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Abstract:
In this paper, we focus our attention on multi–

dimensional copula models for returns of the indexes
of selected prominent international financial markets.
Our modeling results, based on elliptic copulas, 7‐
dimensional hierarchical Archimedean copulas, vine co‐
pulas and factor copulas demonstrate a dominant role of
the SPX index among the considered major stock indexes
(mainly at the first tree of the optimal vine copulas). Some
interesting weaker conditional dependencies can be de‐
tected at it’s highest trees. Interestingly, while global op‐
timal model (for the whole period of 277 months) belong
to the Factor FDG copulas class, the optimal local models
can be found (with very minor differences in the values of
GoF test statistic) in the classes of Factor FDG and hier‐
archical Archimedean copulas. The dominance of these
models is most striking over the interval of the financial
market crisis, where the quality of the best Student class
model was providing a substantially poorer fit.
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1. Introduction
In this paper we apply multi–dimensional copula

to model dependence among returns of selected pro‑
minent indexes of international �inancialmarkets. The
following indexes were considered (with months’ va‑
lues from the time interval 31.1.1995 – 31.1.2018):
SPX (Standard and Poor’s Index is designed to mea‑
sure performance of the broad US economy through
the aggregate market value of 500 stocks represen‑
ting all major industries), DAX (The German Stock In‑
dex is a total return index of 30 selected German blue
chip stocks traded on the Frankfurt Stock Exchange),
UKX (The FTSE 100 Index is a capitalization‑weighted
index of the 100 most highly capitalized companies
traded on the London Stock Exchange), NKY (The
Nikkei‑225 Stock Average is a price‑weighted average
of 225 top‑rated Japanese companies listed in the First
Section of the Tokyo Stock Exchange), HSI (The Hang
Seng Index is a free‑�loat capitalization‑weighted in‑
dex of a selection of companies from the Stock Ex‑
change of Hong Kong), LEGATRUU (The Bloomberg
BarclaysGlobal AggregateBond Index is a �lagshipme‑
asure of global investment grade debt from twenty‑
four local currencymarkets), SPGSCITR (The S&PGSCI
Total Return Index in USD is widely recognized as
the leading measure of general commodity price mo‑

vements and in�lation in the world economy).
The paper is organized as follows. The second

section is devoted to a brief overview of the theory
of hierarchical Archimedean copulas, vine copulas,
factor copulas and methodology of copula �itting to
multi–dimensional time series. The third section con‑
tains application to real data modeling. Finally we dis‑
cuss results and conclude.

2. Theory
Copula represents a multivariate distribution that

captures the dependence structure between/among
random variables leaving alone their marginal distri‑
butions. Due to Sklar [25]

F (x1, ..., xn) = C [F1(x1), ..., Fn(xn)] ,

where F is joint cumulative distribution function of
random vector (X1, ..., Xn),Fi is marginal cumulative
distribution function ofXi, andC : [0, 1]n → [0, 1] is a
copula which is a n‑increasing function with 1 as neu‑
tral element and 0 as annihilator, see e.g. monograph
Nelsen (2006) [20]. Besides three fundamental copu‑
las

M(x1, ..., xn) = min(x1, ..., xn)

W (x1, x2) = max(x1 + x2 − 1, 0)

Π(x1, ..., xn) =

n∏
i=1

xi

which model perfect positive dependence, perfect ne‑
gative dependence (not applicable for n > 2) and in‑
dependence, respectively, there exist numerous para‑
metric classes, such as Archimedean, Extreme‑Value
and elliptical copulas.Within the last one there belong
such important parametric families as Gaussian copu‑
las

CG(x1, ..., xn) = Φ
[
Φ−1

1 (x1), ...,Φ
−1
n (xn)

]

and Student t‑copulas

Ct(x1, ..., xn) = t
[
t−1
1 (x1), ..., t

−1
n (xn)

]
,

(whereΦ and t are joint distribution functions of mul‑
tivariate normal and Student t distributions, similarly
Φ−1

i and t−1
i , i = 1, ..., n are univariate quantile

functions related to Xi), able to �lexibly describe de‑
pendence in multidimensional random vector.
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2.1. Hierarchical Archimedean Copulas
Archimedean copulas are easy to handle, however

in more than two dimensions their dependence struc‑
ture is too simplistic. Nevertheless, they are used as
building blocks in other, more �lexible classes of copu‑
las. One such class, that is suitable for modeling mul‑
tidimensional stochastic dependence, are hierarchical
Archimedean copulas. Let us recall fundamentals. Ar‑
chimedean copulas are de�ined (for any dimension n)
by formula

C(x1, . . . , xn) = ϕ(ϕ−1(x1) + . . .+ ϕ−1(xn))

where the so‑called generator ϕ : [0,∞) ↘ [0, 1] satis‑
�ies boundary conditions ϕ(0) = 1, ϕ(∞) = 0 (strict
Archimedean copulas) and absolutemonotonicity (for
further details see [17]). Such a construction is analy‑
tically convenient and very �lexible in bivariate setting,
however it is too restrictive in higher dimensions since
the whole dependence structure is rendered by a sin‑
gle univariate function, and – moreover – it is exchan‑
geable.

Hierarchical Archimedean copulas (HAC) over‑
come this problemby nesting simple Archimedean co‑
pulas. Since the general multivariate structure is nota‑
tionally too complex, we illustrate the principle in four
dimensions. For example, fully nestedHAC (Fig. 1, left)
can be given by

C(s)(x1, . . . , x4) = C3

(
C2

(
C1(x1, x2), x3

)
, x4

)
=

= ϕ3

(
ϕ−1
3 ◦ ϕ2

(
ϕ−1
2 ◦ ϕ1(ϕ

−1
1 (x1) + ϕ−1

1 (x2)
)
+

ϕ−1
2 (u3)

)
+ ϕ−1

1 (u4)
)
, (1)

where Cj , j = 1, . . . , n − 1 are Archimedean copu‑
las with their corresponding generators ϕj and s =
(((1, 2), 3), 4) the nesting structure. An example of
partially nested Archimedean copula (Fig. 1, right) is
given by

C(s)(x1, . . . , x4) = C3

(
C1(x1, x2), C2(x3, x4)

