,2008,87-101, 10.2298/CSIS0802087F.

].-Y. Fiset, Human-machine interface design for
process control, Instrumentation, Systems, and
Automation Society: Research Triangle Park, NC,
2009.

P. Gaj, J. Jasperneite, and M. Felser, “Compu-
ter Communication Within Industrial Distribu-
ted Environment—a Survey”, IEEE Transactions
on Industrial Informatics, vol. 9,no. 1,2013, 182-
189,10.1109/TI1.2012.2209668.

GEB Automation. “GEB IDE". WWW .
gebautomation.com. Accessed on: 2020-02-28.

P. Gsellmann, M. Melik-Merkumians, and G. Schit-
ter, “Comparison of Code Measures of IEC
61131-3 and 61499 Standards for Typical Au-
tomation Applications”. In: 2018 IEEE 23rd In-
ternational Conference on Emerging Technolo-

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

gies and Factory Automation (ETFA), vol. 1,2018,
1047-1050, 10.1109/ETFA.2018.8502464.

Z. Hajduk, B. Trybus, and]. Sadolewski, “Archi-
tecture of FPGA Embedded Multiprocessor Pro-
grammable Controller”, IEEE Transactions on In-
dustrial Electronics, vol. 62, no. 5, 2015, 2952-
2961, 10.1109/TIE.2014.2362888.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A For-
mal Basis for the Heuristic Determination of Mi-
nimum Cost Paths”, IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, 1968, 100-
107,10.1109/TSSC.1968.300136.

L. Huang, W. Liu, and Z. Liu, “Algorithm of trans-
formation from PLC ladder diagram to structu-
red text”. In: 2009 9th International Conference
on Electronic Measurement Instruments, 2009, 4-
778-4-782,10.1109/ICEMI1.2009.5274701.

ICS Triplex. “ISaGRAF”.
Accessed on: 2020-02-28.

IEC. “IEC 61131-3 - Programmable controllers -
Part 3: Programming languages”, 2013.

IEC. “IEC 61499 - Function Blocks”, 2012.

www.isagraf.com.

iGrid T&D. www.igrid-td.com. Accessed on:
2020-02-28.

Instrument Science Systems, Inc. www.issi.

com.ph/. Accessed on: 2020-02-28.

H. L. Inzunza Villagémez, B. Pérez Arce, S. L
Hernandez Ruiz, and J. A. Lopez Corella, “De-
sign and implementation of a development en-
vironment on ladder diagram (HT-PLC) for Ar-
duino with Ethernet connection”. In: 2018 IEEE
International Conference on Automation/XXIII
Congress of the Chilean Association of Automa-
tic Control (ICA-ACCA), 2018, 1-6, 10.1109/ICA-
ACCA.2018.8609850.

M. Jamro, “POU-Oriented Unit Testing of IEC
61131-3 Control Software”, IEEE Transactions on
Industrial Informatics, vol. 11, no. 5,2015,1119-
1129,10.1109/TI1.2015.2469257.

M. Jamro and D. Rzonca, “Agile and hierarchical
round-trip engineering of IEC 61131-3 control
software”, Computers in Industry, vol. 96, 2018,
1-9,10.1016/j.compind.2018.01.004.

M. Jamro, D. Rzonca, and W. Rzasa, “Testing com-
munication tasks in distributed control systems
with SysML and Timed Colored Petri Nets mo-
del”, Computers in Industry, vol. 71, 2015, 77-87,
10.1016/j.compind.2015.03.007.

M. Jamro and B. Trybus, “IEC 61131-3 program-
mable human machine interfaces for control de-
vices”. In: 2013 6th International Conference on
Human System Interactions (HSI), 2013, 48-55,
10.1109/HS1.2013.6577801.

H. S. Kim, J. Y. Lee, and W. H. Kwon, “A com-
piler design for IEC 1131-3 standard langua-
ges of programmable logic controllers”. In:

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°4 2019

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

SICE ’99. Proceedings of the 38th SICE An-
nual Conference. International Session Papers
(IEEE Cat. No.99TH8456), 1999, 1155-1160,
10.1109/SICE.1999.788715.

Y. Lee, J. Jeong, and Y. Son, “Design and imple-
mentation of the secure compiler and virtual ma-
chine for developing secure 10T services”, Fu-
ture Generation Computer Systems, vol. 76,2017,
350-357,10.1016/j.future.2016.03.014.

Light OPC Server. www.ipi.ac.ru. Accessed on:
2020-02-28.

D. Massonie, C. Hacker, and T. Sowa, “Modeling
Graphical and Speech User Interfaces with Wid-
gets and Spidgets”. In: Speech Communication;
11. ITG Symposium, 2014, 1-4.

A. Milik, “Multiple-Core PLC CPU Implementa-
tion and Programming”, Journal of Circuits, Sy-
stems and Computers, vol. 27, no. 10, 2018,
1850162, 10.1142/S0218126618501621.

A. Milik and E. Hrynkiewicz, “Distributed PLC Ba-
sed on Multicore CPUs - Architecture and Pro-
gramming”, [FAC-PapersOnlLine, vol. 49, no. 25,
2016,1-7,10.1016/j.ifacol.2016.12.001.

