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Abstract:
The present paper is devoted to modelling of a probabi‐
litymeasure of logical connectives on a quantum logic via
aG‐map,which is a specialmap on it.We follow thework
in which the probability of logical conjunction (AND), dis‐
junction (OR), symmetric difference (XOR) and their nega‐
tions for non‐compatible propositions are studied. Now
we study all remaining cases of G‐maps on quantum lo‐
gic, namely a probabilitymeasure of projections, of impli‐
cations, and of their negations. We show that unlike clas‐
sical (Boolean) logic, probability measures of projections
on a quantum logic are not necessarilly pure projections.
We indicate how it is possible to define a probability me‐
asure of implication using aG‐map in the quantum logic,
and thenwe study some properties of thismeasurewhich
are different from a measure of implication in a Boolean
algebra. Finally, we compare the properties of a G‐map
with the properties of a probability measure related to
logical connectives on a Boolean algebra.
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1. Introduction
The problem of modelling of probability measu‑

res for logical connectives of non‑compatible proposi‑
tions started by publishing the paper Birkhoff, G., von
Neumann, J. [2]. Quantum logic allows to model situa‑
tions with non‑compatible events (events that are not
simultaneously measurable). Methods of quantum lo‑
gic appear in data processing, economic models, and
in other domains of application e.g. [2,28,9,19,27].

Calculus for non‑compatible observables has been
described in [16], while modelling of logical connecti‑
ves in termsof their algebraic properties and algebraic
structures can be found in [7,8,21].

The present paper follows up thework [13], where
the authors studied logical connectives: conjuction,
disjunction, and symmetric difference together with
their negations, from the perspective of a probability
measure. An overview of various insights into this is‑
sue is provided in [25].

The paper is organized as follows. Section 2 re‑
minds some basic notions and their properties. A spe‑
cial function that associates a probability measure to
some logical connectives on a quantum logic is de�ined
and studied in Section 3 – Section 5. In the last Section
6 properties of aG‑map are comparedwith properties
of a probability measure related to logical connectives
on a Boolean algebra.

2. Basic Definitions and Properties
In the �irst part of this section,we recall fundamen‑

tal notions: orthomodular lattice, compatibility, ortho‑
gonality, state, and their basic properties. Formore de‑
tails, see [6, 24]. In the second subsection, we recall
some situationswith two‑dimensional states allowing
to model a probability measure of logical connectives
in the case of non‑compatible events [16], [15]‑ [11],
[26].
2.1. Quantum logic

An orthomodular lattice (OML) is a lat‑
tice L with 0L and 1L as the smallest and the greatest
element, respectively, endowed with a unary operation
a �→ a′ that satis�ies�
(i) a′′ := (a′)′ = a;
(ii) a ≤ b implies b′ ≤ a′;
(iii) a ∨ a′ = 1L;
(iv) a ≤ b implies b = a ∨ (a′ ∧ b) (the orthomodular
law).

Elements a, b of an orthomodular lat‑
tice L are called
– orthogonal if a ≤ b′; (notation a ⊥ b );
– compatible if

a = (a ∧ b) ∨ (a ∧ b′);

(notation a ↔ b).

A state on an OML L is a function
m : L → [ 0 , 1 ] such that
(i)m(1L) = 1;
(ii) a ⊥ b implies

m(a ∨ b) = m(a) +m(b).

Note that the notions state andprobabilitymeasure
are closely tied, and it is clear thatm(0L) = 0.

There exist three kinds of OMLs: without any state,
with exactly one state and with in�inite number of sta‑
tes (see e.g. [20]). The �irst and the second type of
OLMs as a basic structure are not suitable to build a
generalized probability theory. The last type of OMLs,
which has in�inite number of states is considered in
the present paper.

An OML L with in�inite number of sta‑
tes is called a quantum logic (QL).

When studying states on a quantum logic, one can
meet some problems, that do not exist on a Bool‑
ean algebra. It means, that some of basic properties
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of probability measures are not necessarilly satis�ied
for non‑compatible random events. Here are some of
them: Bell‑type inequalities (e.g. [9,10,23,26]), Jauch‑
Piron state, (e.g. [4, 22]), problems of pseudometric
(see [13]).
2.2. ProbabilityMeasures of Logical Connectives on QLs

In [14], the notion of a map for simultaneous me‑
asurements (an s‑map) on a QL has been introduced.
This function is ameasureof conjunction even for non‑
compatible propositions, see [25].

A map p : L× L → [0, 1] is called amap for simul‑
taneous measurements (abbr. s‑map) if the following
conditions hold:

(s1) p(1L, 1L) = 1;
(s2) if a ⊥ b then p(a, b) = 0;
(s3) if a ⊥ b then for any c ∈ L:

p(a ∨ b, c) = p(a, c) + p(b, c),

p(c, a ∨ b) = p(c, a) + p(c, b).

The following properties of s‑map have been proved:
Let p : L×L → [0, 1] be an s‑map and a, b, c ∈ L. Then
1) if a ↔ b then p(a, b) = p(a ∧ b, a ∧ b) = p(b, a);
2) if a ≤ b then p(a, b) = p(a, a);
3) if a ≤ b then

p(a, c) ≤ p(b, c)

p(c, a) ≤ p(c, b)

for any c ∈ L;
4) p(a, b) ≤ min{p(a, a), p(b, b)};
5) themapmp : L → [0, 1]de�ined asmp(a) = p(a, a)

is a state on L, induced by p.

The property 1. shows that s‑maps can be seen as pro‑
viding probabilities of ‘virtual’ conjunctions of pro‑
positions, even non‑compatible ones, for in the case
of compatible propositions the value p(a, b) coincides
with the value that a statemp generated by p takes on
themeet a∧b, which in this case really represents con‑
junction of a and b [25].

On the other hand, the identity p(a, b) = p(b, a)
maynot be true in general. So an s‑map can be used for
describing of stochastic causality [16–18]. Moreover,
for any a ∈ L: mp(a) = p(a, a) = p(1L, a) = p(a, 1L).