)
, (2)

where s = ((1, 2), (3, 4)). Fully and partially nested
Archimedean copulas form a class of hierarchical Ar‑
chimedean copulas which can adopt arbitrarily com‑
plex structure s, generally s = (. . . , (ia, ib), ic, . . .),
where i· ∈ {1, . . . , n} is reordering of the indices of
variables with a, b, c ∈ {1, . . . , n | a ̸= b ̸= c}, see,
e.g., [9, 12, 22]. This makes it a very �lexible yet par‑
simonious distribution model. The generators within
a single HAC can come either from a single genera‑
tor family or from different families. In the �irst case
there is required complete monotonicity of composi‑
tion ϕ−1

i ◦ϕj , (i ̸= j), which imposes some constraints
on their parameters, see suf�icient conditions given by
[16]. For majority of generators HAC requires decrea‑
sing parameters from top to bottom in its hierarchy.
In the case of different generator families, the condi‑
tion of complete monotonicity is not always ful�illed.
The software implementation in R, the HAC package
[22] which we use in our study, considers only single‑
parameter generators from the same family. Then the

Fig. 1. Fully nested and partially nested Archimedean
copulas structure.

whole distribution is speci�ied with at most n − 1 pa‑
rameters which can be seen as an alternative to co‑
variance driven models, as remarked in [22], nevert‑
heless, besides the parameters also structure s needs
to be estimated. As there are already n!/k! possibili‑
ties of combining n variables to fully nested HAC with
k‑dimensional AC on its lowest level, the greedy ap‑
proach to structure estimationwouldbeunreasonable
even in moderate dimensions, therefore HAC package
offers computationally ef�icient recursive procedure
suggested by [21]
2.2. Vine Copulas

Another class that can use bivariate Archimedean
copulas as building blocks are Vine copulas. Howe‑
ver, they are not restricted to that class and can com‑
bine copulas of arbitrary kind via a vine tree structure,
which can be estimated (by default following the cor‑
relation strength ordering), visualized and interpre‑
ted, see [1,4,24].

Formally, an n–dimensional regular vine tree
structureS = {T1, ..., Tn} is a sequence ofn−1 linked
trees with properties (see [3,4]):
‑ Tree T1 is a tree on nodes 1 to n;
‑ Tree Tj has n+ 1− j nodes and n− j edges;
‑ Edges in tree Tj become nodes in tree Tj+1;
‑ Twonodes in treeTj+1 can be joined by an edge only
if the corresponding edges in tree Tj share a node.
In the following, we outline the construction of

three‑dimensional probability density function f

f(x1, x2, x3) = f1(x1)·f2|1(x1, x2)·f3|12(x1, x2, x3) =

= f1(x1) · c12 [F1(x1), F2(x2)] · f2(x2)·
· c31|2

[
Fx3|x2

(x2, x3), Fx1|x2
(x1, x2)

]
·

· c23 [F2(x2), F3(x3)] · f3(x3) (3)

where fi is a (marginal) probability density function
ofXi, i = 1, 2, 3,

fi|j(xi, xj) =
f(xi, xj)

fj(xj)

is conditional density function of Xi given Xj . A co‑
pula density cij couples Xi and Xj while cij|k cou‑
ples bivariate conditional distributions of Xi|Xk and
Xj |Xk, i, j, k ∈ {1, 2, 3} , i ̸= j ̸= k ̸= i. Finally,

Fxi|xj
=

∂Cij [Fi(xi), Fj(xj)]

∂Fj(xj)

is a conditional cumulative distribution function ofXi

givenXj .
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In this paper we apply multi–dimensional copula

to model dependence among returns of selected pro‑
minent indexes of international �inancialmarkets. The
following indexes were considered (with months’ va‑
lues from the time interval 31.1.1995 – 31.1.2018):
SPX (Standard and Poor’s Index is designed to mea‑
sure performance of the broad US economy through
the aggregate market value of 500 stocks represen‑
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chip stocks traded on the Frankfurt Stock Exchange),
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dex of a selection of companies from the Stock Ex‑
change of Hong Kong), LEGATRUU (The Bloomberg
BarclaysGlobal AggregateBond Index is a �lagshipme‑
asure of global investment grade debt from twenty‑
four local currencymarkets), SPGSCITR (The S&PGSCI
Total Return Index in USD is widely recognized as
the leading measure of general commodity price mo‑

vements and in�lation in the world economy).
The paper is organized as follows. The second

section is devoted to a brief overview of the theory
of hierarchical Archimedean copulas, vine copulas,
factor copulas and methodology of copula �itting to
multi–dimensional time series. The third section con‑
tains application to real data modeling. Finally we dis‑
cuss results and conclude.

2. Theory
Copula represents a multivariate distribution that

captures the dependence structure between/among
random variables leaving alone their marginal distri‑
butions. Due to Sklar [25]

F (x1, ..., xn) = C [F1(x1), ..., Fn(xn)] ,

where F is joint cumulative distribution function of
random vector (X1, ..., Xn),Fi is marginal cumulative
distribution function ofXi, andC : [0, 1]n → [0, 1] is a
copula which is a n‑increasing function with 1 as neu‑
tral element and 0 as annihilator, see e.g. monograph
Nelsen (2006) [20]. Besides three fundamental copu‑
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M(x1, ..., xn) = min(x1, ..., xn)

W (x1, x2) = max(x1 + x2 − 1, 0)

Π(x1, ..., xn) =
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i=1

xi

which model perfect positive dependence, perfect ne‑
gative dependence (not applicable for n > 2) and in‑
dependence, respectively, there exist numerous para‑
metric classes, such as Archimedean, Extreme‑Value
and elliptical copulas.Within the last one there belong
such important parametric families as Gaussian copu‑
las

CG(x1, ..., xn) = Φ
[
Φ−1

1 (x1), ...,Φ
−1
n (xn)

]

and Student t‑copulas

Ct(x1, ..., xn) = t
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t−1
1 (x1), ..., t
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n (xn)

]
,

(whereΦ and t are joint distribution functions of mul‑
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i , i = 1, ..., n are univariate quantile
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Archimedean copulas are easy to handle, however

in more than two dimensions their dependence struc‑
ture is too simplistic. Nevertheless, they are used as
building blocks in other, more �lexible classes of copu‑
las. One such class, that is suitable for modeling mul‑
tidimensional stochastic dependence, are hierarchical
Archimedean copulas. Let us recall fundamentals. Ar‑
chimedean copulas are de�ined (for any dimension n)
by formula
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�ies boundary conditions ϕ(0) = 1, ϕ(∞) = 0 (strict
Archimedean copulas) and absolutemonotonicity (for
further details see [17]). Such a construction is analy‑
tically convenient and very �lexible in bivariate setting,
however it is too restrictive in higher dimensions since
the whole dependence structure is rendered by a sin‑
gle univariate function, and – moreover – it is exchan‑
geable.

