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Abstract:

The present paper is devoted to modelling of a probabi-
lity measure of logical connectives on a quantum logic via
a G-map, which is a special map on it. We follow the work
in which the probability of logical conjunction (AND), dis-
junction (OR), symmetric difference (XOR) and their nega-
tions for non-compatible propositions are studied. Now
we study all remaining cases of G-maps on quantum lo-
gic, namely a probability measure of projections, of impli-
cations, and of their negations. We show that unlike clas-
sical (Boolean) logic, probability measures of projections
on a quantum logic are not necessarilly pure projections.
We indicate how it is possible to define a probability me-
asure of implication using a G-map in the quantum logic,
and then we study some properties of this measure which
are different from a measure of implication in a Boolean
algebra. Finally, we compare the properties of a G-map
with the properties of a probability measure related to
logical connectives on a Boolean algebra.

Keywords: logical connectives, orthomodular lattice,
quantum logic, probability measure, state

1. Introduction

The problem of modelling of probability measu-
res for logical connectives of non-compatible proposi-
tions started by publishing the paper Birkhoff, G., von
Neumann, J. [2]. Quantum logic allows to model situa-
tions with non-compatible events (events that are not
simultaneously measurable). Methods of quantum lo-
gic appear in data processing, economic models, and
in other domains of application e.g. [2,28,9,19,27].

Calculus for non-compatible observables has been
described in [16], while modelling of logical connecti-
ves in terms of their algebraic properties and algebraic
structures can be found in [7, 8, 21].

The present paper follows up the work [13], where
the authors studied logical connectives: conjuction,
disjunction, and symmetric difference together with
their negations, from the perspective of a probability
measure. An overview of various insights into this is-
sue is provided in [25].

The paper is organized as follows. Section 2 re-
minds some basic notions and their properties. A spe-
cial function that associates a probability measure to
some logical connectives on a quantum logic is defined
and studied in Section 3 - Section 5. In the last Section
6 properties of a G-map are compared with properties
of a probability measure related to logical connectives
on a Boolean algebra.

2. Basic Definitions and Properties

In the first part of this section, we recall fundamen-
tal notions: orthomodular lattice, compatibility, ortho-
gonality, state, and their basic properties. For more de-
tails, see [6, 24]. In the second subsection, we recall
some situations with two-dimensional states allowing
to model a probability measure of logical connectives
in the case of non-compatible events [16], [15]- [11],
[26].

2.1. Quantum logic

Definition 2.1 An orthomodular lattice (OML) is a lat-
tice L with 0y, and 1y, as the smallest and the greatest
element, respectively, endowed with a unary operation
a +— o that satisfies:

(i) = () =«

(ii) a < bimplies b’ < d';

(iii)aVa =1p;

(iv) a < bimpliesb = a V (a’ A b) (the orthomodular
law).

Definition 2.2 Elements a,b of an orthomodular lat-
tice L are called

- orthogonal ifa < V'; (notationa 1. b);

- compatible if

a=(aANb)V(aAV);
(notation a < b).

Definition 2.3 A state on an OML L is a function
m : L — [0, 1]such that

()m(1L) =1

(ii) a L bimplies

m(a Vv b) = m(a) + m(b).

Note that the notions state and probability measure
are closely tied, and it is clear that m(0y) = 0.

There exist three kinds of OMLs: without any state,
with exactly one state and with infinite number of sta-
tes (see e.g. [20]). The first and the second type of
OLMs as a basic structure are not suitable to build a
generalized probability theory. The last type of OMLs,
which has infinite number of states is considered in
the present paper.

Definition 2.4 An OML L with infinite number of sta-
tes is called a quantum logic (QL).

When studying states on a quantum logic, one can
meet some problems, that do not exist on a Bool-
ean algebra. It means, that some of basic properties
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0
of probability measures are not necessarilly satisfied If p is an s-map on a QL, m,, is a state induced by p and
for non-compatible random events. Here are some of gp : L x L — [0, 1] such that for any a,b € L
them: Bell-type inequalities (e.g. [9,10,23,26]), Jauch-
Piron state, (e.g. [4, 22]), problems of pseudometric ap(a,b) = my(a) +my(b) — p(a,b),
see [13]).
(see [13]) then g, is a j-map. It is easy to see thatif a <+ b, then
2.2. Probability Measures of Logical Connectives on QLs
In [14], the notion of a map for simultaneous me- dp(a,b) = my(a) +myp(b) —my(a Ab) = mp(a Vb)
asurements (an s-map) on a QL has been introduced. which explains its name
This function is a measure of conjunction even for non- P '
compatible propositions, see [25], Let LbeaQL.Amapd : L x L — [0,1] is called
di d- , if the followi diti
Amapp: L x L — [0,1]is called a map for simul- iOIijﬂ.ference map (d-map), if the following conditions
taneous measurements (abbr. s-map) if the following (1) '

conditions hold:
(s1) p(1z,1z) =1;
(s2) ifa L bthen p(a,b) = 0;
(s3) ifa L bthenforanyc € L:

p(a Vb, C) = p(a, C) + p(b, C)a

p(c,a Vb) = p(c,a) + p(c,b).