Logical connectives disjunction (j‑map) and syme‑
tric difference (d‑map) are studied on a QL [13,5].

Let L be a QL. A map q : L × L → [0, 1] is called a
join map (j‑map) if the following conditions hold:

(j1) q(0L, 0L) = 0, q(1L, 1L) = 1;
(j2) if a ⊥ b then q(a, b) = q(a, a) + q(b, b);

(j3) if a ⊥ b then for any c ∈ L:

q(a ∨ b, c) = q(a, c) + q(b, c)− q(c, c)

q(c, a ∨ b) = q(c, a) + q(c, b)− q(c, c).

If p is an s‑map on a QL,mp is a state induced by p and
qp : L× L → [0, 1] such that for any a, b ∈ L

qp(a, b) = mp(a) +mp(b)− p(a, b),

then qp is a j‑map. It is easy to see that if a ↔ b, then

qp(a, b) = mp(a) +mp(b)−mp(a ∧ b) = mp(a ∨ b)

which explains its name.

Let L be a QL. A map d : L × L → [0, 1] is called
a difference map (d‑map), if the following conditions
hold:

(d1)

d(1L, 1L) = d(0L, 0L) = 0

d(1L, 0L) = d(0L, 1L) = 1.

(d2) if a ⊥ b then d(a, b) = d(a, 0L) + d(0L, b);
(d3) if a ⊥ b then for any c ∈ L:

d(a ∨ b, c) = d(a, c) + d(b, c)− d(0L, c)

d(c, a ∨ b) = d(c, a) + d(c, b)− d(c, 0L).

If a ↔ b, then

d(a, b) = md(a� b) = md(a ∧ b′) +md(a
′ ∧ b),

wheremd is a state induced by d.

3. Special Bivariables Maps on QLs
3.1. Measures and Boolean Functions

Let B be a Boolean algebra and f : Bn → B be a
Boolean function. It means, that f is such n‑ary opera‑
tion on B, which is composed of binary operations ∨,
∧, a unary operation complement ′, and brackets ().

�or the sake of simpli�ication, the expressions of
the type

(x1, · · · , xi−1, ai, xi+1, · · · , xn)

will be written as (y1, ai, y2)

Proposition 3.1 Let B be a Boolean algebra,
f : Bn → B a Boolean function and m : B → [0, 1]
be a probability measure on B. Then the composition of
functionsm ◦ f : Bn → [0, 1],

(m ◦ f)(x1, · · · , xn) = m(f(x1, · · · , xn))

satis�ies follo�ing properties�
(G1) Let x1, · · · , xn ∈ {0B, 1B}n. Then

m(f(x1, · · · , xn)) ∈ {0, 1}.

(G2) Let ai, bj ∈ B, ai ⊥ bj . Then

m(f(y1, ai, y2, bj , y3)) = m(f(y1, 0B, y2, bj , y3))

+m(f(y1, ai, y2, 0B, y3))

−m(f(y1, 0B, y2, 0B, y3)).
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tions started by publishing the paper Birkhoff, G., von
Neumann, J. [2]. Quantum logic allows to model situa‑
tions with non‑compatible events (events that are not
simultaneously measurable). Methods of quantum lo‑
gic appear in data processing, economic models, and
in other domains of application e.g. [2,28,9,19,27].

Calculus for non‑compatible observables has been
described in [16], while modelling of logical connecti‑
ves in termsof their algebraic properties and algebraic
structures can be found in [7,8,21].

The present paper follows up thework [13], where
the authors studied logical connectives: conjuction,
disjunction, and symmetric difference together with
their negations, from the perspective of a probability
measure. An overview of various insights into this is‑
sue is provided in [25].

The paper is organized as follows. Section 2 re‑
minds some basic notions and their properties. A spe‑
cial function that associates a probability measure to
some logical connectives on a quantum logic is de�ined
and studied in Section 3 – Section 5. In the last Section
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of a probability measure related to logical connectives
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2. Basic Definitions and Properties
In the �irst part of this section,we recall fundamen‑

tal notions: orthomodular lattice, compatibility, ortho‑
gonality, state, and their basic properties. Formore de‑
tails, see [6, 24]. In the second subsection, we recall
some situationswith two‑dimensional states allowing
to model a probability measure of logical connectives
in the case of non‑compatible events [16], [15]‑ [11],
[26].
2.1. Quantum logic

An orthomodular lattice (OML) is a lat‑
tice L with 0L and 1L as the smallest and the greatest
element, respectively, endowed with a unary operation
a �→ a′ that satis�ies�
(i) a′′ := (a′)′ = a;
(ii) a ≤ b implies b′ ≤ a′;
(iii) a ∨ a′ = 1L;
(iv) a ≤ b implies b = a ∨ (a′ ∧ b) (the orthomodular
law).

Elements a, b of an orthomodular lat‑
tice L are called
– orthogonal if a ≤ b′; (notation a ⊥ b );
– compatible if

a = (a ∧ b) ∨ (a ∧ b′);

(notation a ↔ b).

A state on an OML L is a function
m : L → [ 0 , 1 ] such that
(i)m(1L) = 1;
(ii) a ⊥ b implies

m(a ∨ b) = m(a) +m(b).

Note that the notions state andprobabilitymeasure
are closely tied, and it is clear thatm(0L) = 0.

There exist three kinds of OMLs: without any state,
with exactly one state and with in�inite number of sta‑
tes (see e.g. [20]). The �irst and the second type of
OLMs as a basic structure are not suitable to build a
generalized probability theory. The last type of OMLs,
which has in�inite number of states is considered in
the present paper.

An OML L with in�inite number of sta‑
tes is called a quantum logic (QL).