Hierarchical Archimedean copulas (HAC) over‑
come this problemby nesting simple Archimedean co‑
pulas. Since the general multivariate structure is nota‑
tionally too complex, we illustrate the principle in four
dimensions. For example, fully nestedHAC (Fig. 1, left)
can be given by
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C2
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where Cj , j = 1, . . . , n − 1 are Archimedean copu‑
las with their corresponding generators ϕj and s =
(((1, 2), 3), 4) the nesting structure. An example of
partially nested Archimedean copula (Fig. 1, right) is
given by

C(s)(x1, . . . , x4) = C3

(
C1(x1, x2), C2(x3, x4)

)
, (2)

where s = ((1, 2), (3, 4)). Fully and partially nested
Archimedean copulas form a class of hierarchical Ar‑
chimedean copulas which can adopt arbitrarily com‑
plex structure s, generally s = (. . . , (ia, ib), ic, . . .),
where i· ∈ {1, . . . , n} is reordering of the indices of
variables with a, b, c ∈ {1, . . . , n | a ̸= b ̸= c}, see,
e.g., [9, 12, 22]. This makes it a very �lexible yet par‑
simonious distribution model. The generators within
a single HAC can come either from a single genera‑
tor family or from different families. In the �irst case
there is required complete monotonicity of composi‑
tion ϕ−1

i ◦ϕj , (i ̸= j), which imposes some constraints
on their parameters, see suf�icient conditions given by
[16]. For majority of generators HAC requires decrea‑
sing parameters from top to bottom in its hierarchy.
In the case of different generator families, the condi‑
tion of complete monotonicity is not always ful�illed.
The software implementation in R, the HAC package
[22] which we use in our study, considers only single‑
parameter generators from the same family. Then the

Fig. 1. Fully nested and partially nested Archimedean
copulas structure.

whole distribution is speci�ied with at most n − 1 pa‑
rameters which can be seen as an alternative to co‑
variance driven models, as remarked in [22], nevert‑
heless, besides the parameters also structure s needs
to be estimated. As there are already n!/k! possibili‑
ties of combining n variables to fully nested HAC with
k‑dimensional AC on its lowest level, the greedy ap‑
proach to structure estimationwouldbeunreasonable
even in moderate dimensions, therefore HAC package
offers computationally ef�icient recursive procedure
suggested by [21]
2.2. Vine Copulas

Another class that can use bivariate Archimedean
copulas as building blocks are Vine copulas. Howe‑
ver, they are not restricted to that class and can com‑
bine copulas of arbitrary kind via a vine tree structure,
which can be estimated (by default following the cor‑
relation strength ordering), visualized and interpre‑
ted, see [1,4,24].

Formally, an n–dimensional regular vine tree
structureS = {T1, ..., Tn} is a sequence ofn−1 linked
trees with properties (see [3,4]):
‑ Tree T1 is a tree on nodes 1 to n;
‑ Tree Tj has n+ 1− j nodes and n− j edges;
‑ Edges in tree Tj become nodes in tree Tj+1;
‑ Twonodes in treeTj+1 can be joined by an edge only
if the corresponding edges in tree Tj share a node.
In the following, we outline the construction of

three‑dimensional probability density function f

f(x1, x2, x3) = f1(x1)·f2|1(x1, x2)·f3|12(x1, x2, x3) =

= f1(x1) · c12 [F1(x1), F2(x2)] · f2(x2)·
· c31|2

[
Fx3|x2

(x2, x3), Fx1|x2
(x1, x2)

]
·

· c23 [F2(x2), F3(x3)] · f3(x3) (3)

where fi is a (marginal) probability density function
ofXi, i = 1, 2, 3,

fi|j(xi, xj) =
f(xi, xj)

fj(xj)

is conditional density function of Xi given Xj . A co‑
pula density cij couples Xi and Xj while cij|k cou‑
ples bivariate conditional distributions of Xi|Xk and
Xj |Xk, i, j, k ∈ {1, 2, 3} , i ̸= j ̸= k ̸= i. Finally,

Fxi|xj
=

∂Cij [Fi(xi), Fj(xj)]

∂Fj(xj)

is a conditional cumulative distribution function ofXi

givenXj .
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Fig. 2. Vine trees corresponding to (3)

Fig. 3. C‐Vine tree (left) and D‐Vine tree (right)

The construction (3) representedby twovine trees
shown in Fig. 2 is one of the three possible pair–copula
decompositions. Since n = 3, its vine structure coinci‑
des both with
‑ canonical (C–) vines: each tree has a unique node
connected to n − j edges (use only star like tree ‑
useful for ordering by importance); and

‑ drawable (D–) vines: no node is connected to more
than 2 edges (use only path like trees ‑ useful for
temporal ordering of variables)

and these differ for n ≥ 4 as illustrated by Fig. 3,
see [5]. However in higher dimensions, C–vines and
D–vines are just small subsets of a more general class
‑ regular vines, see [4,3].

Besides the well‑known 2–dimensional product
copula and elliptical copulas (Gaussian and Student),
as construction blocks of vine copula we utilized
also numerous 2–dimensional families of Archime‑
dean and Extreme‑value copulas, as well as their ro‑
tations, described below in the section Methods.

2.3. Factor Copulas
Yet another subclass within pair‑copula con‑

struction approach is getting considerable attention:
factor copulas. According to [13] factor copula models
are conditional independencemodelswhere observed
variables (U1, . . . , Un) are conditionally independent
given one or more latent variables (V1, . . . , Vp). These
models extend the multivariate Gaussian model with
factor correlation structure. They can be also viewed
as p‑truncated C‑vine copulas rooted at the latent va‑
riables, one just needs to integrate out latent variables
in the joint copula density to get density of observa‑
bles. Themost popular are 1‑factor copulas de�ined as

C(u1, . . . , un) =

∫ 1

0

n∏
i=1

Ci|V1
(ui, v1)dv1 (4)

with the density

c(u1, . . . , un) =

∫ 1

0

n∏
i=1

ciV1(ui, v1)dv1

Fig. 4. 1‐factor copula graphical model of dependence
corresponding to construction (4)

thus the dependence among Uis is induced by the so‑
called linking copulasCiV1

, i = 1, . . . , n, and there are
no constraints among the bivariate copulas. The de‑
pendence structure ofn‑dimensional 1‑facor copula is
graphically illustrated in Fig. 4.