The following properties of s-map have been proved:
Letp: Lx L — [0,1] bean s-mapand a, b, c € L. Then
1) ifa <> bthen p(a,b) = p(a Ab,a A b) = p(b,a);

2) ifa < bthen p(a,b) = p(a,a);
3) ifa < bthen

p(a,c) < p(b,c)
p(c;b)

IN

p(c, a)
foranyc € L;

4) p(a,b) < min{p(a,a),p(b,b)};
5) themapm, : L — [0, 1] defined asm,(a) = p(a, a)
is a state on L, induced by p.

The property 1. shows that s-maps can be seen as pro-
viding probabilities of ‘virtual’ conjunctions of pro-
positions, even non-compatible ones, for in the case
of compatible propositions the value p(a, b) coincides
with the value that a state m,, generated by p takes on
the meet a Ab, which in this case really represents con-
junction of a and b [25].

On the other hand, the identity p(a,b) = p(b,a)
may not be true in general. So an s-map can be used for
describing of stochastic causality [16-18]. Moreover,
foranya € L: my(a) = p(a,a) =p(1r,a) = p(a,1L).

Logical connectives disjunction (j-map) and syme-
tric difference (d-map) are studied on a QL [13,5].

Let LbeaQL.Amapg: L x L — [0,1] is called a
join map (j-map) if the following conditions hold:

(1) ¢(0£,0.) =0, ¢(1p,11)=1;
(j2) ifa L bthen g(a,b) = q(a,a) + q(b,b);
(j3) ifa L bthenforanyc € L:

glaVb,c) =
q(c,avb) =

q(a,c) +q(b; ¢) — q(c, c)
Q(Ca a) + Q(C7 b) - Q(C’ C)'

d(1p,1.) =d(0.,0,) = 0
d(1r,0p) =d(0r,1) =

(d2) ifa L bthend(a,b) = d(a,0r) + d(0r,b);
(d3) ifa L bthenforanyc € L:

d(aVb,c) = d(a,c)+d(b,c)—d(0g,c)
d(c,aVvb) = d(ea)+d(e,d) —d(c,0p)
If a <+ b, then

d(a,b) = mg(a A b) = mg(a Ab") +mg(a’ AD),

where my is a state induced by d.

3. Special Bivariables Maps on QLs
3.1. Measures and Boolean Functions

Let 5 be a Boolean algebra and f : B* — Bbea
Boolean function. It means, that f is such n-ary opera-
tion on B, which is composed of binary operations V,
A, a unary operation complement’, and brackets ().

For the sake of simplification, the expressions of
the type

(x17 s, Ti—1, g, mi+17 e ,.Tn)
will be written as (7, ai, Js)

Proposition 3.1 Let B be a Boolean algebra,
f + B™ — Ba Boolean function and m : B — [0, 1]
be a probability measure on B. Then the composition of
functionsmo f : B™ — [0,1],

(mo f)(z1,--

satisfies following properties:
(G1) Letxzy,---,x, € {Og,15}™ Then

m(f(x1,---,2,)) € {0,1}.

'7$n) = m(f(xlavxn))

[GZ] Let a;, bj € B,a; L bj. Then

m(f(1,08,Y2,b5,7s3))
+m(f(y1a aiag% 03;?3))
-m f(yla OBayQ’ 057?3))'

m(f (Y1, i Yo, b5, Y3)) =
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(63] Leta;,b; € B, a; L b;. Then

m(f(yl7ai7y2))
+m(f(y1, qu))
—m(f(Y1,08,92))-

m(f(ylaa’i \/biay2)) =

Proof.
(G1) Let f

xl)...

B™ — B be a Boolean function. Let
, Ty € {OB, 13}". Then

f(x1, -, 2,) € {05, 15}

and then

m(f(xla T 7x71)) S {0, 1}

(G2) Let f : B™ — B be a Boolean function. Then for any

aab € {Ila"'vxﬂ}

:f(xh...7

where U = (a AV) V (' AD)V
This can be rewritten as

o) AU, (1)

(a A D).

f(yhav?Qv ba yS)

(@' NV)V

(@A AQ1)V(aAbAQ2)V
V(a' A AQ3)V (aAbAQy),

f(ylvavy% b7 y?)) =

where ();,i = 1,2, 3,4, are boolean expressions that
do not contain any of the elements a, a’, b, b’. Assume
thata L b. Then

f(yl?a’vy27ba?3) = (a/\Ql)\/(b/\Qg)\/(a/Ab//\Qg)

IfWe putm(f(ylv av?27 ba g?;)) = then

p=m(aAQr)+m(bAQs)+ma AV AQs). (2)

Since m is a probability measure, it follows that

m(a A Q1) +m(bAQ2) +m(Qs3)

—m((aVb) AQs)

= maAQ1)+m(bAQ2)+m(Qs)
—m(a A Q3) —m(bAQ3)

= maAQr)+m(ad AQ3)+m(bAQs)

m(' A Qz) —m(Qs).

On the other side, from (2) we obtain

u:

(f(yl,a y27055y3))
(f(ylaol?ay%b yS))
(f(y17037y2’087y3)) -

mbAQz) +m( AQ3),
m(Q3).

Thus (G2) is satisfied.

(G3) Similarly, any Boolean function f : B™ — B can be
written as
flx1, ... zn) = (2 ANQ) V (2} A P),
where the Boolean expressions 2, P do not contain
x;, z;. Thus
m(f(z1,...,20)) = m(z; A Q) +m(z; A P). (3)

m(a A Q1) +m(a’ AQ3),

Consider a,b € B,a L b,and put x; = a V b. Then

m (F(F1a Vb, 7)
= m((aVb)AQ)+m((aVb) AP)
= m(aN@Q)+mbAQ)+m(P)
—m(a A P)—m(bA P)
= m(aAQ)+m(a AP)+m(bAQ)
m(b' A P) — m(P).

