
22

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Design of Control Algorithms for Mobile Robots
in an Environment with Static and Dynamic Obstacles

Robert Piotrowski, Bartosz Maciąg, Wojciech Makohoń, Krzysztof Milewski

Submitted: 23rd April 2019; accepted: 20th December 2019

DOI: 10.14313/JAMRIS/4-2019/34

Abstract: This article proposes the construction of
autonomous mobile robots and designing of obstacle
avoidance algorithms for them. Nowadays, mobile robots
are gaining more and more popularity on the customer
as well as industrial market, for example as automatic
vacuum cleaners or lawnmowers. Obstacle avoidance
algorithms play an important role in performance of
this types of robots. The proposed algorithms were
designed for builds with rather not expensive electronic
components, especially sensors with limited precision
and dynamics. The project began with the selection of
needed parts and building materials as well as designing
of the PCB and assembling the whole construction.
The project included also designing and developing the
software responsible for, among others, implementation
of obstacle avoidance algorithms. After the project’s
completion, a series of tests in a closed environment was
conducted to verify the quality of vehicles’ performance.
Results of tests were positive.

Keywords: obstacle avoiding, control system, software
development, mobile robot, mechatronics

1.	 Introduction
Autonomous vehicles find frequent use in various

fields of human life as aid or substitution of a labor-
er in dangerous, hard or wearisome work conditions.
Besides that, they are also used in the industry, mil-
itary or consumer markets, e.g. package delivery,
surveillance by unmanned aerial vehicles (UAV) or
toys. Primary features of autonomous vehicles are:
independence in decision-making, collecting and pro-
cessing data about surrounding environment and in-
fluence on that environment [1].

Necessity of work in unknown or dynamically
changing environment as well as the purpose of elim-
inating human’s participation in work, have made it
necessary to develop effective obstacle avoidance
algorithms [2]. Robots equipped with these systems
can easily pass by obstacles, both static and dynamic,
situated on their path.

Popular nowadays robotic vacuums are an exam-
ple of this kind of vehicles [3]. Due to their small di-
mensions they are able to reach areas that are diffi-

cult to access. Variety of models are available to use,
starting with simple ones containing only the vacuum
cleaner function, up to multifunctional cleaning ro-
bots. Many of them use advanced systems like creat-
ing a virtual map of the room, optimizing energy drain
needed to cover the work area as well as communica-
tion systems allowing the supervisory control of the
vehicle by mobile application. Obviously it is neces-
sary for those robots to be able to avoid obstacles not
to damage household appliances, furniture and own
construction.

Another example of use of autonomous vehicles
is terrain exploration. The Curiosity Rover made by
NASA has been sent to Mars to survey its surface to
analyze soil and rock composition and to search for
water and minerals [4]. It is also a scientific research
station measuring and processing collected data.
Avoidance of obstacles and moving in hard, uneven
and rocky environment is a key aspect of its proper
functioning.

Autonomous vehicles also find use in the indus-
try. For example, Amazon branches are using mobile
robots to aid workers [5]. Machines independently
search for specific packages and then carry them
to the demanded place using special lifts. They are
able to transport weights up to 340 kg and signifi-
cantly accelerate the work, freeing laborers of need
for searching and carrying heavy packages. With
this in mind, it is essential for robots to avoid ob-
stacles and other machines so that they can work
effectively.

The paper is organized as follows. In the second
section, the realization of mobile robots and board
is described. The design of control algorithms is pre-
sented in the third section. The fourth section propos-
es software development. Verification tests results
are given in Section 5. The last section presents the
conclusions.

2.	 Realization of Mobile Robots and the
Board

To begin with, it was necessary to set goals for
construction of mobile robots. Requirements for them
were as follows: small dimensions, agility, low power
consumption and ability to gather data from the en-
vironment. Moreover, the goal was to design effective
control methods and obstacle avoidance algorithms

23

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles 23

them into electric impulses, further sent to the micro-
processor. Due to CPUs limitations, only information
about quantity of rotations is gathered and data about
its direction is overlooked. The direction is calculated
programmatically. Resolution of outputs is also limit-
ed to 6 impulses per rotation. Connections of motor
controller have been presented in Figure 3. Pins labe-
led as M1+, M1-, M2+ and M2- are directly connected
to motors.