It is interesting to note, that the Archimedean co‑
pulas generated by universal generators (those ba‑
sed on Laplace transform, see e.g. [2] for examples)
are special case of 1‑factor copulas, with exceptionally
simple form. A main advantage of factor copula mo‑
dels comparing to Archimedean and Gaussian copulas
is that it allows for asymmetric dependence structure
(both re�lection asymmetry and non‑exchangeability)
among observables. Later we will see that they are
�lexible enough to compete with more complex class
of vine copulas while keeping relative parsimony and
interpretability. Themain drawback nowadays, howe‑
ver, is the lack of software implementation. Commer‑
cial programs are rather conservative in bringing new
statistical methods and from the open source tools,
only in R, themost popular environment for statistical
calculations and visualizations [23], we found single
package related to factor copula: FDGcopulas. In this
package a Durante class of bivariate copulas de�ined
by

C(u, v) = min(u, v)f (max(u, v)) ,
are used as linking copulas, where the generator
f : [0, 1] → [0, 1] is differentiable and increasing
function such that f (1) = 1 and t → f(t)/t is decre‑
asing. There may be chosen four different parametric
families, such as Cuadras‑Augé f(t) = t1−θ , θ ∈ [0, 1],
Fréchet f(t) = (1 − θ)t + θ, θ ∈ [0, 1], Durante‑
exponential f(t) = exp

(
tθ−1
θ

)
, θ > 0, and Durante‑

sinus f(t) = sin(θt
sin(θ) with parameter θ ∈ (0, π/2], ple‑

ase refer to [15] for �iner details. The downside of this
class is a singular component present in the model,
which is not natural for most economic, hydrologic or
other frequently analyzed phenomenons. However, as
the authors argue, it is not of that much importance in
higher dimensions, where just certain features of dis‑
tribution is preferred (such as critical levels or tail be‑
havior) instead of its overall shape. On the other hand,
the class of 1‑factor copulas with Durante generators
reduce the computational burden of general 1‑factor
copulas while giving a good �it to observed data, as we
will see in the results.

2.4. Methods
Within the considered classes of 2–dimensional

copulas aswell asn‑dimensional elliptical copulas, the
optimal models were selected using the Maximum li‑
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kelihood estimation (MLE) method. Recall that for gi‑
ven m observations {Xj,i}i=1,...,m of j‑th random va‑
riable Xj , j = 1, ..., n, the parameters θ of all co‑
pulas under considerationwere estimated bymaximi‑
zing the likelihood function

L(θ) =
m∑
i=1

log [cθ(U1,i, . . . , Un,i)] , (5)

where cθ denotes density of a parametric copula fa‑
mily Cθ , and

Uj,i =
1

m+ 1

m∑
k=1

1(Xj,k ≤ Xj,i), i = 1, ...,m,

are so‑called pseudo‑observations. The higher dimen‑
sional structures of HAC, vine and factor copulas were
estimated as described in [22], [6] and [15], respecti‑
vely.

Goodness‑of‑�it was performed by a test proposed
by Genest et al. [8] and based on empirical copula pro‑
cess using Cramer‑von Misses test statistic

SCM =

m∑
i=1

[Cθ(U1,i, . . . , Un,i)− Cm(U1,i, . . . , Un,i)]
2

(6)
with empirical copula

Cm(x) =
1

m

m∑
i=1

n∏
j=1

1(Xj,i ≤ xj)

and indicator function 1(A) = 1 whenever A is true,
otherwise 1(A) = 0.

All calculationswere done in R [23]with the speci‑
�ic help of packages copula [10], HAC [22], VineCopula
[19], and FDGcopulas [14]. Because their goodness‑of‑
�it methods, including the Cramer‑von Misses metric,
are not directly comparable and computing the values
of vine copula cumulative distribution function invol‑
ves integration over 7‑dimensional space, we rather
approximated Cθ from (6) by empirical copula of the
random samples generated from the corresponding
copulas each counting 100 000 realizations.

Besides the usual parametric families of Archime‑
dean class such as Gumbel, Clayton, Frank, Joe, copu‑
las BB1, BB6, BB7, BB8 and Tawn copulas (see e.g.
[11, 18, 20, 26]) in bivariate case, to build vine copu‑
las we used also their rotationsCα by angle α de�ined

C90(x1, x2) = x2 − C(1− x1, x2),

C180(x1, x2) = x1 + x2 − 1 + C(1− x1, 1− x2),

C270(x1, x2) = x1 − C(x1, 1− x2),

that are implemented in the package VineCopula.
As a preliminary analysis of dependence between

random variables, we employ classical measures of
dependence such as Pearson’s and Kendall’s correla‑
tion coef�icients, moreover to inspect the conditional
(in)dependence (which is further investigated para‑
metrically with vines) the partial correlation matrix
comes handy. Given a Pearson’s correlation matrix Σ,

the partial correlation between variables Xi, Xj con‑
ditional on all the other pairs in vector (X1, . . . , Xn)
can be computed

ρij|−ij =
−pij√
piipjj

where pij (i, j = 1, . . . , n) are elements of the matrix
P = Σ−1. Recall that partial correlation is a measure
of the strength and direction of a linear relationship
between two continuous random variables that takes
into account (removes) the in�luence of some other
continuous random variables.

Partial correlations are important, e.g., a) when
building (Gaussian) graphical models, where insigni‑
�icant connections are removed to obtain more parsi‑
monious model, as well as b) to better understand the
structure of estimated vine copula.

The R source script used for calculations can be
obtained from the corresponding author upon request
or on his web page.

3. Results
All indexes are computed in terms of returns

returni =
indexi − indexi−1

indexi−1
, i = 2, 3, ..., n.

Before further analysis, we �iltered all considered time
series of returns by ARIMA‑GARCH �ilters ( [7]). For
all investigated series of returns, the best �ilters were
identi�ied (by the system Mathematica, �ersion 11) in
the class GARCH(1,1).

The obtained residuals have pairwise Kendall cor‑
relation coef�icients τ in the interval (−0.08, 0.42),
maximal value was achieved for the couples SPX–DAX
and SPX–UKX, see Fig. 5.

Fig. 6 reveals partial correlations, showing that the
relations of (�iltered) returns of SPX–UKX, SPX–DAX,
SPX–HSI andDAX–UKXattain the largest values,which
is in accordance with corresponding strongest depen‑
dencies between couples in the �irst tree of the optimal
global vine copula in Table 1.

Subsequently, the residuals were transformed by
their respective empirical distribution function into
so‑called pseudo‑observations uniformly distributed
over unit interval (see diagonal of Fig. 5). Results ser‑
ved as inputs to calculations of 7–dimensional copula
models.