On the other side, from (3) we obtain

m(f(¥1,a,Y2)) =
m(f(Y1,0,72)) =
(f(yla 05, y2))

Thus (G3) is satisfied.

m(a A Q)+ m(a’ A P)
m(b A Q) +m(b A P)
=m(P).

(QE.D)

It follows from the previous proposition that each pro-
bability measure of any boolean function has the pro-
perties (G1) - (G3). Then it should be interesing to
study a function G : B™ — |0, 1] which is endowed
with properties (G1) - (G3). It is easy to see, that for
n = 1 a function G is a classical measure (G(15) = 1
and G(0p) = 0) or a negative measure (G(1z) = 0
and G(0g) = 1) on 5.

This article is devoted to functions GG on a QL for
n=2

3.2. Bivariable G-Maps on QLs
A special bivariable map G satisfying

G(0r,1.) =G(1.,01)

has been introduced in [13]. The following definition
brings an extended version of this G-map.

Definition 3.2 Let L be a QL. A map
G:LxL—10,1]

is called a G-map if the following holds:
(G1) ifa,b e {0,1} then G(a,b) € {0,1};

(G2) ifa L bthen

G(a7b) = G((J,7 OL) + G(OLa b) - G(OIMOL);
(G3) ifa L bthen foranyc € L:

G(aVb,c) =G(a,c) + G(b,c) — G(0r, )

G(c,aVb) =G(c,a) + G(c,a) — G(c,0L).

A G-map enables modelling of probability of logical
connectives even for non-compatible propositions.

Lemma 3.3 LetG : L x L — [0, 1] be a G-map, where
Lisa QL. Then for a < b it holds

G(a,b) = G(aAbaNb)+Ganb,0r)

+G(0y, a A b) —2G(01,0p).

Proof. See in [12].



Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°3 2019

Proposition 3.4 LetG : L x L — [0,1] be a G-map,
where L is a QL. Then the map G’ = 1 — G is a G-map.

Proof. See in [12].

There are sixteen families I';, (i = 1,...,16) of
maps G according to values in vertices

(lL’lL)a (1L,OL)7 (OLvlL)v (OLvoL)'

Eight of them with G(1,,0;) = G(0r, 1) are studied
in [13]. More details can be found in Table 5, section 6.

Family I's is the set of all s-maps (measures of con-
juntion), I's the set of all j-maps (measures of dis-
junction), and I'ys is that of all d-maps (measures of
symmetric difference) on a QL (see [13] for more de-
tails).

In the present paper, the remaining cases I';
@ =9,..,16) with

G(11,0p) # G(0g,11)

are focused on.

4. Probability Measures of Projections on QLs

This part is devoted to I'gy — I';5 with values in
the vertices shown in the Table 1. As G € T’y iff
1—G €eTg,and G € T'1iff 1 — G € Ty (Proposi-
tion 3.4 and Table 1), and moreover, I'g and I';y are
analogical cases (I'y; and I'y5 as well), only I'g is stu-
died in detail.

Lemma 4.1 Let L be a QL and G € T'g. Then for any
a,b € Litholds
1) G(1p,a) =1,G(0r,a) =0;

2) G(a,01) = G(a,a) = G(a,1y);
3) G(a,0p) = %(G(a,b) + G(a,b));
4)

1 n
QMM:EEXM@L
=1

where by, - - -, b, is an orthogonal partition of unity

1r.
Proof. See in [12].

Proposition 4.2 Let L be a QL, and G € T'y. Then for
any a,b € L it holds
1) Ifa < bthen G(a,b) = G(a,0L).

2) For any choice of b, the map m;, : L — [0, 1]:
my(a) = G(a,b)
is a state on L.

Proof. See in [12].

From Proposition 4.2 it follows that any G € I'y is
a probability measure of the projection onto the first
coordinate. Analogical properties are fullfiled for any
G € T'yp, which is a probability measure of the pro-
jection onto the second coordinate.

If L is a Boolean algebra, then for any G € T'g it
holds G(a,b) = G(a,0r) forall a,b € L. Analogously
for any G € T’y it holds G(a,b) = G(0g,b) for all
a,be L.

If LisaQLbutnotaBoolean algebra, then the iden-
tity does not hold in general, as illustrates the follo-
wing example.

Example 4.3 Consider L = {0p,1,a,a’,b,b'}, a ho-
rizontal sum of Boolean algebras

Ba == {OLa ]-La aaa/}v

Bb = {0L7 1L7 ba b/}

Consider r1,r2,u1,us € [0,1]. Every G € Ty can be
fully defined by Table 2, where

a==(ry +ra),

— N

8= 5w +u2)

according to Lemma 4.1. If vy # r4 then
G(a,b) # G(a,0p).

From Table 2, one can extract all states on L, related to
the choice of r1,r2,u1,us. Each column in the Table 2
represents a state on L. As example, my, and mg are in
Table 3.

Definition 4.4 Let G € I'g. The map G is called a me-
asure of pure projection (a pure projection) if

G(a,b) = G(a,0r)
forany a,b € L.