Fig. 3. Part of the scheme with motors’ controller

The following part is measuring equipment. Three
optical sensors were chosen. They work in range of 4
– 30 centimeters. One of them is settled in the middle
of the front edge of the PCB and two on both sides of
it, rotated by 15 degrees. Each of the sensors has been
connected in a manner shown in Figure 4.

Fig. 4. Part of the scheme with connections of optical
sensor

The last part is communication. The connection
between robots and other devices is provided by the
UART module or Bluetooth module. Also, LED diodes
were mounted, which can be programmed to inform
the user about the current machine state. Due to
a mismatch in voltage standards (3.3 V for Bluetooth
module and 5 V for ATmega microcontroller), the
signal coming from CPU has to be passed through
a voltage divider, to lower the voltage to roughly 3.3
V. There is no need to boost the voltage of a signal
coming from module to CPU, since 3.3 V is already
interpreted as a high state in 5 V standard logic. The
connections of the Bluetooth module are shown in
Figure 5.

Next stage was the PCB design project. The board
is the chassis of the robot, all electrical and mechani-
cal parts are mounted on it. The dimensions are 90.15
mm by 88.57 mm (length, width). Projects of upper
and bottom layer were prepared using the EAGLE
software (see Figures 6-7).

which would be implemented in digital hardware
with small costs.

All electric schematics were made using the Com-
puter Aided Design (CAD) software – Eagle. The pro-
ject of the machine was divided into a few parts con-
taining elements responsible for various features. The
central processing unit (CPU) is an 8-bit microcon-
troller from ATmega series. The main part consists
of previously mentioned CPU as well as all necessary
components such as quartz resonator, passive voltage
filters and reset pull-up resistor. Memory capacity of
CPU is 32 kilobytes, which is enough to sustain soft-
ware features. It allows processing of gathered data
and realization of control algorithms. The part of the
electric scheme presenting CPU and all its connec-
tions is shown in Figure 1. Connections labeled as IA1,
IA2, IB1 and IB2 are Pulse-Width Modulation (PWM)
channels controlling motors’ speeds and direction.

Fig. 1. Part of the scheme with CPU

The second part of project scheme is the power
supply. It contains a voltage regulator, a Li-Pol (Li
thium-polymer) battery pack and a LED (Light Emit-
ting Diode) informing about power supply set on. The
used accumulator provides high current efficiency
and a long lifespan level. This part of the scheme is
presented in figure 2.

Fig. 2. Part of the scheme with voltage regulation

The next part are motors, their controller and
encoders. Two DC motors settled at the back of con-
struction are controlled with a dedicated module.
Encoders count spins of motors shafts and convert

24

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles24

Fig. 5. Part of the scheme with connections of the
Bluetooth module

Fig. 6. Upper layer of the board

Fig. 7. Bottom layer of the board

Fig. 8. Render of the robot model

After that part of design has been completed,
a simplified 3D model of the robot was made using
Autodesk Inventor environment. Imported files of
PCB were the base to be supplemented by other el-
ements, such as motors, wheels and optical sensors.
Figure 8 shows a render of the robot model.

After the design stage was completed, the con-
structions of robots were prepared. The final effect of
the assembled robot is shown in Figures 9-10.

Fig. 9. Front view of the mobile robot

Fig. 10. Top view of the mobile robot

The working area is limited to provide an easier
control of their work and eliminates part of external
factors such as smoothness and surface texture which
may actually affect performance. The working area
also had to be big enough to freely test the behavior
of robots controlled by implemented avoidance algo-
rithms.

Static obstacles were spatial elements of different
shape and size, settled on the surface of the robots
working area. Design of the board was also prepared
with CAD software – Autodesk Inventor. It is a square
of 1.25 m side length, which gives 1.5625 m2 of place
to work with. The height of boarding walls is 15 cm.
After designing the board, a 3D model was prepared
(see Figure 11).

Final construction was made with laminated chip-
board, which is a universal, cheap material easy to
process further. The base is separated into two parts.
The walls are made with single parts. Everything is
assembled with screws. Figure 12 presents the as-
sembled board.