We extended our analysis by examining evolu‑
tion of the Kendall’s correlations. We have chosen fre‑
quency of calculations of Kendall’s correlation coef‑
�icients over the intervals of 72 months overlapping
by 36 months with the neighboring intervals, the last
time period spans only 60months. For each of the cou‑
ples of considered indexes, we calculated a sequence
of 7 local Kendall correlation coef�icients on individual
local time intervals. We can see (in Fig. 7) that just 6
out of all 21 couples of indexes have Kendall corre‑
lation coef�icients in most of the periods signi�icantly
positive.

In the following subsections, �irst, an overall de‑
pendence structure is modeled by means of Elliptical,
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Fig. 2. Vine trees corresponding to (3)

Fig. 3. C‐Vine tree (left) and D‐Vine tree (right)

The construction (3) representedby twovine trees
shown in Fig. 2 is one of the three possible pair–copula
decompositions. Since n = 3, its vine structure coinci‑
des both with
‑ canonical (C–) vines: each tree has a unique node
connected to n − j edges (use only star like tree ‑
useful for ordering by importance); and

‑ drawable (D–) vines: no node is connected to more
than 2 edges (use only path like trees ‑ useful for
temporal ordering of variables)

and these differ for n ≥ 4 as illustrated by Fig. 3,
see [5]. However in higher dimensions, C–vines and
D–vines are just small subsets of a more general class
‑ regular vines, see [4,3].

Besides the well‑known 2–dimensional product
copula and elliptical copulas (Gaussian and Student),
as construction blocks of vine copula we utilized
also numerous 2–dimensional families of Archime‑
dean and Extreme‑value copulas, as well as their ro‑
tations, described below in the section Methods.

2.3. Factor Copulas
Yet another subclass within pair‑copula con‑

struction approach is getting considerable attention:
factor copulas. According to [13] factor copula models
are conditional independencemodelswhere observed
variables (U1, . . . , Un) are conditionally independent
given one or more latent variables (V1, . . . , Vp). These
models extend the multivariate Gaussian model with
factor correlation structure. They can be also viewed
as p‑truncated C‑vine copulas rooted at the latent va‑
riables, one just needs to integrate out latent variables
in the joint copula density to get density of observa‑
bles. Themost popular are 1‑factor copulas de�ined as

C(u1, . . . , un) =

∫ 1

0

n∏
i=1

Ci|V1
(ui, v1)dv1 (4)

with the density

c(u1, . . . , un) =

∫ 1

0

n∏
i=1

ciV1(ui, v1)dv1

Fig. 4. 1‐factor copula graphical model of dependence
corresponding to construction (4)

thus the dependence among Uis is induced by the so‑
called linking copulasCiV1

, i = 1, . . . , n, and there are
no constraints among the bivariate copulas. The de‑
pendence structure ofn‑dimensional 1‑facor copula is
graphically illustrated in Fig. 4.

It is interesting to note, that the Archimedean co‑
pulas generated by universal generators (those ba‑
sed on Laplace transform, see e.g. [2] for examples)
are special case of 1‑factor copulas, with exceptionally
simple form. A main advantage of factor copula mo‑
dels comparing to Archimedean and Gaussian copulas
is that it allows for asymmetric dependence structure
(both re�lection asymmetry and non‑exchangeability)
among observables. Later we will see that they are
�lexible enough to compete with more complex class
of vine copulas while keeping relative parsimony and
interpretability. Themain drawback nowadays, howe‑
ver, is the lack of software implementation. Commer‑
cial programs are rather conservative in bringing new
statistical methods and from the open source tools,
only in R, themost popular environment for statistical
calculations and visualizations [23], we found single
package related to factor copula: FDGcopulas. In this
package a Durante class of bivariate copulas de�ined
by

C(u, v) = min(u, v)f (max(u, v)) ,
are used as linking copulas, where the generator
f : [0, 1] → [0, 1] is differentiable and increasing
function such that f (1) = 1 and t → f(t)/t is decre‑
asing. There may be chosen four different parametric
families, such as Cuadras‑Augé f(t) = t1−θ , θ ∈ [0, 1],
Fréchet f(t) = (1 − θ)t + θ, θ ∈ [0, 1], Durante‑
exponential f(t) = exp

(
tθ−1
θ

)
, θ > 0, and Durante‑

sinus f(t) = sin(θt
sin(θ) with parameter θ ∈ (0, π/2], ple‑

ase refer to [15] for �iner details. The downside of this
class is a singular component present in the model,
which is not natural for most economic, hydrologic or
other frequently analyzed phenomenons. However, as
the authors argue, it is not of that much importance in
higher dimensions, where just certain features of dis‑
tribution is preferred (such as critical levels or tail be‑
havior) instead of its overall shape. On the other hand,
the class of 1‑factor copulas with Durante generators
reduce the computational burden of general 1‑factor
copulas while giving a good �it to observed data, as we
will see in the results.

2.4. Methods
Within the considered classes of 2–dimensional

copulas aswell asn‑dimensional elliptical copulas, the
optimal models were selected using the Maximum li‑
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kelihood estimation (MLE) method. Recall that for gi‑
ven m observations {Xj,i}i=1,...,m of j‑th random va‑
riable Xj , j = 1, ..., n, the parameters θ of all co‑
pulas under considerationwere estimated bymaximi‑
zing the likelihood function

L(θ) =
m∑
i=1

log [cθ(U1,i, . . . , Un,i)] , (5)

where cθ denotes density of a parametric copula fa‑
mily Cθ , and

Uj,i =
1

m+ 1

m∑
k=1

1(Xj,k ≤ Xj,i), i = 1, ...,m,

are so‑called pseudo‑observations. The higher dimen‑
sional structures of HAC, vine and factor copulas were
estimated as described in [22], [6] and [15], respecti‑
vely.

Goodness‑of‑�it was performed by a test proposed
by Genest et al. [8] and based on empirical copula pro‑
cess using Cramer‑von Misses test statistic

SCM =

m∑
i=1

[Cθ(U1,i, . . . , Un,i)− Cm(U1,i, . . . , Un,i)]
2

(6)
with empirical copula

Cm(x) =
1

m

m∑
i=1

n∏
j=1

1(Xj,i ≤ xj)

and indicator function 1(A) = 1 whenever A is true,
otherwise 1(A) = 0.