On a Boolean algebra, the projection onto the first
coordinate may be expressed by a Boolean function

fla,b) = (@aAnb)V(aAV)=(anb)V (' ANa)=a,

what motivates us to define on a QL L four G-maps
with the use of p € T'5 :

Gl(avb) = p(a,b) —|—p(a,b’),
Gaz(a,b) = p(b,a) +p(t',a),
Gs(a,b) = pla,b) +p(t',a),
Gy(a,b) = p(b,a) + p(a,b).

Maps G; are measures of projection onto the first
coordinate, i.e. G; € I'g what we prove below. If p is
a commutative s-map, all G; coincide,

G; (a7 b) = p(a, a’)

what is a pure projection. If p is a non-commutative s-
map, then

Gi(a,b) = Ga(a,b) = p(a,a)

is a pure projection, while G3 and G4 are not pure pro-
jections since:

G3<avb) = p(a,b)+p(a,a)—p(b,a),
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Tab. 1. T'g - 'y values in vertices
Iy I'o 'y I '3 Iy I'i5 I'6
G(01,0p) 0 0 1 1 1 1 0 0
G(0p,11) 0 1 1 0 1 0 0 1
G(1.,01) 1 0 0 1 0 1 1 0
G(1p,11) 1 1 0 0 1 1 0 0
Tab. 2. G-maps from I'g on a hor izontal sum of Boolean algebras
a a b 4 0r, 1z
a a o 1 T a a
a’ l-a|l—-a|l=-r|l=r|l-a|l-a
b Uy U B B B p
v l—uy |1—ug | 1= | 1 =8| 1= |1-0
0r, 0 0 0 0 0 0
1, 1 1 1 1 1 1
Tab. 3. Stateson L
a a b 4 Or 1z
mp 71 1—nr B 1-p 0 1
mo « 1—« B 1-06 0 1
and The second identity:
G3(a,0r) = pla,a), Gs(c,a VvV b)

and if p(a, b) # p(b, a) then G5(a, b) # G3(a,0r). Now
we prove that GGz is a projection (case G4 is analogical).

(1) Gs(a,b) € [0,1]

0 < Gs(a,b)=pla,b)+pl, a)

< p(b,b)+p, ) =1.

(2)  Values in vertices:
G3(0r,0z) = G3(0r, 11) =0,
G3(11,0) = Gs(1p,11) = 1.
(3) Ifa L bie.a <V then

Gs(a,b) pla,b) +p(¥',a) = 0+ p(a, a).

From the other side

G3(a,0r) + G3(01,b) — G3(0r,01)
(a7 OL) +p(1L7a) +p(0La b) +p(b/a OL) -0

=D
:p(aaa‘)'
(4) Ifa L bandc € Lthen
Gs(aVb,c) = plaVbc)+p(d,aVvb)

pla,c) +p(b,c) +p(c,a) + p(c,b).
From the other side

Gg(a, C) + Gg(b, C) — (;?,(OL7 C)
pla,c) + p(cl, a) +p(b,c)
+p(c’,b) +p(0r, ¢) +p(c',0L).

ple,aVb)+p((aVb),c)

p(c,a) +p(e,b) + p(1L,¢) — pla Vb, c)
p(c,a) +ple,b) +p(1z,¢) — pla, ) — p(b,c)
ple,a) +pld’,c) +p(e,b) +p(b', c) — p(lr,c)
G3(c,a) + G3(c,b) — G3(c,0r).

Proposition 4.5 For every s-map p there exists a G-
map G, € T'g such that

Gp(a,b) = G,(a,0L).
Proof. Let
Gp(a,b) = p(a,b) + p(a, V') = p(a, a),
where p is an arbitrary s-map. Then G,, € I'g and
Gp(a,b) = Gp(a,0r)
forany b € L. (QED)

The results for I'g —I'15 are summarized in Table 4.

Tab. 4. Results forI'g — I'12

Ty I'i2

a

T'io

probability of

5. Probability Measures of Implications on
Qls
Values in vertices for families I'13 — I'yg are in the
Table 1. Similarly to the relations between I'g - I'15, for
families I'13 — I'16 hold
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G€F13 iff 1—GEF15,
Gelyy iff 1 —G e T,

I'y5 and I'y¢ are analogical cases. For these reasons
only one of the famillies, I';5, will be focused on.

Lemma 5.1 Let L be a QL and G € T';5. Then for any
a,b € L itholds
1) G(CL, (l) = G(CL, 1L) = G(OLa a‘) = 0;

2) G(1p,a) =1—G(a,01) = G(a',01);
3) Ifa < bthen G(a,b) = G(a AV ,0p).
4) Ifa < bthen G(a,b) = 0.

Proof.
1) LetG € I'15 and a € L, then

0 = G(1p,1p)
= G(a,1)+G(d, 1) —
— Gla, 1) +G(d,1y).

G(01,1z)

Taking into account that G(a,b) € [0,1], one
concludes that G(a,1;) = 0 for any a € L. Furt-
her

0 = G(a, 1) =G(a,a) + G(a,a’) — G(a,0r)
= G(a,a)+ G(a,0) + G(0p,a") — G(01,0p,)
—G(a,0r)
= G(a,a)+ G(0g,ad).

Thus G(a,a) = G(0p,a) = 0.

2) Let G € T'y5 and a € L, then with the use of what
preceeds,

G(1p,a) G(a,a) + G(d',a) — G(0p, a)
= G(a’,OL) + G(OL,G) — G(OL,OL)

= G(a', OL).
From the other side,

1 = G(11,0r) = G(a,0r) + G(d’,0).