25

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles 25

Fig. 11. Render of the board

Fig. 12. Assembled board

3.	 Design of Control Algorithms
The purpose of each obstacle avoidance algorithm

is to analyze data coming from sensors and, based on
that, adjust the direction of vehicle’s movement so the
robot remains on a safe, non-colliding path. Chang-
ing the vehicle’s movement is achieved by changing
speeds of both motors.

Each motor is controlled by a PWM signal. Changing
its speed is obtained by changing the duty cycle (the
higher the duty cycle, the higher the speed). Although
motors that were used are exactly the same model, pro-
duced by the same company, they reach different angu-
lar speeds with the same control signal applied. This
issue causes the vehicle to move on a curve instead of
a straight line. Hence, creating a speed controller that
would help reach and maintain a desired speed be-
comes essential. A classical PI controller has been ar-
bitrarily chosen for this purpose. It allows for a short
settling time and eliminates the steady state error [6].
The derivative term has not been used in order to avoid
disturbance amplification which would have a signifi-
cant effect on control quality, especially when consid-
ering the low resolution of encoders. Coefficients of the
controller have been chosen experimentally.

The structure of controlling vehicles has been
split into two modules (see Figure 13). A high-level
module is a currently active obstacle avoidance algo-
rithm which is, among others, setting speeds for both
motors. A low-level module is a PI speed controller,
which is responsible for reaching and maintaining
a certain speed, set by the other module.

where Vset refers to velocity set point, V is the cur-
rent vehicle’s velocity and V* is velocity measured by
equipment. Signals e, u and ω refer to error, control
signal and motor’s angular speed respectively. Z is the
disturbance signal.

Fig. 13. Structure of vehicles’ control

Two obstacle avoidance algorithms were imple-
mented and tested. The first one is based on a simple
set of rules. A vehicle can be in one of three states
available – “Move forward”, “Stop” or “Turn right”.
Transitions between these states are determined
by current sensor readings, whether or not any ob-
stacle has been detected within the sensors’ range.
This algorithm has been called the Rule Set [7]. An
illustration depicting its functioning is presented in
Figure 14.

Fig. 14. Rule Set principle

The second algorithm is based on searching new
path by calculating the derivative of arithmetic mean
of measured distances. When an obstacle is detected
within the specified range, the vehicle starts turning
around, scanning the environment and calculating the
difference between current and previous readings’
mean. The scanning is finished when the derivative is
small enough which means that the longest path with-
out any obstacles has been found.

26

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles26

In an ideal situation the longest path would be
found if the derivative was equal to 0. However, in
practical terms it is impossible due to the noise com-
ing from sensors and floating point precision.

It is also worth mentioning that, from the math-
ematical perspective, the path that has been found
is a local maximum but not necessarily a global one.
This approach may not find the longest possible path,
but works significantly faster and adds smoothness to
the vehicle’s movement. The discussed algorithm has
been called the Derivative Search. An illustration de-
picting its functioning is presented in Figure 15.

Fig. 15. Derivative Search principle

4.	 Software Development
Software itself is a key part of the presented work.

It includes many aspects such as choosing the right
platform and Software Development Kit (SDK) relat-
ed to it, developing a unified Application Program-
ming Interface (API) which makes teamwork much
more comfortable, implementing obstacle avoidance
algorithms and implementing communication via
Bluetooth.

Arduino has been chosen as the platform [8]. It’s
a widely used, well documented platform, supporting
many different microcontrollers and has a large base
of libraries, simplifying usage of various peripherals.
Arduino platform allows to write code in both C and
C++ languages, which means it supports usage of Ob-
ject Oriented Programming [9].

When it comes to IDE, one could potentially use
Arduino IDE, but despite its advantages and simplicity
of use it also has its flaws, making code management
harder, especially in more advanced projects. That’s
why it was decided to use Atom with PlatformIO ex-
tension [10]. It is an open-source project, developed
by the community which supports microcontrollers
based on the Arduino platform. Contrary to Arduino
IDE, it allows to create a complex project tree, pro-
vides code-hints and autocompletion and supports
Git source control [11].

Concerning implementation of obstacle avoid-
ance algorithms, two most important peripherals
are motors and sensors. An API has been created for
both of these. Each peripheral has its own, dedicated
class, located in a separate header file. A class expos-
es a public interface containing only a few methods
with self-explanatory names, therefore, introducing
a new level of abstraction. All low-level logic is en-
capsulated and contains actions such as configura-
tion of proper physical ports, receiving or transmit-
ting electrical signals on corresponding ports. Public
interfaces of these classes have been presented on
Listings 1a and 1b.