All calculationswere done in R [23]with the speci‑
�ic help of packages copula [10], HAC [22], VineCopula
[19], and FDGcopulas [14]. Because their goodness‑of‑
�it methods, including the Cramer‑von Misses metric,
are not directly comparable and computing the values
of vine copula cumulative distribution function invol‑
ves integration over 7‑dimensional space, we rather
approximated Cθ from (6) by empirical copula of the
random samples generated from the corresponding
copulas each counting 100 000 realizations.

Besides the usual parametric families of Archime‑
dean class such as Gumbel, Clayton, Frank, Joe, copu‑
las BB1, BB6, BB7, BB8 and Tawn copulas (see e.g.
[11, 18, 20, 26]) in bivariate case, to build vine copu‑
las we used also their rotationsCα by angle α de�ined

C90(x1, x2) = x2 − C(1− x1, x2),

C180(x1, x2) = x1 + x2 − 1 + C(1− x1, 1− x2),

C270(x1, x2) = x1 − C(x1, 1− x2),

that are implemented in the package VineCopula.
As a preliminary analysis of dependence between

random variables, we employ classical measures of
dependence such as Pearson’s and Kendall’s correla‑
tion coef�icients, moreover to inspect the conditional
(in)dependence (which is further investigated para‑
metrically with vines) the partial correlation matrix
comes handy. Given a Pearson’s correlation matrix Σ,

the partial correlation between variables Xi, Xj con‑
ditional on all the other pairs in vector (X1, . . . , Xn)
can be computed

ρij|−ij =
−pij√
piipjj

where pij (i, j = 1, . . . , n) are elements of the matrix
P = Σ−1. Recall that partial correlation is a measure
of the strength and direction of a linear relationship
between two continuous random variables that takes
into account (removes) the in�luence of some other
continuous random variables.

Partial correlations are important, e.g., a) when
building (Gaussian) graphical models, where insigni‑
�icant connections are removed to obtain more parsi‑
monious model, as well as b) to better understand the
structure of estimated vine copula.

The R source script used for calculations can be
obtained from the corresponding author upon request
or on his web page.

3. Results
All indexes are computed in terms of returns

returni =
indexi − indexi−1

indexi−1
, i = 2, 3, ..., n.

Before further analysis, we �iltered all considered time
series of returns by ARIMA‑GARCH �ilters ( [7]). For
all investigated series of returns, the best �ilters were
identi�ied (by the system Mathematica, �ersion 11) in
the class GARCH(1,1).

The obtained residuals have pairwise Kendall cor‑
relation coef�icients τ in the interval (−0.08, 0.42),
maximal value was achieved for the couples SPX–DAX
and SPX–UKX, see Fig. 5.

Fig. 6 reveals partial correlations, showing that the
relations of (�iltered) returns of SPX–UKX, SPX–DAX,
SPX–HSI andDAX–UKXattain the largest values,which
is in accordance with corresponding strongest depen‑
dencies between couples in the �irst tree of the optimal
global vine copula in Table 1.

Subsequently, the residuals were transformed by
their respective empirical distribution function into
so‑called pseudo‑observations uniformly distributed
over unit interval (see diagonal of Fig. 5). Results ser‑
ved as inputs to calculations of 7–dimensional copula
models.

We extended our analysis by examining evolu‑
tion of the Kendall’s correlations. We have chosen fre‑
quency of calculations of Kendall’s correlation coef‑
�icients over the intervals of 72 months overlapping
by 36 months with the neighboring intervals, the last
time period spans only 60months. For each of the cou‑
ples of considered indexes, we calculated a sequence
of 7 local Kendall correlation coef�icients on individual
local time intervals. We can see (in Fig. 7) that just 6
out of all 21 couples of indexes have Kendall corre‑
lation coef�icients in most of the periods signi�icantly
positive.

In the following subsections, �irst, an overall de‑
pendence structure is modeled by means of Elliptical,
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Fig. 5. Pairwise scatter plots with Kendall’s tau (upper
triangle), bivariate density contour plots with standard
normal margins (lower) and marginal density (diagonal)
of pseudo‐observations.
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Fig. 6. Partial correlation coefficients for the residuals
(conditioned on the remaining elements of the
considered group of residuals).

nested Archimedean, vine and 1‑factor copulas. Then,
with the same classes of models we examine depen‑
dence in subsequent periods.

3.1. Global Models of Dependence
The best 7–dimensional vine copula (based on for‑

ward selection of trees and AIC criterion for pair‑
copulas, see [19]) is summarized in Table 1, Fig. 8 and
. We observe that at the lowest tree there are modeled
stronger links between SPX with the triple UKX, DAX
and HSI. It illustrates a very strong international po‑
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Fig. 7. Evolution of Kendall’s τ for all couples of the
(filtered) returns

Tab. 1. The summary of the best 7–dimensional vine
copula (I1=SPX, I2=DAX, I3=UKX, I4=NKY, I5=HSI,
I6=LEGATRUU, I7=SPGSCITR)

tree edge family par1 par2 τ

1 I4 ‑ I7 t ‑0.13 6.04 ‑0.08
I2 ‑ I4 SC 0.32 0.00 0.14
I1 ‑ I2 t 0.61 2.80 0.42
I1 ‑ I3 t 0.62 2.75 0.43
I5 ‑ I1 t 0.43 3.19 0.28
I6 ‑ I5 G 1.09 0.00 0.08

2 I2 ‑ I7; I4 t ‑0.01 5.83 ‑0.01
I1 ‑ I4; I2 J 1.11 ‑ 0.06
I3 ‑ I2; I1 t 0.26 3.87 0.17
I5 ‑ I3; I1 t 0.12 3.76 0.08
I6 ‑ I1; I5 Tawn 17.67 0.01 0.01

3 I1 ‑ I7; I2 ‑ I4 SJ 1.08 0.00 0.05
I3 ‑ I4; I1 ‑ I2 t 0.07 7.19 0.05
I5 ‑ I2; I3 ‑ I1 t 0.09 5.18 0.05
I6 ‑ I3; I5 ‑ I1 I ‑ ‑ 0.00

4 I3 ‑ I7; I1 ‑ I2 ‑ I4 I ‑ ‑ 0.00
I5 ‑ I4; I3 ‑ I1 ‑ I2 Tawn90 ‑9.33 0.00 0.00
I6 ‑ I2; I5 ‑ I3 ‑ I1 t ‑0.10 6.14 ‑0.06

5 I5 ‑ I7; I3 ‑ I1 ‑ I2 ‑ I4 I ‑ ‑ 0.00
I6 ‑ I4; I5 ‑ I3 ‑ I1 ‑ I2 G 1.06 0.00 0.06

6 I6 ‑ I7; I5 ‑ I3 ‑ I1 ‑ I2 ‑ I4 F ‑0.81 0.00 ‑0.09
type: R‑vine logLik: 257.52 AIC: ‑455.03 BIC: ‑346.42

sition of the US economy. (It is also interesting to re‑
alize that there exist historically strong ties of HSI to
the increasingly in�luential Chinese economy.) At the
second tree, we can clearly observe a modest depen‑
dence between UKX and DAX, conditioned on SPX. All
other elements of the second tree are clearly weaker.
Interestingly, at the very last tree, a slight dependence
(negative) between LEGATRUUwith SPGSCITR, condi‑
tioned on all considered stock indexes can be obser‑
ved.