Consequently,

G(1L7a) =1- G(a7OL) = G(a/7OL)'
3) If a < bthen G(a,b) = G(a AV,0r) follows di-
rectly from Lemma 3.3.

4) a < bis a particular case of a <> b, where a A b =
0r. This leads immediatelly to

G(a,b) = G(a A b’,OL) =G(0.,0L) =0.

(QE.D)

Lemma 5.2 Let L bea QL and G € TI'y5. Then the map
mq : L — [0, 1] defined asmg(a) = G(a,0L) is a state
on L.

Proof.

1) mg(lL) = G(lL,OL) = 1

2) Ifa L b, then
mag(aVbd) = G(aVb0L)
= G(a,0r) +G(b,0r) —
= mg(a) + mg(b).
(Q.ED)

Proposition 5.3 Let L be a QL. The famillies I'5 and
I'y5 are isomorfic.

G(01,0p)

Proof. Since I'; is the set of all s-maps on L, it suffices

to prove:

i) If G € T'y5 and pg(a,b) = G(a,V’), then pg is an
s-map on L.

ii) If pis an s-map on L and G, (a,b) = p(a,b’), then
Gp € T'1s.

i) Let G € I'y5 and pg(a,b) = G(a,b’). The proper-
ties (s1) - (s3) of s-map are verified bellow.

(sDpc(lr, 1) =G(1z,0L) =1

(s2) Ifa L b, then pg(a,b) = G(a,b’) = 0. It im-
plies from Lemma 5.1 asa < V.
(s3)Ifa L band ¢ € L, then

G(aVb,)
= Gla,d)+G(b,d)— G0, )
= pala,c) +pa(b,c).

pa(aVb,c)

The second identity:

pa(c,aVvb) =G(c,(aVb))=G(c,d NV
pa(c,a) + palc,b) = G(e,ad’) + G(c, b').
It suffices to show that G(c,a’) + G(c, V) =
G(c,a’ ANV'). From the orthomodular law it follows
thata’ = bV (b’ Ad')and ¥ =aV (a' A V).
G(e,d’) + G(e,b)
= G(c,b) +G(c,a ANV)—G(c,0r)
+G(c,a’ ANV') + G(e,a) — G(c,0r)
— (G(eb) + Gle,a) - Gle,01))
+G(c,a’ AY) — G(c,0p)
+G(c,a’ N
= G(c,aVb)+G(c,(aVDb))
—G(c,0) + G(c,d' NY)
= G(c, 1) + G(e,d' ANY)
= G(e,d NV).
Consequently

pa(c,aVb) =pg(c,a)+ palc,b).

ii) Letpbe an s-map and G(a,b) = p(a,b’). We want

to prove G € I';s.

- Itis clear that the values of G, in vertices match
the maps of I'y5.

- Leta L b. Then Gy(a,b) = p(a,b') = p(a,a) as
a < b'.0On the other hand

Gp(a,0r) + Gp(0r,b) —

pla,11) +p(0L, ") —
pla,a) = Gp(a,b).

Gp(0r,0z)
(OLa 1L)
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- Leta,b,c € Landa L b. Then

GplaVvb,e) = plaVvb)
pla,c’) +p(b, )

= Gpla,c) +Gp(b,c) —

The second identity:
Gp(c,aVb) =p(c,a AV)
Gple,a) + Gp(c,b) — Gp(c,0r)
= ple.a) +ple,b') = ple,11).
It suffices to show that
o) + ple,b)

ple,a AV = p(e, —p(e,1p).

Since
ple,a Vv b) = ple,a) + ple, b
p(c,aVb) =p(c,11) —p(c,a’ A V)
ple,11) — ple,a’ A V)
:p(C, 1L) - (C7 a/) —l—p(C7lL) —p(C, b/)
thus
plc,a’ Ab)

(QE.D)

= p(C, al) +p(C, b/) —p(C, ]-L)

In a classical Boolean logic it holds (principle of a

proof by contraposition)
a=b & b=d.

On a Boolean algebra is any measure of both the left
and the right hand side the same. Quantum logics and
some measures of implication G € T'y3 (induced by
a non-commutative s-map) enable to model a situa-
tion where these measures are not equal. First look at
basic properties of the class of implications, I';3.

Lemma 5.4 Let L be a QL and G € I'13. Then for any
a,b € L it holds

1) G(a,a) = G(a,1r) =G (0, a) = 1;

2) G(1p,a) =1—G(a,05) = G(a',01);

3) Ifa < bthen G(a,b) = G (a' V b,01);

4) Ifa < bthen G(a,b) = 1.

Proposition 5.5 Let L be a QL and G € T'y3. Then the
map mg : L — [0, 1] defined as mg(a) = G(11,a) isa
state on L.

Proposition 5.6 Let L be a QL. The families 'y and '3
are isomorfic.

Proof. The statement follows immediately from:
i) pelyiff G, € 15, where Gp(a,b) = p(a,b').

ll) GeTlysiff 1 — G eTs.