When studying states on a quantum logic, one can
meet some problems, that do not exist on a Bool‑
ean algebra. It means, that some of basic properties
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of probability measures are not necessarilly satis�ied
for non‑compatible random events. Here are some of
them: Bell‑type inequalities (e.g. [9,10,23,26]), Jauch‑
Piron state, (e.g. [4, 22]), problems of pseudometric
(see [13]).
2.2. ProbabilityMeasures of Logical Connectives on QLs

In [14], the notion of a map for simultaneous me‑
asurements (an s‑map) on a QL has been introduced.
This function is ameasureof conjunction even for non‑
compatible propositions, see [25].

A map p : L× L → [0, 1] is called amap for simul‑
taneous measurements (abbr. s‑map) if the following
conditions hold:

(s1) p(1L, 1L) = 1;
(s2) if a ⊥ b then p(a, b) = 0;
(s3) if a ⊥ b then for any c ∈ L:

p(a ∨ b, c) = p(a, c) + p(b, c),

p(c, a ∨ b) = p(c, a) + p(c, b).

The following properties of s‑map have been proved:
Let p : L×L → [0, 1] be an s‑map and a, b, c ∈ L. Then
1) if a ↔ b then p(a, b) = p(a ∧ b, a ∧ b) = p(b, a);
2) if a ≤ b then p(a, b) = p(a, a);
3) if a ≤ b then

p(a, c) ≤ p(b, c)

p(c, a) ≤ p(c, b)

for any c ∈ L;
4) p(a, b) ≤ min{p(a, a), p(b, b)};
5) themapmp : L → [0, 1]de�ined asmp(a) = p(a, a)

is a state on L, induced by p.

The property 1. shows that s‑maps can be seen as pro‑
viding probabilities of ‘virtual’ conjunctions of pro‑
positions, even non‑compatible ones, for in the case
of compatible propositions the value p(a, b) coincides
with the value that a statemp generated by p takes on
themeet a∧b, which in this case really represents con‑
junction of a and b [25].

On the other hand, the identity p(a, b) = p(b, a)
maynot be true in general. So an s‑map can be used for
describing of stochastic causality [16–18]. Moreover,
for any a ∈ L: mp(a) = p(a, a) = p(1L, a) = p(a, 1L).

Logical connectives disjunction (j‑map) and syme‑
tric difference (d‑map) are studied on a QL [13,5].

Let L be a QL. A map q : L × L → [0, 1] is called a
join map (j‑map) if the following conditions hold:

(j1) q(0L, 0L) = 0, q(1L, 1L) = 1;
(j2) if a ⊥ b then q(a, b) = q(a, a) + q(b, b);

(j3) if a ⊥ b then for any c ∈ L:

q(a ∨ b, c) = q(a, c) + q(b, c)− q(c, c)

q(c, a ∨ b) = q(c, a) + q(c, b)− q(c, c).

If p is an s‑map on a QL,mp is a state induced by p and
qp : L× L → [0, 1] such that for any a, b ∈ L

qp(a, b) = mp(a) +mp(b)− p(a, b),

then qp is a j‑map. It is easy to see that if a ↔ b, then

qp(a, b) = mp(a) +mp(b)−mp(a ∧ b) = mp(a ∨ b)

which explains its name.

Let L be a QL. A map d : L × L → [0, 1] is called
a difference map (d‑map), if the following conditions
hold:

(d1)

d(1L, 1L) = d(0L, 0L) = 0

d(1L, 0L) = d(0L, 1L) = 1.

(d2) if a ⊥ b then d(a, b) = d(a, 0L) + d(0L, b);
(d3) if a ⊥ b then for any c ∈ L:

d(a ∨ b, c) = d(a, c) + d(b, c)− d(0L, c)

d(c, a ∨ b) = d(c, a) + d(c, b)− d(c, 0L).

If a ↔ b, then

d(a, b) = md(a� b) = md(a ∧ b′) +md(a
′ ∧ b),

wheremd is a state induced by d.

3. Special Bivariables Maps on QLs
3.1. Measures and Boolean Functions

Let B be a Boolean algebra and f : Bn → B be a
Boolean function. It means, that f is such n‑ary opera‑
tion on B, which is composed of binary operations ∨,
∧, a unary operation complement ′, and brackets ().

�or the sake of simpli�ication, the expressions of
the type

(x1, · · · , xi−1, ai, xi+1, · · · , xn)

will be written as (y1, ai, y2)

Proposition 3.1 Let B be a Boolean algebra,
f : Bn → B a Boolean function and m : B → [0, 1]
be a probability measure on B. Then the composition of
functionsm ◦ f : Bn → [0, 1],

(m ◦ f)(x1, · · · , xn) = m(f(x1, · · · , xn))

satis�ies follo�ing properties�
(G1) Let x1, · · · , xn ∈ {0B, 1B}n. Then

m(f(x1, · · · , xn)) ∈ {0, 1}.

(G2) Let ai, bj ∈ B, ai ⊥ bj . Then

m(f(y1, ai, y2, bj , y3)) = m(f(y1, 0B, y2, bj , y3))

+m(f(y1, ai, y2, 0B, y3))

−m(f(y1, 0B, y2, 0B, y3)).

2



66

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  13,      N°  3      2019

Articles66

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 3 2019

(G3) Let ai, bi ∈ B, ai ⊥ bi. Then

m(f(y1, ai ∨ bi, y2)) = m(f(y1, ai, y2))

+m(f(y1, bi, y2))

−m(f(y1, 0B, y2)).

Proof.
(G1) Let f : Bn → B be a Boolean function. Let

x1, · · · , xn ∈ {0B, 1B}n. Then

f(x1, · · · , xn) ∈ {0B, 1B}

and then

m(f(x1, · · · , xn)) ∈ {0, 1}.