Listing 1. Public interfaces responsible for:
sensors

void Begin(byte pin);
int GetVoltage();
float GetDistance();

motors
void Begin(byte colour, byte side);
void SetPWM(int duty);
long GetEncoderTicks();

Used sensors have nonlinear voltage-distance char-
acteristics. In order to achieve the distance measured
given in the SI units, the approximation of character-
istics has been made, with the following model [12]:

	 = ∗ ∗ + ∗ ∗exp([]) exp([])L a b u k c d u k 	 (1)

where L is the distance given in centimeters, u[k] is
an output signal from A/D converter and a, b, c, d are
coefficients.

Coefficients of this model were calculated using
MATLAB’s Optimization Toolbox and are equal to:
a = 71.83; b = -0.016; c = 16.99; d = -0.00283.

In order to compare averaged data collected with
the model, a standard deviation of error has been cal-
culated. Its value was equal to 0.0136 which has been
considered satisfying. A visual comparison between
the mathematical model and averaged data collected
from sensors is presented in the Figure 16.

Fig. 16. The curve fitted to measurement points

After finishing the fundamental elements of a soft-
ware, the next step was to define the program’s core
structure. The main goal was to create software ar-
chitecture that would allow to introduce separation

27

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles 27

of concerns as well as to help write clean, readable
and maintainable code and make it more extensible.
In particular, implementing a new obstacle avoidance
algorithm should have no impact on existing and al-
ready tested code.

In order to separate concerns and meet the Single
Responsibility Principle, a structure called the Result
has been created [13]. This structure is created and
returned by current algorithm in its every iteration
and contains information about desired motor speeds
and Light Emitting Diodes (LED) states.

Furthermore, to meet the extensibility require-
ment, an abstract class, called ObstacleAvoidanceAl-
gorithm has been created. This is a base class for all
other classes that implement the algorithms. It con-
tains two abstract methods (Run and SetLEDs) that
define the functionality of a specific algorithm as well
as implementation of all common features for algo-
rithms. In addition, each algorithm has its field of view
range and hysteresis defined in order to reduce the
impact of sensors’ noise. Their values can be changed
via methods that are meant to be used by supervisory
control. The ObstacleAvoidanceAlgorithm‘s code can
be seen in Listing 2.

Listing 2. A header file containing definition of the
ObstacleAvoidanceAlgorithm class
protected:
 bool obstacleDetected;
 float hysteresis;
 float boundary;
 float sensorReadings[3];
 bool checkForObstacles();
 virtual void setLEDs(Result &r) = 0;
public:
 ObstacleAvoidanceAlgorithm();
 void GetDistances(float left,
 float middle, float right);
 void SetBoundary(float newBoundary);
 void SetHysteresis(floatnewHysteresis);
 float GetBoundary();
 float GetHysteresis();
 virtual Result Run() = 0;

With that being done, a clean architecture is estab-
lished. Implementing a new algorithm has absolutely
no impact on existing code. Moreover, it opens up an
opportunity to switch between various algorithms
without shutting down or even stopping the vehicle –
a sort of “hot swapping”.

The procedure of adding a completely new obsta-
cle avoidance algorithm looks as follows:
Create a new class and put it in a separate file,
Make this class inherit from ObstacleAvoidanceAlgo-
rithm,
Override two abstract methods from the base class,
Create any number of fields and helper methods
needed.

Points 3 and 4 can be reordered or performed in
parallel, depending on the programmer’s approach.

Two algorithms described in the previous section,
that is Rule Set and Derivative Search have been im-
plemented in respect to that manner. Their flowcharts
are presented in Figures 17-18.

Fig. 17. Flowchart of the Rule Set algorithm

Apart from that, the structure of the main pro-
gram’s loop has been established. It contains two
parts – the first one is responsible for executing the
algorithm, setting speeds of motors using PI control-
ler and flashing diodes. The second one takes care of
communication via Bluetooth, which in turn is dis-
cussed further in this section.

First of all, to make communication via Bluetooth
possible, an application that would allow user to in-
teract with robots and implemented program was
needed. The decision was made to make an applica-
tion for mobile devices with Android as their operat-
ing system.