From the above it is clear that p € I'; iff G, € I'i3,
where
Gp(a,b) =1—p(a,b)

The measure of implication G, is called a measure in-
duced by s-map p. (QE.D)

Let us return to the tautology

GP(OL, C).

a=biff Y = da.
We would expect an equal measure of propositions
a=b & b =d,

or equivalently: for any G € TI'y3 it holds G(a,b) =
G (b',a’). As already noted, this is true on a Boolean
algebra, but not necessarilly on a quantum logic. In-
deed, if a measure of implication G, is induced by a
non-commutative s-map p, and the events a, b are not
compatible, one can obtain

G(a,b) =1—p(a,b)

different of
GW,d)=1-p{,a).

Note that, if a measure of implication is induced by
a commutative s-map p, we have a classical situation.

6. Conclusion

An overview of all classes is in Table 5 and in Table
6. It is clear from these tables that on a Boolean alge-
bra, a value of a G-map is a probability measure of a
Boolean expression, according to the known table for
the propositional logic. This leads to the interpretation
of values of a function G on a quantum logic.

6.1. Relations between Classes I'; - I'(¢.

On a Boolean algebra classes I'; and I'j are isomor-
phicfori, j # 1,8. Another situation occurs in the case
of non-compatible random events, that is, in the case
of a quantum logic:

- I'y and I'7 are isomorphic.

- I'; and I'; are isomorphic for

i,j €{2,3,5,6,13 — 16}.

- In [13] it is shown that for any p € I'; there exists a
G, € I'y induced by p. On the other side, there exists
G € T'y such that the map p¢ induced by G is not in
I's (pg is not an s-map).

- I'g - I'12 are mutually isomorphic, but their relation
to other classes is not quite clear. Nevertheless, for
any s-map there exists a projection, as it follows
from Proposition 4.5.

6.2. Problem of Existence of (G-maps on QLs.

Two principal questions related to G-maps arise in
a quantum logic: existence of such map and its proper-
ties.

From the foregoing considerations it follows that
the existence of a probability measure of conjunction
(s-map) guarantees the existence of a probability mea-
sure of all other logical connectives. Therefore, the key
question, listed as an open problem Q3 in [25], is the
existence of an s-map on any quantum logic.

The existence of an s-map in the case of a separable
quantum logic and additive states has been solved in
[15] and [14].
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Tab. 5. Results from the paper [13]
Iy I'y I's Iy I's I'g Iy Iy
G(01,0p) 0 0 0 0 1 1 1 1
G(1.,0p) 0 0 1 1 1 0 0 1
G(0p,1p) 0 0 1 1 1 0 0 1
G(1p,1p) 0 1 1 0 0 0 1 1
probability of 0r, alb aVb | (ascb) | VYV | dAY |asb| 1p
a<b |a<b a<>b a<b | asb|asb
Tab.6. I'g-T'16, G(11,01) # G(Or,11).Fora < b:a = b=2a' Vb.
) I 'y ' I3 'y I'5 16
G(01,0p) 0 0 1 1 1 1 0 0
G(0p,11) 0 1 1 0 1 0 0 1
G(11,0p) 1 0 0 1 0 1 1 0
G(1p,11) 1 1 0 0 1 1 0 0
probability of a b a 4 a=b | a<b | (a=0b) (a <= b)
a<b a<b a<b a+b

Proposition 6.1 ( [15], Proposition 1.1.) Let L be an
OML, let {a;}]y € L,n € N wherea; L aj for
i # j. If for any i there exists a state «;, such that
a;(a;) = 1, then there exists o-CS such that for any
k = (ki,---,ky), where k; € [0,1] fori € {1,---,n}
with the property . k; = 1, there exists a conditional
state fr, : L x L. — [0, 1], such that for any i and each
de L

fe(d, a;) = ai(d);

and for each a;
fr (aj,Via;) = k;.

Proposition 6.2 ( [14] Proposition 2.2.) Let L be an
OML, let there be an s-map p. Then there exists a con-
ditional state f, such that

p(a;b) = fpla,b)fp(b;1L).
Let LbeaQLandlet L. = L — {0.}.If
f:LxL.—10,1]
is a conditional state, then there exists an s-map
ps: L xL—[0,1].

s-maps, whose existence is guaranteed by the
above cited propositions, can be constructed using
techniques similar to those known for the con-
struction of copulas. ( [1,3] ).

6.3. Some Differences Between (G-maps on a Boolean
algebra and G-maps on a QL.

1) Each probability measure on B induces a pseudo-
metric. It means, that for any probability measure
m, the map d,,: dp,(a,b) = m(aAb')+m(a’ Ab)isa
pseudometric on B induced by m. On a quantum lo-
gic,ifp € 'y and d,(a, b) = p(a,b’) + p(a’, b), then
d, € I'y but it can happen that d,, is not a pseudo-
metric.

2) Let L be a QL, m be a state on L and p be an s-map
on L. The first Bell-type inequality (4) is not ne-
cessarily fulfilled for all values a,b € L while its
version (5), via an s-map p is always satisfied.

m(a) +m(b) — m(a AD)

< 1 4)
p(a,a) +p(b, b) —p(a,b) < 1

)

The second Bell-type innequality (6) is not neces-
sarily fulfilled for all values a, b, ¢ € L while its ver-
sion (7) is fulfilled for every s-map, which induces
a pseudometric on L [26].

m(a)+m(b)+m(c)—m(anb)—m(anc)—m(cAb) < 1
(6)

p(a,a)+p(b,b)+p(c, c)—p(a, b)—p(a, c)—p(c,b) < 1
(7)
3) Analogically, implication (8) (Jauch-Piron state, see
e.g.[4,22]) can be violated on L but implication (9)
is always valid

m(a) =m(b) =1 = mandb)=1 (8)

p(a,a) :p(b, b) =1 = p(a,b) =1, 9)

and moreover for any ¢ € L
p(av C) = p(C, a) = p(c, C)'

4) On a Boolean algebra, every projection is a pure
projection. On a quantum logic, a G-map G (G €
I;, i € {9,10,11,12} ) is not necessarilly a pure
projection, see Example 4.3.