(G2) Let f : Bn → B be a Boolean function. Then for any
a, b ∈ {x1, . . . , xn}

f(y1, a, y2, b, y3) = f(x1, · · · , xn) ∧ U, (1)

where U = (a ∧ b′) ∨ (a′ ∧ b) ∨ (a′ ∧ b′) ∨ (a ∧ b)).
This can be rewritten as

f(y1, a, y2, b, y3) = (a ∧ b′ ∧Q1) ∨ (a′ ∧ b ∧Q2) ∨
∨(a′ ∧ b′ ∧Q3) ∨ (a ∧ b ∧Q4),

whereQi, i = 1, 2, 3, 4, are boolean expressions that
donot contain anyof the elementsa, a′, b, b′. Assume
that a ⊥ b. Then

f(y1, a, y2, b, y3) = (a∧Q1)∨(b∧Q2)∨(a′∧b′∧Q3).

If we putm(f(y1, a, y2, b, y3)) = µ, then

µ = m(a ∧Q1) +m(b ∧Q2) +m(a′ ∧ b′ ∧Q3). (2)

Sincem is a probability measure, it follows that

µ = m(a ∧Q1) +m(b ∧Q2) +m(Q3)

−m((a ∨ b) ∧Q3)

= m(a ∧Q1) +m(b ∧Q2) +m(Q3)

−m(a ∧Q3)−m(b ∧Q3)

= m(a ∧Q1) +m(a′ ∧Q3) +m(b ∧Q2)

+m(b′ ∧Q3)−m(Q3).

On the other side, from (2) we obtain

m(f(y1, a, y2, 0B, y3)) = m(a ∧Q1) +m(a′ ∧Q3),

m(f(y1, 0B, y2, b, y3)) = m(b ∧Q2) +m(b′ ∧Q3),

m(f(y1, 0B, y2, 0B, y3)) = m(Q3).

Thus (G2) is satis�ied.
(G3) Similarly, any Boolean function f : Bn → B can be

written as

f(x1, . . . , xn) = (xi ∧Q) ∨ (x′
i ∧ P ),

where the Boolean expressionsQ,P do not contain
xi, x

′
i. Thus

m (f(x1, . . . , xn)) = m(xi ∧Q) +m(x′
i ∧ P ). (3)

Consider a, b ∈ B, a ⊥ b, and put xi = a ∨ b. Then

m (f(y1, a ∨ b, y2))

= m((a ∨ b) ∧Q) +m((a ∨ b)′ ∧ P )

= m(a ∧Q) +m(b ∧Q) +m(P )

−m(a ∧ P )−m(b ∧ P )

= m(a ∧Q) +m(a′ ∧ P ) +m(b ∧Q)

+m(b′ ∧ P )−m(P ).

On the other side, from (3) we obtain

m(f(y1, a, y2)) = m(a ∧Q) +m(a′ ∧ P )

m(f(y1, b, y2)) = m(b ∧Q) +m(b′ ∧ P )

m(f(y1, 0B, y2)) = m(P ).

Thus (G3) is satis�ied. (Q.�.�.)

It follows from the previous proposition that each pro‑
bability measure of any boolean function has the pro‑
perties (G1) – (G3). Then it should be interesing to
study a function G : Bn → [0, 1] which is endowed
with properties (G1) – (G3). It is easy to see, that for
n = 1 a function G is a classical measure (G(1B) = 1
and G(0B) = 0) or a negative measure (G(1B) = 0
andG(0B) = 1) on B.

This article is devoted to functions G on a QL for
n = 2.
3.2. BivariableG‐Maps on QLs

A special bivariable mapG satisfying

G(0L, 1L) = G(1L, 0L)

has been introduced in [13]. The following de�inition
brings an extended version of thisG‑map.

�e������o� 3.� Let L be a QL. A map

G : L× L → [0, 1]

is called a G‑map if the following holds:
(G1) if a, b ∈ {0L, 1L} thenG(a, b) ∈ {0, 1};
(G2) if a ⊥ b then

G(a, b) = G(a, 0L) +G(0L, b)−G(0L, 0L);

(G3) if a ⊥ b then for any c ∈ L:

G(a ∨ b, c) = G(a, c) +G(b, c)−G(0L, c)

G(c, a ∨ b) = G(c, a) +G(c, a)−G(c, 0L).

A G‑map enables modelling of probability of logical
connectives even for non‑compatible propositions.

Lemma 3.3 LetG : L×L → [0, 1] be aG‑map, where
L is a QL. Then for a ↔ b it holds

G(a, b) = G(a ∧ b, a ∧ b) +G(a ∧ b′, 0L)

+G(0L, a
′ ∧ b)− 2G(0L, 0L).

Proof. See in [12].
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Proposition 3.4 Let G : L × L → [0, 1] be a G‑map,
where L is a QL. Then the mapG′ = 1−G is aG‑map.

Proof. See in [12].

There are sixteen families Γi, (i = 1, ..., 16) of
mapsG according to values in vertices

(1L, 1L), (1L, 0L), (0L, 1L), (0L, 0L).

Eight of themwithG(1L, 0L) = G(0L, 1L) are studied
in [13]. More details can be found in Table 5, section 6.

FamilyΓ2 is the set of all s‑maps (measures of con‑
juntion), Γ3 the set of all j‑maps (measures of dis‑
junction), and Γ4 is that of all d‑maps (measures of
symmetric difference) on a QL (see [13] for more de‑
tails).

In the present paper, the remaining cases Γi

(i = 9, ..., 16) with

G(1L, 0L) �= G(0L, 1L)

are focused on.

4. Probability Measures of Projections on QLs
This part is devoted to Γ9 − Γ12 with values in

the vertices shown in the Table 1. As G ∈ Γ11 iff
1 − G ∈ Γ9, and G ∈ Γ12 iff 1 − G ∈ Γ10 (Proposi‑
tion 3.4 and Table 1), and moreover, Γ9 and Γ10 are
analogical cases (Γ11 and Γ12 as well), only Γ9 is stu‑
died in detail.

Lemma 4.1 Let L be a QL and G ∈ Γ9. Then for any
a, b ∈ L it holds
1) G(1L, a) = 1,G(0L, a) = 0;
2) G(a, 0L) = G(a, a) = G(a, 1L);
3) G(a, 0L) =

1
2 (G(a, b) +G(a, b′));

4)

G(a, 0L) =
1

n

n∑
i=1

G(a, bi),

where b1, · · · , bn is an orthogonal partition of unity
1L.