The MIT App Inventor has been chosen as the en-
vironment because of its accessibility and simplicity
[14]. It was created by employees and students of MIT
in order to make it possible for everybody to easily
create applications for Android devices. It allows for
programming an application and designing its graph-
ical interface by simply pulling over certain parts of
the interface or programming functions from a spe-

28

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles28

cially provided toolbox. The final look of the applica-
tion is presented in the Figure 19.

Fig. 18. Flowchart of the Derivative Search algorithm

Fig. 19. Graphical interface of the mobile application

The application allows for connecting to one ro-
bot at a time by tapping the CONNECT button. It also
shows information about connection status in the top
right corner. After establishing a connection the ap-
plication sends a certain set of messages that allows
it to download data from the connected robot about

its currently running algorithm and its parameters, as
well as the state in which robot is. Two buttons are lo-
cated below which allow to change running algorithm
and inform the user about the one being currently
used by highlighting its background green. Beneath,
two textboxes are located that allow user to input the
field of view range and hysteresis values. The input
is being taken from a numerical keyboard to avoid
encountering an error with the data type provided.
Furthermore, in case of providing field of view range
larger than 30 cm or below 4 cm, which are limits
dictated by sensors used, the application sets this
value automatically to maximum or minimum values
respectively. Moreover, it is worth mentioning that
sending values of parameters to the robot is only pos-
sible when any of the provided values have changed
from the ones already in the robot’s program. On the
bottom of the screen buttons responsible for turning
the robot on and off are placed.

Moreover, further enhancements to process mes-
sages coming via Bluetooth were added to the creat-
ed application. However, in consideration of eventu-
al future development of the project it was made in
a manner that other ways of communication would
work, without any changes in the software, despite
Bluetooth being the only one possible for the time
being.

In order to achieve this, a new class named Com-
munication was created. It consists of a set of gener-
ic methods which allow for two-way communication
patterns, essential for supervisory control. This
class internally uses Stream pointer which supports
any stream-based media e.g.: Wi-Fi, Ethernet, USB,
as well as many others. This issue is resolved by De-
pendency Injection. Due to the specific structure of
programs based on Arduino platforms a setter injec-
tion type has been used. The class Communication
provides Begin method which injects the depend-
ency that is a concrete implementation of a certain
communication object. The class’ header file is pre-
sented on a Listing 3.

Listing 3. Header file containing definition of the
Communication class
private:
 Stream *stream;
public:
 String ReadMessage();
 bool Available();
 void SendMessage(String msg);
 void Begin(Stream *str);

5.	 Verification Tests
A series of verification tests was performed for

each of the algorithms. Tests were carried out in an
environment with static, dynamic or both types of ob-
stacles in order to measure the quality of implement-
ed algorithms.

In an environment with only static obstacles three
boxes were used, two cuboid ones as well as one in

29

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles 29

the shape of a cylinder. For both algorithms the re-
sults of this test were positive. In case of RuleSet algo-
rithm collisions with obstacles were sporadic, occur-
ring when turning or were caused by wheels that are
protruding out of general shape of a robot. Changing
values of the range of field of view and its hysteresis
for this algorithm barely affected the performance of
the mobile vehicles. Lowering the values resulted in
slightly fewer collisions. On the other hand, for De-
rivativeSearch algorithm, changing values of parame-
ters caused a significant difference. In narrow spaces
robots used to zigzag a lot while lowering the field
of view range resulted in moving more smoothly. In
addition, with high values set, normal collisions hap-
pened to occur more often than with lower values.

As of environment with dynamic obstacles the mo-
bile robots themselves were obstacles for each other.
In this case, results of conducted tests were also pos-
itive. The functioning of both algorithms was satisfy-
ing. Changing values of parameters impacted only the
DerivativeSearch algorithm, where again, lowering
the range of field of view influenced the smoothness
of movement of vehicles.

The last type of environment was nearly identi-
cal to the static one with the only difference being
two robots running at the same time instead of one.
Results of tests for both algorithms were positive. In
case of RuleSet algorithm collisions only occurred
with static obstacles for the very same reasons as
described in previous paragraphs, no collision oc-
curred between the two robots. However, in case
of DerivativeSearch algorithm, collisions happened
with static as well as dynamic obstacles. Same as be-
fore, lowering the range of field of view resulted in
better performance.