5) Quantum logics and G-maps enable to model situ-
ations that can not occur in a Boolean algebra. The
use of G-maps to model these situations on QLs is
illustrated by the following considerations:

a) Quantum logics and non-commutative s-maps
(class I';) enable to model stochastic causality.
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Tab. 7. d-map not satisfying triangle inequality if & > 0
a b c a v d 0y, 1z
a 0 k 0 1 1—k 1 « 11—«
b k 0 0 1—-k 1 1 B 1-p
c 0 0 0 1 1 1 ¥ 1—7v
a' 1 1-k 1 0 k 0 1—« Q
v 1—k 1 1 k 0 0 1-p I6]
c 1 1 1 0 0 0 1—7 5
0 ! B vy l-a|1-8|1—v 0 1
1 l—a|1-8|1-xv o B 04 1 0
Let L be a quantum logic, p an s-map on L, and triangle inequality. Table 7 gives an example of
a,b € L. The conditional probability of some such symmetric difference under condition & >
event a, given the occurrence of some other event 0.
bis For elements a, b, ¢ it holds:
Plalb) = p(a,b)
alb) = .
p(b,b) d(a,c) =d(c,b) =0,
Assume that pis anon-commutative s-map. Then
there are non-compatible events a, b, for which but d(a,b) =k > 0.
p(a,b) # p(b, a). This situation models a stochas-
ACKNOWLEDGEMENTS

tic causality using a non-commutative measure
of conjuction p. In this case Bayes’s theorem is vi-
olated ( [16,17]).

Assume moreover that the event a is indepen-
dent of b, i.e. it holds

p(a,b)
(b,b)

P(ald) = = p(a,a).

3

On the other side, the event b is not independent
of a, as

p(b,a) _ p(b,a)p(b,b)
p(a,a) p(a,b)
Using a commutative s-map, we have a classical

situation. A commutative s-map ps can be obtai-
ned from an arbitrary s-map p e.g. as

P(bla) =

# p(b,b).

3 (0(.) + 9y, )

Ds ({E7 y) =5
Whether an event a is independent of b or not is
determined by the measure of conjunction. The-
refore it is suitable to say that a is independent
of b with respect to a measure (s-map p).
b) Quantum logics and some d-maps (class I'y) ena-
ble to distinguish elements that are not distin-
guishable on a Boolean algebra.

Symmetric difference (d-map) on a Boolean alge-
bra fulfills the triangle inequality

d(a,b) < d(a,c)+ d(c,b).

Consequently, if a, c and b, ¢ are indistinguisha-
ble, then a, b are also, because

d(a,c) =d(c,b) = 0= d(a,b) = 0.

On a quantum logic exists a set of symmetric dif-
ferencies (subclass of I'y), that do not fulfill the

Olga Nanasiova would like to thank for the support
of the VEGA grant agency by means of grant VEGA
1/0710/15 and the author Lubica Valaskova would
like to thank for the support of VEGA 1/0420/15.

AUTHORS

OIga Nanasiova* - Inst. of Computer Science
and Mathematics, Slovak University of Techno-
logy in Bratislava, Ilkovicova 3, 812 19 Bratislava,
Slovakia, e-mail: nanasiova@stuba.sk, www: ma-
tika.elf.stuba.sk/KMAT/OlgaNanasiova.

Lubica Valaskova - Department of Mathematics and
Descriptive Geometry, Slovak University of Techno-
logy , Radlinského 11, 810 05 Bratislava, Slovakia,
e-mail: valaskova@stuba.sk, www: math.sk.

Viera Cerfianova - Department of Mathematics
and Computer Science, Faculty of Education, Trna-
va University, Priemyselnd 4, 918 43 Trnava, Slo-
vakia, e-mail: vieracernanova@hotmail.com, www:
pdf.truni.sk/katedry/kmi/pracovnici.

*Corresponding author

REFERENCES

[1] A. M. Al-Adilee and O. Nandasiova, “Copula
and s-map on a quantum logic”, Information
Sciences, vol. 179, no. 24, 2009, 4199-4207,
10.1016/j.ins.2009.08.011.

G. Birkhoff and ]J. Von Neumann, “The Logic of
Quantum Mechanics”, Annals of Mathematics, vol.
37,no. 4, 1936, 823-843,10.2307/1968621.

M. Bohdalova and O. Nanasiova. “Note to Copula
Functions”, 2006.

L.]. Bunce, M. Navara, P. Ptik, and J. D. M. Wright,
“Quantum logics with Jauch-Piron states”, The
Quarterly Journal of Mathematics, vol. 36, no. 3,
1985, 261-271, 10.1093 /qmath/36.3.261.

(2]

(3]

(4]



Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 13, N°3 2019

[5] E.Drobna, 0.Nanasiova, and L. Valaskova, “Quan-
tum logics and bivariable functions”, Kyberne-

tika, vol. 46, no. 6, 2010, 982-995.