Proof. See in [12].

Proposition 4.2 Let L be a QL, and G ∈ Γ9. Then for
any a, b ∈ L it holds
1) If a ↔ b thenG(a, b) = G(a, 0L).

2) For any choice of b, the mapmb : L → [0, 1]:

mb(a) = G(a, b)

is a state on L.

Proof. See in [12].
From Proposition 4.2 it follows that anyG ∈ Γ9 is

a probability measure of the projection onto the �irst
coordinate. Analogical properties are full�iled for any
G ∈ Γ10, which is a probability measure of the pro‑
jection onto the second coordinate.

If L is a Boolean algebra, then for any G ∈ Γ9 it
holds G(a, b) = G(a, 0L) for all a, b ∈ L. Analogously
for any G ∈ Γ10 it holds G(a, b) = G(0L, b) for all
a, b ∈ L.

IfL is aQLbut not aBoolean algebra, then the iden‑
tity does not hold in general, as illustrates the follo‑
wing example.

Example 4.3 Consider L = {0L, 1L, a, a′, b, b′}, a ho‑
rizontal sum of Boolean algebras

Ba = {0L, 1L, a, a′},

Bb = {0L, 1L, b, b′}.

Consider r1, r2, u1, u2 ∈ [0, 1]. Every G ∈ Γ9 can be
fully de�ined by Table 2, where

α =
1

2
(r1 + r2),

β =
1

2
(u1 + u2)

according to Lemma 4.1. If r1 �= r2 then

G(a, b) �= G(a, 0L).

From Table 2, one can extract all states onL, related to
the choice of r1, r2, u1, u2. Each column in the Table 2
represents a state on L. As example, mb and m0 are in
Table 3.

�e�inition 4.4 LetG ∈ Γ9. The mapG is called a me‑
asure of pure projection (a pure projection) if

G(a, b) = G(a, 0L)

for any a, b ∈ L.

�n a Boolean algebra, the projection onto the �irst
coordinate may be expressed by a Boolean function

f(a, b) = (a ∧ b) ∨ (a ∧ b′) = (a ∧ b) ∨ (b′ ∧ a) = a,

what motivates us to de�ine on a QL L four G‑maps
with the use of p ∈ Γ2 :

G1(a, b) = p(a, b) + p(a, b′),

G2(a, b) = p(b, a) + p(b′, a),

G3(a, b) = p(a, b) + p(b′, a),

G4(a, b) = p(b, a) + p(a, b′).

Maps Gi are measures of projection onto the �irst
coordinate, i.e. Gi ∈ Γ9 what we prove below. If p is
a commutative s‑map, allGi coincide,

Gi(a, b) = p(a, a)

what is a pure projection. If p is a non‑commutative s‑
map, then

G1(a, b) = G2(a, b) = p(a, a)

is a pure projection, whileG3 andG4 are not pure pro‑
jections since:

G3(a, b) = p(a, b) + p(a, a)− p(b, a),

4
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(G3) Let ai, bi ∈ B, ai ⊥ bi. Then

m(f(y1, ai ∨ bi, y2)) = m(f(y1, ai, y2))

+m(f(y1, bi, y2))

−m(f(y1, 0B, y2)).

Proof.
(G1) Let f : Bn → B be a Boolean function. Let

x1, · · · , xn ∈ {0B, 1B}n. Then

f(x1, · · · , xn) ∈ {0B, 1B}

and then

m(f(x1, · · · , xn)) ∈ {0, 1}.

(G2) Let f : Bn → B be a Boolean function. Then for any
a, b ∈ {x1, . . . , xn}

f(y1, a, y2, b, y3) = f(x1, · · · , xn) ∧ U, (1)

where U = (a ∧ b′) ∨ (a′ ∧ b) ∨ (a′ ∧ b′) ∨ (a ∧ b)).
This can be rewritten as

f(y1, a, y2, b, y3) = (a ∧ b′ ∧Q1) ∨ (a′ ∧ b ∧Q2) ∨
∨(a′ ∧ b′ ∧Q3) ∨ (a ∧ b ∧Q4),

whereQi, i = 1, 2, 3, 4, are boolean expressions that
donot contain anyof the elementsa, a′, b, b′. Assume
that a ⊥ b. Then

f(y1, a, y2, b, y3) = (a∧Q1)∨(b∧Q2)∨(a′∧b′∧Q3).

If we putm(f(y1, a, y2, b, y3)) = µ, then

µ = m(a ∧Q1) +m(b ∧Q2) +m(a′ ∧ b′ ∧Q3). (2)

Sincem is a probability measure, it follows that

µ = m(a ∧Q1) +m(b ∧Q2) +m(Q3)

−m((a ∨ b) ∧Q3)

= m(a ∧Q1) +m(b ∧Q2) +m(Q3)

−m(a ∧Q3)−m(b ∧Q3)

= m(a ∧Q1) +m(a′ ∧Q3) +m(b ∧Q2)

+m(b′ ∧Q3)−m(Q3).

On the other side, from (2) we obtain

m(f(y1, a, y2, 0B, y3)) = m(a ∧Q1) +m(a′ ∧Q3),

m(f(y1, 0B, y2, b, y3)) = m(b ∧Q2) +m(b′ ∧Q3),

m(f(y1, 0B, y2, 0B, y3)) = m(Q3).

Thus (G2) is satis�ied.
(G3) Similarly, any Boolean function f : Bn → B can be

written as

f(x1, . . . , xn) = (xi ∧Q) ∨ (x′
i ∧ P ),

where the Boolean expressionsQ,P do not contain
xi, x

′
i. Thus

m (f(x1, . . . , xn)) = m(xi ∧Q) +m(x′
i ∧ P ). (3)

Consider a, b ∈ B, a ⊥ b, and put xi = a ∨ b. Then

m (f(y1, a ∨ b, y2))

= m((a ∨ b) ∧Q) +m((a ∨ b)′ ∧ P )

= m(a ∧Q) +m(b ∧Q) +m(P )

−m(a ∧ P )−m(b ∧ P )

= m(a ∧Q) +m(a′ ∧ P ) +m(b ∧Q)

+m(b′ ∧ P )−m(P ).