The best HAC is shown in Fig. 9.
According to the GoF test statistics, see Tab. 2, the

best models for the investigated data are in the class
of 1–factor copula with Durante generators followed
by Student t–copula and HAC with bivariate Gumbel
Archimedean copula. For comparison, the distance of
product copula to empirical copula is equal to 0.167.

There is no interesting structure to be illustrated
about both 1‑factor copulas, Fig. 10 shows scatter‑plot
of 300 simulated observations, onemay observe a sin‑
gular component present in the FDG copula depen‑
dence model. Although not clearly visible, bivariate
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Fig. 8. The best global Vine copula: trees with pair
copula family indicated on edges (up) and density
contour plots (down), see Tab. 1 for a legend

margins of 1‑factor copula with generator of Frechet
family are radially symmetric (equal tail dependence),
those Cuadras‑Auge family generator based have zero
lower tail dependence.

3.2. Modeling Evolution of Dependence byMeans of Lo‐
cal Models
We continued by searching models for the 7 time

intervals described above (for which sequence of Ken‑
dall�s correlation coef�icient was calculated). A best
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τ = 0.02

Fig. 9. The best global Gumbel HAC copula

Tab. 2. GoF test statistics for all four global
multi–dimensional models

class family
elliptical Gaussian Student

0.022 0.017
HAC Gumbel Clayton Frank Joe

0.019 0.052 0.026 0.023
Vine (Fig. 8)

0.027
Factor FDG Fréchet Cuadras‑Auge

0.016 0.014

Frechet
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Fig. 10. Simulated observations from bivariate margins
of the two best 1‐factor copulas with Durante
generators

vine copula was identi�ied (tree structure) for each in‑
terval but estimated (in the same structure) also for all
the other intervals. This way we got the selection of 7
different, locally best �itting vine copula structures and
their corresponding sequences of estimated vine co‑
pulas. Through almost whole considered time period,
the best vine copula was that one from period 2007‑
2012 (V5). Similarly we estimated a sequence of 7 el‑
liptic, HAC and factor copulas. Among the elliptic co‑
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Fig. 5. Pairwise scatter plots with Kendall’s tau (upper
triangle), bivariate density contour plots with standard
normal margins (lower) and marginal density (diagonal)
of pseudo‐observations.
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nested Archimedean, vine and 1‑factor copulas. Then,
with the same classes of models we examine depen‑
dence in subsequent periods.

3.1. Global Models of Dependence
The best 7–dimensional vine copula (based on for‑

ward selection of trees and AIC criterion for pair‑
copulas, see [19]) is summarized in Table 1, Fig. 8 and
. We observe that at the lowest tree there are modeled
stronger links between SPX with the triple UKX, DAX
and HSI. It illustrates a very strong international po‑
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Tab. 1. The summary of the best 7–dimensional vine
copula (I1=SPX, I2=DAX, I3=UKX, I4=NKY, I5=HSI,
I6=LEGATRUU, I7=SPGSCITR)

tree edge family par1 par2 τ

1 I4 ‑ I7 t ‑0.13 6.04 ‑0.08
I2 ‑ I4 SC 0.32 0.00 0.14
I1 ‑ I2 t 0.61 2.80 0.42
I1 ‑ I3 t 0.62 2.75 0.43
I5 ‑ I1 t 0.43 3.19 0.28
I6 ‑ I5 G 1.09 0.00 0.08

2 I2 ‑ I7; I4 t ‑0.01 5.83 ‑0.01
I1 ‑ I4; I2 J 1.11 ‑ 0.06
I3 ‑ I2; I1 t 0.26 3.87 0.17
I5 ‑ I3; I1 t 0.12 3.76 0.08
I6 ‑ I1; I5 Tawn 17.67 0.01 0.01

3 I1 ‑ I7; I2 ‑ I4 SJ 1.08 0.00 0.05
I3 ‑ I4; I1 ‑ I2 t 0.07 7.19 0.05
I5 ‑ I2; I3 ‑ I1 t 0.09 5.18 0.05
I6 ‑ I3; I5 ‑ I1 I ‑ ‑ 0.00

4 I3 ‑ I7; I1 ‑ I2 ‑ I4 I ‑ ‑ 0.00
I5 ‑ I4; I3 ‑ I1 ‑ I2 Tawn90 ‑9.33 0.00 0.00
I6 ‑ I2; I5 ‑ I3 ‑ I1 t ‑0.10 6.14 ‑0.06

5 I5 ‑ I7; I3 ‑ I1 ‑ I2 ‑ I4 I ‑ ‑ 0.00
I6 ‑ I4; I5 ‑ I3 ‑ I1 ‑ I2 G 1.06 0.00 0.06

6 I6 ‑ I7; I5 ‑ I3 ‑ I1 ‑ I2 ‑ I4 F ‑0.81 0.00 ‑0.09
type: R‑vine logLik: 257.52 AIC: ‑455.03 BIC: ‑346.42

sition of the US economy. (It is also interesting to re‑
alize that there exist historically strong ties of HSI to
the increasingly in�luential Chinese economy.) At the
second tree, we can clearly observe a modest depen‑
dence between UKX and DAX, conditioned on SPX. All
other elements of the second tree are clearly weaker.
Interestingly, at the very last tree, a slight dependence
(negative) between LEGATRUUwith SPGSCITR, condi‑
tioned on all considered stock indexes can be obser‑
ved.

The best HAC is shown in Fig. 9.
According to the GoF test statistics, see Tab. 2, the

best models for the investigated data are in the class
of 1–factor copula with Durante generators followed
by Student t–copula and HAC with bivariate Gumbel
Archimedean copula. For comparison, the distance of
product copula to empirical copula is equal to 0.167.