[6] A.Dvurecenskij and S. Pulmannova, New Trends
in Quantum Structures, Mathematics and Its
2000,

Applications, Springer Netherlands,
10.1007/978-94-017-2422-7.

[7] A.Dvurecenskij and S. Pulmannova, “Connection
between joint distribution and compatibi-
lity”, Reports on Mathematical Physics, vol.
19, no. 3, 1984, 349-359, 10.1016/0034-

4877(84)90007-7.

[8] L.Herman, E. L. Marsden, and R. Piziak, “Implica-
tion connectives in orthomodular lattices”, Notre
Dame Journal of Formal Logic, vol. 16,no.3,1975,

305-328,10.1305/ndjfl/1093891789.

[9] A. Y. Khrennikov, “EPR-Bohm experiment and
Bell’s inequality: Quantum physics meets pro-
bability theory”, Theoretical and Mathemati-
cal Physics, vol. 157, no. 1, 2008, 1448-1460,

10.1007/s11232-008-0119-3.

[10] A. Khrennikov, “Violation of Bell’s Inequa-
lity and non-Kolmogorovness”, Foundations
of Probability and Physics-5. AIP Conference
Proceedings, vol. 1101, no. 1, 2009, 86-99,

10.1063/1.3109976.

[11] O.l.Nanasiova and L. Valaskova, “Marginality and
Triangle Inequality”, International Journal of The-
oretical Physics,vol.49,n0.12,2010,3199-3208,

10.1007/s10773-010-0414-2.

[12] O. Nanasiova, V. Certianova, and L. Valaskova,

“Probability Measures and Projections on Quan-
In: P. Kulczycki, ]J. Kacprzyk,
L. T. Koczy, R. Mesiar, and R. Wisniewski, eds.,
Information Technology, Systems Research, and
Computational Physics, Cham, 2020, 321-330,

tum Logics”.

10.1007/978-3-030-18058-4_25.

[13] O.Nanasiova and L. Valaskova, “Maps on a quan-
tum logic”, Soft Computing, vol. 14, no. 10, 2010,

1047-1052,10.1007/s00500-009-0483-4.

[14] O. Nanasiova, “Map for Simultaneous Measure-
ments for a Quantum Logic”, International Jour-
nal of Theoretical Physics, vol. 42, no. 9, 2003,

1889-1903,10.1023/A:1027384132753.

[15] O. Nanasiova, “Principle Conditioning”,
ternational  Journal of Theoretical
sics, vol. 43, no. 7, 2004,
10.1023/B:1JTP.0000048818.23615.28.

[16] O. Nanasiova and M. Kalina, “Calculus for Non-
Compatible Observables, Construction Through
Conditional States”, International Journal of The-
oretical Physics, vol. 54, no. 2, 2015, 506-518,

10.1007/s10773-014-2243-1.

[17] O.Nanasiovaand A. Khrennikov, “Representation
Theorem of Observables on a Quantum System”,
International Journal of Theoretical Physics, vol.
45, no. 3, 2006, 469-482, 10.1007 /s10773-006-

9030-6.

1757-1767,

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

0. Nanasiova and J. Pykacz, “Modelling of Uncer-
tainty and Bi-Variable Maps”, Journal of Electri-
cal Engineering, vol. 67, no. 3, 2016, 169-176,
10.1515/jee-2016-0024.

M. Pavicic and N. D. Megill, “Is Quantum Logic a
Logic?”, arXiv:0812.2698 [quant-ph], 2008, arXiv:
0812.2698.

M. Pavici¢, “Exhaustive generation of ortho-
modular lattices with exactly one nonquan-
tum state”, Reports on Mathematical Physics,
vol. 64, no. 3, 2009, 417-428, 10.1016/S0034-
4877(10)00005-4.

M. Pavicié. “Classical Logic and Quantum Lo-
gic with Multiple and Common Lattice Models”,
2016.

C. Piron and ]. Jauch, “On the structure of
quantal proposition systems”, Birkhduser, 1969,
10.5169/seals-114098.

1. PitowsKky, Quantum Probability — Quantum Lo-
gic, Lecture Notes in Physics, Springer-Verlag:
Berlin Heidelberg, 1989, 10.1007 /BFb0021186.

P. Ptdk and S. Pulmannova, Orthomodular struc-
tures as quantum logics, number v. 44 in Funda-
mental theories of physics, Kluwer Academic Pu-
blishers: Dordrecht ; Boston, 1991.

J. Pykacz and P. Frackiewicz, “The Problem of
Conjunction and Disjunction in Quantum Logics”,
International Journal of Theoretical Physics, vol.
56, no. 12, 2017, 3963-3970, 10.1007/s10773-
017-3402-y.

J. Pykacz, L. Valaskov4, and O. Nanasiova, “Bell-
Type Inequalities for Bivariate Maps on Ortho-
modular Lattices”, Foundations of Physics, vol.
45, no. 8,2015,900-913,10.1007/s10701-015-
9906-5.

G. Sergioli, G. M. Bosyk, E. Santucci, and R. Giun-
tini, “A Quantum-inspired Version of the Classi-
fication Problem”, International Journal of Theo-
retical Physics, vol. 56, no. 12,2017, 3880-3888,
10.1007/s10773-017-3371-1.

S. Sozzo, “Conjunction and negation of natural
concepts: A quantum-theoretic modeling”, Jour-
nal of Mathematical Psychology, vol. 66, 2015,
83-102,10.1016/j.jmp.2015.01.005.