On the other side, from (3) we obtain

m(f(y1, a, y2)) = m(a ∧Q) +m(a′ ∧ P )

m(f(y1, b, y2)) = m(b ∧Q) +m(b′ ∧ P )

m(f(y1, 0B, y2)) = m(P ).

Thus (G3) is satis�ied. (Q.�.�.)

It follows from the previous proposition that each pro‑
bability measure of any boolean function has the pro‑
perties (G1) – (G3). Then it should be interesing to
study a function G : Bn → [0, 1] which is endowed
with properties (G1) – (G3). It is easy to see, that for
n = 1 a function G is a classical measure (G(1B) = 1
and G(0B) = 0) or a negative measure (G(1B) = 0
andG(0B) = 1) on B.

This article is devoted to functions G on a QL for
n = 2.
3.2. BivariableG‐Maps on QLs

A special bivariable mapG satisfying

G(0L, 1L) = G(1L, 0L)

has been introduced in [13]. The following de�inition
brings an extended version of thisG‑map.

�e������o� 3.� Let L be a QL. A map

G : L× L → [0, 1]

is called a G‑map if the following holds:
(G1) if a, b ∈ {0L, 1L} thenG(a, b) ∈ {0, 1};
(G2) if a ⊥ b then

G(a, b) = G(a, 0L) +G(0L, b)−G(0L, 0L);

(G3) if a ⊥ b then for any c ∈ L:

G(a ∨ b, c) = G(a, c) +G(b, c)−G(0L, c)

G(c, a ∨ b) = G(c, a) +G(c, a)−G(c, 0L).

A G‑map enables modelling of probability of logical
connectives even for non‑compatible propositions.

Lemma 3.3 LetG : L×L → [0, 1] be aG‑map, where
L is a QL. Then for a ↔ b it holds

G(a, b) = G(a ∧ b, a ∧ b) +G(a ∧ b′, 0L)

+G(0L, a
′ ∧ b)− 2G(0L, 0L).

Proof. See in [12].
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Proposition 3.4 Let G : L × L → [0, 1] be a G‑map,
where L is a QL. Then the mapG′ = 1−G is aG‑map.

Proof. See in [12].

There are sixteen families Γi, (i = 1, ..., 16) of
mapsG according to values in vertices

(1L, 1L), (1L, 0L), (0L, 1L), (0L, 0L).

Eight of themwithG(1L, 0L) = G(0L, 1L) are studied
in [13]. More details can be found in Table 5, section 6.

FamilyΓ2 is the set of all s‑maps (measures of con‑
juntion), Γ3 the set of all j‑maps (measures of dis‑
junction), and Γ4 is that of all d‑maps (measures of
symmetric difference) on a QL (see [13] for more de‑
tails).

In the present paper, the remaining cases Γi

(i = 9, ..., 16) with

G(1L, 0L) �= G(0L, 1L)

are focused on.

4. Probability Measures of Projections on QLs
This part is devoted to Γ9 − Γ12 with values in

the vertices shown in the Table 1. As G ∈ Γ11 iff
1 − G ∈ Γ9, and G ∈ Γ12 iff 1 − G ∈ Γ10 (Proposi‑
tion 3.4 and Table 1), and moreover, Γ9 and Γ10 are
analogical cases (Γ11 and Γ12 as well), only Γ9 is stu‑
died in detail.

Lemma 4.1 Let L be a QL and G ∈ Γ9. Then for any
a, b ∈ L it holds
1) G(1L, a) = 1,G(0L, a) = 0;
2) G(a, 0L) = G(a, a) = G(a, 1L);
3) G(a, 0L) =

1
2 (G(a, b) +G(a, b′));

4)

G(a, 0L) =
1

n

n∑
i=1

G(a, bi),

where b1, · · · , bn is an orthogonal partition of unity
1L.

Proof. See in [12].

Proposition 4.2 Let L be a QL, and G ∈ Γ9. Then for
any a, b ∈ L it holds
1) If a ↔ b thenG(a, b) = G(a, 0L).

2) For any choice of b, the mapmb : L → [0, 1]:

mb(a) = G(a, b)

is a state on L.

Proof. See in [12].
From Proposition 4.2 it follows that anyG ∈ Γ9 is

a probability measure of the projection onto the �irst
coordinate. Analogical properties are full�iled for any
G ∈ Γ10, which is a probability measure of the pro‑
jection onto the second coordinate.

If L is a Boolean algebra, then for any G ∈ Γ9 it
holds G(a, b) = G(a, 0L) for all a, b ∈ L. Analogously
for any G ∈ Γ10 it holds G(a, b) = G(0L, b) for all
a, b ∈ L.

IfL is aQLbut not aBoolean algebra, then the iden‑
tity does not hold in general, as illustrates the follo‑
wing example.

Example 4.3 Consider L = {0L, 1L, a, a′, b, b′}, a ho‑
rizontal sum of Boolean algebras

Ba = {0L, 1L, a, a′},

Bb = {0L, 1L, b, b′}.

Consider r1, r2, u1, u2 ∈ [0, 1]. Every G ∈ Γ9 can be
fully de�ined by Table 2, where

α =
1

2
(r1 + r2),

β =
1

2
(u1 + u2)

according to Lemma 4.1. If r1 �= r2 then

G(a, b) �= G(a, 0L).

From Table 2, one can extract all states onL, related to
the choice of r1, r2, u1, u2. Each column in the Table 2
represents a state on L. As example, mb and m0 are in
Table 3.

�e�inition 4.4 LetG ∈ Γ9. The mapG is called a me‑
asure of pure projection (a pure projection) if

G(a, b) = G(a, 0L)

for any a, b ∈ L.