There is no interesting structure to be illustrated
about both 1‑factor copulas, Fig. 10 shows scatter‑plot
of 300 simulated observations, onemay observe a sin‑
gular component present in the FDG copula depen‑
dence model. Although not clearly visible, bivariate
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Fig. 8. The best global Vine copula: trees with pair
copula family indicated on edges (up) and density
contour plots (down), see Tab. 1 for a legend

margins of 1‑factor copula with generator of Frechet
family are radially symmetric (equal tail dependence),
those Cuadras‑Auge family generator based have zero
lower tail dependence.

3.2. Modeling Evolution of Dependence byMeans of Lo‐
cal Models
We continued by searching models for the 7 time

intervals described above (for which sequence of Ken‑
dall�s correlation coef�icient was calculated). A best

SPX UKX

DAX

HSI

NKY

LEG

SPGτ = 0.08

τ = 0.12

τ = 0.24

τ = 0.42

τ = 0.44

τ = 0.02

Fig. 9. The best global Gumbel HAC copula

Tab. 2. GoF test statistics for all four global
multi–dimensional models

class family
elliptical Gaussian Student

0.022 0.017
HAC Gumbel Clayton Frank Joe

0.019 0.052 0.026 0.023
Vine (Fig. 8)

0.027
Factor FDG Fréchet Cuadras‑Auge

0.016 0.014

Frechet

C
ua

dr
as

−A
ug

e

SPX

DAX

UKX

NKY

HSI

LEG

SPG

Fig. 10. Simulated observations from bivariate margins
of the two best 1‐factor copulas with Durante
generators

vine copula was identi�ied (tree structure) for each in‑
terval but estimated (in the same structure) also for all
the other intervals. This way we got the selection of 7
different, locally best �itting vine copula structures and
their corresponding sequences of estimated vine co‑
pulas. Through almost whole considered time period,
the best vine copula was that one from period 2007‑
2012 (V5). Similarly we estimated a sequence of 7 el‑
liptic, HAC and factor copulas. Among the elliptic co‑
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pulas, t‑copula was mostly better (except for the last
2 subintervals). We have selected HAC from the clas‑
ses Gumbel, Clayton, Frank, Joe and Ali–Mikhail–Haq.
Throughout all considered time intervals, the bestmo‑
del among them was Gumbel HAC (H3, H4) with the
same hierarchical structure as the global HAC butwith
DAX and SPX swaped. Factor copulas performs simi‑
larly except for the �irst period, when Cuadras‑Auge
family �itted better. The corresponding GoF test sta‑
tistic (for the best copulas in each class) is displayed
in Fig. 11 and it shows slightly superior performance
of hierarchical Archimedean copula over elliptical, fac‑
tor and vine copulas throughout the whole analyzed
period (except for the �irst 3 subintervals).

Here come two interesting observations. First, the
breath‑takingperformanceofHACconsidering its par‑
simony: for illustration take now only bivariate co‑
pulas used in vines, factor and HAC copulas, then
number of parameters needed for construction of n‑
dimensional normal copula are n(n− 1)/2, vine copu‑
las n + (n − 1) + . . . + 1, 1‑factor copulas n and HAC
copulas only n − 1. It is true that when (conditional)
independence takes place in the random vector, vine
copula gets signi�icantly reduced, however in our par‑
ticular case as for global copula 20 parameters are in‑
volved comparing to 6 of HAC, and as for the optimal
evolving copula the vine structure contains 8 parame‑
ters.

Second, unlike elliptical copulas, the bestHAC, vine
and factor copulas reveal some asymmetry with re‑
spect to tail behavior, and while vines are better for
directly displaying conditional relationships, hierar‑
chical Archimedean copulas shows clusters of random
variables in somewhat clearer way.

4. Conclusion and Future Work
Modeling dependencies between international �i‑

nancial market indexes is interesting and important
for investors, risk managers and policy makers. Appli‑
cation of more dimensional copulas is bringing a new
insight and experience for modeling activities.

Interestingly, while global optimal model (for the
whole period of 277months) belong to the Factor FDG
copulas class, the optimal local models can be found
(with very minor differences in the values of GoF test
statistic) in the class of HAC. The dominance of this
model is most striking over the interval of the �inan‑
cialmarket crisis,where thequality of thebest Student
class model was providing a substantially poorer �it.
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pulas, t‑copula was mostly better (except for the last
2 subintervals). We have selected HAC from the clas‑
ses Gumbel, Clayton, Frank, Joe and Ali–Mikhail–Haq.
Throughout all considered time intervals, the bestmo‑
del among them was Gumbel HAC (H3, H4) with the
same hierarchical structure as the global HAC butwith
DAX and SPX swaped. Factor copulas performs simi‑
larly except for the �irst period, when Cuadras‑Auge
family �itted better. The corresponding GoF test sta‑
tistic (for the best copulas in each class) is displayed
in Fig. 11 and it shows slightly superior performance
of hierarchical Archimedean copula over elliptical, fac‑
tor and vine copulas throughout the whole analyzed
period (except for the �irst 3 subintervals).

Here come two interesting observations. First, the
breath‑takingperformanceofHACconsidering its par‑
simony: for illustration take now only bivariate co‑
pulas used in vines, factor and HAC copulas, then
number of parameters needed for construction of n‑
dimensional normal copula are n(n− 1)/2, vine copu‑
las n + (n − 1) + . . . + 1, 1‑factor copulas n and HAC
copulas only n − 1. It is true that when (conditional)
independence takes place in the random vector, vine
copula gets signi�icantly reduced, however in our par‑
ticular case as for global copula 20 parameters are in‑
volved comparing to 6 of HAC, and as for the optimal
evolving copula the vine structure contains 8 parame‑
ters.

Second, unlike elliptical copulas, the bestHAC, vine
and factor copulas reveal some asymmetry with re‑
spect to tail behavior, and while vines are better for
directly displaying conditional relationships, hierar‑
chical Archimedean copulas shows clusters of random
variables in somewhat clearer way.

4. Conclusion and Future Work
Modeling dependencies between international �i‑

nancial market indexes is interesting and important
for investors, risk managers and policy makers. Appli‑
cation of more dimensional copulas is bringing a new
insight and experience for modeling activities.

Interestingly, while global optimal model (for the
whole period of 277months) belong to the Factor FDG
copulas class, the optimal local models can be found
(with very minor differences in the values of GoF test
statistic) in the class of HAC. The dominance of this
model is most striking over the interval of the �inan‑
cialmarket crisis,where thequality of thebest Student
class model was providing a substantially poorer �it.
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