Nauka i Technika. www.nit.pl. Accessed on:
2020-02-28.

nxtControl GmbH. www.nxtcontrol.com/.
Accessed on: 2020-02-28.

M. Okabe, “Development of processor directly
executing IEC 61131-3 language”. In: 2008
SICE Annual Conference, 2008, 2215-2218,
10.1109/SICE.2008.4655032.

OMG. “OMG Systems Modeling Language, V1.3”,
2012.

L. B. Palma, V. Brito, J. Rosas, and P. Gil, “WEB PLC
simulator for ST programming”. In: 2017 4th Ex-
periment@International Conference (exp.at’17),
2017,303-308,10.1109/EXPAT.2017.7984410.

C. G. Penteado, E. D. Moreno, and F. D. Pereira,
“A microcontroller multicore in FPGAs: detailed
architecture and case studies of embedded cri-
tical applications”, International Journal of Grid
and Utility Computing, vol. 8, no. 3, 2017, 169,
10.1504/1JGUC.2017.087815.

Praxis Automation Technology B.V. WWW .
praxis-automation.nl. Accessed on: 2020-
02-28.

L. Pérez Caceres, F. Pagnozzi, A. Franzin, and
T. Stiitzle, “Automatic Configuration of GCC
Using Irace”. In: E. Lutton, P. Legrand, P. Par-
rend, N. Monmarché, and M. Schoenauer, eds.,
Artificial Evolution, Cham, 2018, 202-216,
10.1007/978-3-319-78133-4_15.

J. Quiroga and F. Ortin, “SSA Transformations to
Facilitate Type Inference in Dynamically Typed
Code”, The Computer Journal, vol. 60,n0.9, 2017,
1300-1315, 10.1093/comjnl/bxw108.

[46]].Richter, CLR via C#, Microsoft Press: Redmond,
Washington, 2012.

[47] D.Rzonca,].Sadolewski, A. Stec, Z. Swider, B. Try-
bus, and L. Trybus, “Mini-DCS system program-
ming in IEC 61131-3 structured text”, Journal of
Automation Mobile Robotics and Intelligent Sys-
tems, vol. 2, no. 3, 2008, 48-54.

[48] S. Shin, M. Kwon, and S. Rho, “Whimori CDK:
A Control Program Development Kit”. In:
Engineering and Information 2009 Internatio-
nal Conference on Computing, 2009, 115-118,
10.1109/1CC.2009.33.

[49] H. Simon and S. Kowalewski, “Static analy-
sis of Sequential Function Charts using ab-
stract interpretation”. In: 2016 IEEE 21st In-
ternational Conference on Emerging Technolo-
gies and Factory Automation (ETFA), 2016, 1-4,
10.1109/ETFA.2016.7733648.

[50] T. Skripcak, P. Tanuska, U. Konrad, and
N. Schmeisser, “Toward Nonconventional
Human-Machine Interfaces for Supervisory
Plant Process Monitoring”, IEEE Transactions on
Human-Machine Systems, vol. 43, no. 5, 2013,
437-450,10.1109/THMS.2013.2279006.

[51] VDI/VDE 3699 Process control using display
screens, 2015.

[52] K. Thramboulidis, “A cyber-physical system-
based approach for industrial automation sys-
tems”, Computers in Industry, vol. 72, 2015, 92-
102,10.1016/j.compind.2015.04.006.

[53] E. Tisserant, L. Bessard, and M. de Sousa, “An
Open Source IEC 61131-3 Integrated Develop-
ment Environment”. In: 2007 5th IEEE Internati-
onal Conference on Industrial Informatics, vol. 1,
2007,183-187,10.1109/INDIN.2007.4384753.

[54] B. Trybus, “Development and Implementation
of IEC 61131-3 Virtual Machine”, Theoretical
and Applied Informatics, vol. 23, no. 1, 2011,
10.2478/v10179-011-0002-z.

[55] B. Venners, Inside the Java Virtual Machine,
McGraw-Hill: New York, 1997.

[56] B.Vogel-Heuser, D. Schiitz, T. Frank, and C. Legat,
“Model-driven engineering of Manufacturing Au-
tomation Software Projects - A SysML-based ap-
proach”, Mechatronics, vol. 24, no. 7, 2014, 883-
897, 10.1016/j.mechatronics.2014.05.003.

[57] M. Zhang, Y. Ly, and T. Xia, “The Design and Im-
plementation of Virtual Machine System in Em-
bedded SoftPLC System”. In: 2013 International
Conference on Computer Sciences and Applicati-
ons, 2013, 775-778,10.1109/CSA.2013.185.

[58] C.Zhou and H. Chen, “Development of a PLC Vir-
tual Machine Orienting I[EC 61131-3 Standard”.
In: 2009 International Conference on Measuring
Technology and Mechatronics Automation, vol. 3,
2009, 374-379,10.1109/ICMTMA.2009.422.

[59] R. Zurawski, ed. Industrial Communication
Technology Handbook, Industrial information

Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13,

N° 4

2019

technology series, CRC Press, Taylor & Francis
Group: Boca Raton London New York, 2015.