�n a Boolean algebra, the projection onto the �irst
coordinate may be expressed by a Boolean function

f(a, b) = (a ∧ b) ∨ (a ∧ b′) = (a ∧ b) ∨ (b′ ∧ a) = a,

what motivates us to de�ine on a QL L four G‑maps
with the use of p ∈ Γ2 :

G1(a, b) = p(a, b) + p(a, b′),

G2(a, b) = p(b, a) + p(b′, a),

G3(a, b) = p(a, b) + p(b′, a),

G4(a, b) = p(b, a) + p(a, b′).

Maps Gi are measures of projection onto the �irst
coordinate, i.e. Gi ∈ Γ9 what we prove below. If p is
a commutative s‑map, allGi coincide,

Gi(a, b) = p(a, a)

what is a pure projection. If p is a non‑commutative s‑
map, then

G1(a, b) = G2(a, b) = p(a, a)

is a pure projection, whileG3 andG4 are not pure pro‑
jections since:

G3(a, b) = p(a, b) + p(a, a)− p(b, a),

4
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Tab. 1. Γ9 ‐ Γ16 values in vertices

Γ9 Γ10 Γ11 Γ12 Γ13 Γ14 Γ15 Γ16

G(0L, 0L) 0 0 1 1 1 1 0 0
G(0L, 1L) 0 1 1 0 1 0 0 1
G(1L, 0L) 1 0 0 1 0 1 1 0
G(1L, 1L) 1 1 0 0 1 1 0 0

Tab. 2. G‐maps from Γ9 on a hor izontal sum of Boolean algebras

a a′ b b′ 0L 1L
a α α r1 r2 α α
a′ 1− α 1− α 1− r1 1− r2 1− α 1− α
b u1 u2 β β β β
b′ 1− u1 1− u2 1− β 1− β 1− β 1− β
0L 0 0 0 0 0 0
1L 1 1 1 1 1 1

Tab. 3. States on L

a a′ b b′ 0L 1L
mb r1 1− r1 β 1− β 0 1

m0 α 1− α β 1− β 0 1

and

G3(a, 0L) = p(a, a),

and if p(a, b) �= p(b, a) thenG3(a, b) �= G3(a, 0L).Now
weprove thatG3 is a projection (caseG4 is analogical).

(1) G3(a, b) ∈ [0, 1]

0 ≤ G3(a, b) = p(a, b) + p(b′, a)

≤ p(b, b) + p(b′, b′) = 1.

(2) Values in vertices:

G3(0L, 0L) = G3(0L, 1L) = 0,

G3(1L, 0L) = G3(1L, 1L) = 1.

(3) If a ⊥ b, i.e. a ≤ b′ then

G3(a, b) = p(a, b) + p(b′, a) = 0 + p(a, a).

From the other side

G3(a, 0L) +G3(0L, b)−G3(0L, 0L)

= p(a, 0L) + p(1L, a) + p(0L, b) + p(b′, 0L)− 0

= p(a, a).

(4) If a ⊥ b and c ∈ L then

G3(a ∨ b, c) = p(a ∨ b, c) + p(c′, a ∨ b)

= p(a, c) + p(b, c) + p(c′, a) + p(c′, b).

From the other side

G3(a, c) +G3(b, c)−G3(0L, c)

= p(a, c) + p(c′, a) + p(b, c)

+p(c′, b) + p(0L, c) + p(c′, 0L).

The second identity:

G3(c, a ∨ b)

= p(c, a ∨ b) + p((a ∨ b)′, c)

= p(c, a) + p(c, b) + p(1L, c)− p(a ∨ b, c)

= p(c, a) + p(c, b) + p(1L, c)− p(a, c)− p(b, c)

= p(c, a) + p(a′, c) + p(c, b) + p(b′, c)− p(1L, c)

= G3(c, a) +G3(c, b)−G3(c, 0L).

Proposition 4.5 For every s‑map p there exists a G–
mapGp ∈ Γ9 such that

Gp(a, b) = Gp(a, 0L).

Proof. Let

Gp(a, b) = p(a, b) + p(a, b′) = p(a, a),

where p is an arbitrary s‑map. ThenGp ∈ Γ9 and

Gp(a, b) = Gp(a, 0L)

for any b ∈ L. (Q.E.D.)

The results forΓ9−Γ12 are summarized in Table 4.

Tab. 4. Results for Γ9 − Γ12

Γ9 Γ10 Γ11 Γ12

probability of a b a′ b′

5. Probability Measures of Implications on
QLs
Values in vertices for families Γ13 − Γ16 are in the

Table 1. Similarly to the relations between Γ9 ‑ Γ12, for
families Γ13 − Γ16 hold
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G ∈ Γ13 iff 1−G ∈ Γ15,

G ∈ Γ14 iff 1−G ∈ Γ16.

Γ15 and Γ16 are analogical cases. For these reasons
only one of the famillies, Γ15,will be focused on.

Lemma 5.1 Let L be a QL and G ∈ Γ15. Then for any
a, b ∈ L it holds
1) G(a, a) = G(a, 1L) = G(0L, a) = 0;
2) G(1L, a) = 1−G(a, 0L) = G(a′, 0L);
3) If a ↔ b thenG(a, b) = G(a ∧ b′, 0L).
4) If a ≤ b thenG(a, b) = 0.

Proof.
1) LetG ∈ Γ15 and a ∈ L, then

0 = G(1L, 1L)

= G(a, 1L) +G(a′, 1L)−G(0L, 1L)

= G(a, 1L) +G(a′, 1L).

Taking into account that G(a, b) ∈ [0, 1], one
concludes that G(a, 1L) = 0 for any a ∈ L. Furt‑
her

0 = G(a, 1L) = G(a, a) +G(a, a′)−G(a, 0L)

= G(a, a) +G(a, 0L) +G(0L, a
′)−G(0L, 0L, )

−G(a, 0L)

= G(a, a) +G(0L, a
′).