It is worth to mention that each environment
was limited by board’s walls to ensure testing in
the same conditions. The arrangement of obstacles
was identical throughout all series of tests that were
performed. The tests were 10 minutes long each and
consisted of gathering data about performance of ro-
bots after changing currently running algorithm as
well as parameters which are field of view range and
hysteresis.

Tab. 1. A comparison between two algorithms

Algorithm
Type of

obstacles

Parameter

Voltage drop
on a battery

over 10
minutes of

work [V]

Number of
collisions
occurred

during tests
[-]

Rule Set

Static 0.11 5

Dynamic 0.11 0

Mixed 0.10 11

Derivative
Search

Static 0.10 6

Dynamic 0.11 5

Mixed 0.11 11

To compare both algorithms two conditions were
taken into consideration. First of them being number
of collisions that occurred during tests and the second
one being the energy consumption over time of the
test. All of these results are presented in Table 1.

6.	 Conclusions
The implemented obstacle avoidance algorithms

perform satisfyingly. However, limitations resulting
from the used hardware and precision of sensors do
not allow for flawless results.

In case of RuleSet algorithm it performed well in
overall, despite its simplicity. Continuity of movement
is not preserved due to the way of handling the avoid-
ance of obstacles by the algorithm. Furthermore,
changing values of field of view range and its hyster-
esis affected the performance of the robot. Moreover,
it is worth to mention that the vehicle with RuleSet
algorithm implemented did not use a lot of energy.
The best environment for this algorithm was the one
with dynamic obstacles in consideration of number of
collision occurring during tests.

The second algorithm, DerivativeSearch, is more
complex in the way it works. Due to this fact, changing
the range of field of view and its hysteresis affected
its performance. The only problems for robots run-
ning this algorithm occurred in narrow spaces when
obstacles were closer than the provided value of field
of view range and its hysteresis, which resulted in
zigzagging and stopping. However, changing values
of these parameters affected the performance of this
algorithm resulting in a smoother movement under
these circumstances. The energy drain of this algo-
rithm was the same as when running the RuleSet al-
gorithm. Furthermore, once again the environment
where this algorithm performed best was the envi-
ronment with dynamic obstacles.

A lot of different factors affect the performance of
obstacle avoidance algorithms, one of them being pre-
cision of sensors. Both algorithms performed worse
in an environment with static and dynamic obstacles
at the same time, mostly due to high density of ob-
stacles on the board. The main reasons of collisions
occurring during tests where wheels protruding out
of the general shape of the robot as well as a narrow
field of view. Moreover, when the vehicle was turning
and an obstacle appeared in its field of view closer
than 4 cm it was not detected due to the precision of
sensors.

The loosely-coupled, clean and maintainable code
architecture makes further extensions fairly easy and
does not impact the existing code. Thanks to that,
future works may include implementing additional
obstacle avoidance algorithms that are more sophis-
ticated and require more computational power such
as the Curvature-Velocity Method (CVM) and the
Vector Field Histogram (VFH) described in [15] and
[16]. Further enhancements may also include hard-
ware changes, mainly adding more sensors in order
to increase the view angle, which will improve control

30

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 4 2019

Articles30

quality. They may also include a whole redesign of the
board in order to shift the center of mass closer to the
motors’ axis. This would result in better stability of
the vehicle, allowing it to take sharper turns at higher
speeds.

Hardware improvements may also include adding
peripherals to support various communication media
e.g. USB or Wi-Fi. Thanks to the unified software in-
terface that has been developed, any of these periph-
erals can be used and swapped at any time with all
software remaining intact.

AUTHORS
Robert Piotrowski – Gdańsk University of Technol-
ogy, Faculty of Electrical and Control Engineering,
email: robert.piotrowski@pg.edu.pl.
Bartosz Maciąg – Gdańsk University of Technology,
Faculty of Electrical and Control Engineering, email:
maciagbartosz96@gmail.com.
Wojciech Makohoń – Gdańsk University of Technol-
ogy, Faculty of Electrical and Control Engineering,
email: wojtek.makohon@gmail.com.
Krzysztof Milewski* – Gdańsk University of Tech-
nology, Faculty of Electrical and Control Engineering,
email: milewskik51@gmail.com.

*Corresponding author

References
 [1]	 O. Khatib, “Real-time obstacle avoidance for ma-

nipulators and mobile robots”. In: 1985 IEEE In-
ternational Conference on Robotics and Automa-
tion Proceedings, vol. 2, 1985, 500–505

	 DOI: 10.1109/ROBOT.1985.1087247.
 [2]	 P. Szulczyński, D. Pazderski, K. Kozłowski, “Re-

al‑time obstacle avoidance using harmonic po-
tential functions”, Journal of Automation, Mobile
Robotics and Intelligent Systems, vol. 5, no. 3,
2011, 59–66.

 [3]	 I. Ulrich, F. Mondada, J. Nicoud, “Autonomous
vacuum cleaner”, Robotics and Autonomous Sys-
tems, vol. 19, no. 3, 1997, 233–245

	 DOI: 10.1016/S0921-8890(96)00053-X.
 [4]	 J. P. Grotzinger, “Analysis of Surface Materials by

the Curiosity Mars Rover”, Science, vol. 341, no.
6153, 2013, 1475–1475

	 DOI: 10.1126/science.1244258.
 [5]	 J. Li, H. Liu, “Design Optimization of Amazon Ro-

botics”, Automation, Control and Intelligent Sys-
tems, vol. 4, no. 2, 2016

	 DOI: 10.11648/j.acis.20160402.17.
 [6]	 U. Tochukwu, “Effects of PID Controller on a Clo-

sed Loop Feedback System”. In: Proceedings of
Conference: Ternopil National Technical Universi-
ty. Ukraine, 2013

	 DOI: 10.13140/2.1.2650.0167.

 [7]	 G. Narvydas, R. Simutis, V. Raudonis, “Autonomo-
us Mobile Robot Control Using IF-THEN Rules
and Genetic Algorithm”, Information Technology
And Control, vol. 37, no. 3, 2008.

 [8]	 L. Louis, “Working Principle of Arduino and
Using It as a Tool for Study and Research”, Inter-
national Journal of Control, Automation and Sys-
tems, vol. 1, no. 2, 2016, 21–29

	 DOI: 10.5121/ijcacs.2016.1203.
 [9]	 A. Urdhwareshe, “Object-Oriented Program-

ming and its Concepts”, International Journal of
Innovation and Scientific Research, vol. 26, no. 1,
2016, 1–6.

[10]	 “PlatformIO Documentation, Release 4.2.1”. Plat-
formIO, https://buildmedia.readthedocs.org/
media/pdf/platformio/stable/platformio.pdf.
Accessed on: 2020-01-20.

[11]	 N. N. Zolkifli, A. Ngah, A. Deraman, “Version Con-
trol System: A Review”, Procedia Computer Scien-
ce, vol. 135, 2018, 408–415

	 DOI: 10.1016/j.procs.2018.08.191.
[12]	 H. J. Motulsky, L. A. Ransnas, “Fitting curves to

data using nonlinear regression: a practical and
nonmathematical review”, The FASEB Journal,
vol. 1, no. 5, 1987, 365–374

	 DOI: 10.1096/fasebj.1.5.3315805.
[13]	 D. Riehle, H. Züllighoven, “Understanding and

using patterns in software development”, Theory
and Practice of Object Systems, vol. 2, no. 1, 1996,
3–13

	 DOI: 10.1002/(SICI)1096-9942(1996)2:1<3::AID-
TAPO1>3.0.CO;2-#.

[14]	 K. Prutz, H. Abelson, “Expanding Device Functio-
nality for the MIT App Inventor IoT Embedded
Companion”, Term paper, Massachusetts Institu-
te of Technology, May 17, 2018.

[15]	 R. Simmons, “The Curvature-Velocity Method for
Local Obstacle Avoidance”. In: Proc. of the IEEE
International Conference on Robotics and Auto-
mation, 1996, 3375–3382.

[16]	 J. Borenstein, Y. Koren, “The vector field histo-
gram-fast obstacle avoidance for mobile robots”,
IEEE Transactions on Robotics and Automation,
vol. 7, no. 3, 1991, 278–288

	 DOI: 10.1109/70.88137.