ThusG(a, a) = G(0L, a) = 0.
2) Let G ∈ Γ15 and a ∈ L, then with the use of what

preceeds,

G(1L, a) = G(a, a) +G(a′, a)−G(0L, a)

= G(a′, 0L) +G(0L, a)−G(0L, 0L)

= G(a′, 0L).

From the other side,

1 = G(1L, 0L) = G(a, 0L) +G(a′, 0L).

Consequently,

G(1L, a) = 1−G(a, 0L) = G(a′, 0L).

3) If a ↔ b then G(a, b) = G(a ∧ b′, 0L) follows di‑
rectly from Lemma 3.3.

4) a ≤ b is a particular case of a ↔ b, where a ∧ b′ =
0L. This leads immediatelly to

G(a, b) = G(a ∧ b′, 0L) = G(0L, 0L) = 0.

(Q.E.D.)

Lemma 5.2 Let L be a QL andG ∈ Γ15. Then the map
mG : L → [0, 1] de�ined asmG(a) = G(a, 0L) is a state
on L.

Proof.
1) mG(1L) = G(1L, 0L) = 1

2) If a ⊥ b, then
mG(a ∨ b) = G(a ∨ b, 0L)

= G(a, 0L) +G(b, 0L)−G(0L, 0L)

= mG(a) +mG(b).

(Q.E.D.)
Proposition 5.3 Let L be a QL. The famillies Γ2 and
Γ15 are isomor�i�.

Proof. Since Γ2 is the set of all s‑maps on L, it suf�ices
to prove:
i) If G ∈ Γ15 and pG(a, b) = G(a, b′), then pG is an

s‑map on L.
ii) If p is an s‑map on L and Gp(a, b) = p(a, b′), then

Gp ∈ Γ15.
i) Let G ∈ Γ15 and pG(a, b) = G(a, b′). The proper‑

ties (s1) – (s3) of s‑map are veri�ied bellow.
(s1) pG(1L, 1L) = G(1L, 0L) = 1

(s2) If a ⊥ b, then pG(a, b) = G(a, b′) = 0. It im‑
plies from Lemma 5.1 as a ≤ b′.
(s3) If a ⊥ b and c ∈ L, then
pG(a ∨ b, c) = G(a ∨ b, c′)

= G(a, c′) +G(b, c′)−G(0L, c
′)

= pG(a, c) + pG(b, c).

The second identity:
pG(c, a ∨ b) = G(c, (a ∨ b)′) = G(c, a′ ∧ b′)

pG(c, a) + pG(c, b) = G(c, a′) +G(c, b′).

It suf�ices to show that G(c, a′) + G(c, b′) =
G(c, a′ ∧ b′). From the orthomodular law it follows
that a′ = b ∨ (b′ ∧ a′) and b′ = a ∨ (a′ ∧ b′).

G(c, a′) +G(c, b′)

= G(c, b) +G(c, a′ ∧ b′)−G(c, 0L)

+G(c, a′ ∧ b′) +G(c, a)−G(c, 0L)

= (G(c, b) +G(c, a)−G(c, 0L))

+G(c, a′ ∧ b′)−G(c, 0L)

+G(c, a′ ∧ b′)

= G(c, a ∨ b) +G(c, (a ∨ b)′)

−G(c, 0L) +G(c, a′ ∧ b′)

= G(c, 1L) +G(c, a′ ∧ b′)

= G(c, a′ ∧ b′).

Consequently
pG(c, a ∨ b) = pG(c, a) + pG(c, b).

ii) Let p be an s‑map andGp(a, b) = p(a, b′). We want
to proveG ∈ Γ15.
‑ It is clear that the values ofGp in vertices match
the maps of Γ15.

‑ Let a ⊥ b. Then Gp(a, b) = p(a, b′) = p(a, a) as
a ≤ b′. On the other hand

Gp(a, 0L) +Gp(0L, b)−Gp(0L, 0L)

= p(a, 1L) + p(0L, b
′)− p(0L, 1L)

= p(a, a) = Gp(a, b).

6
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Tab. 1. Γ9 ‐ Γ16 values in vertices

Γ9 Γ10 Γ11 Γ12 Γ13 Γ14 Γ15 Γ16

G(0L, 0L) 0 0 1 1 1 1 0 0
G(0L, 1L) 0 1 1 0 1 0 0 1
G(1L, 0L) 1 0 0 1 0 1 1 0
G(1L, 1L) 1 1 0 0 1 1 0 0

Tab. 2. G‐maps from Γ9 on a hor izontal sum of Boolean algebras

a a′ b b′ 0L 1L
a α α r1 r2 α α
a′ 1− α 1− α 1− r1 1− r2 1− α 1− α
b u1 u2 β β β β
b′ 1− u1 1− u2 1− β 1− β 1− β 1− β
0L 0 0 0 0 0 0
1L 1 1 1 1 1 1

Tab. 3. States on L

a a′ b b′ 0L 1L
mb r1 1− r1 β 1− β 0 1

m0 α 1− α β 1− β 0 1

and

G3(a, 0L) = p(a, a),

and if p(a, b) �= p(b, a) thenG3(a, b) �= G3(a, 0L).Now
weprove thatG3 is a projection (caseG4 is analogical).

(1) G3(a, b) ∈ [0, 1]

0 ≤ G3(a, b) = p(a, b) + p(b′, a)

≤ p(b, b) + p(b′, b′) = 1.

(2) Values in vertices:

G3(0L, 0L) = G3(0L, 1L) = 0,

G3(1L, 0L) = G3(1L, 1L) = 1.

(3) If a ⊥ b, i.e. a ≤ b′ then

G3(a, b) = p(a, b) + p(b′, a) = 0 + p(a, a).

From the other side

G3(a, 0L) +G3(0L, b)−G3(0L, 0L)

= p(a, 0L) + p(1L, a) + p(0L, b) + p(b′, 0L)− 0

= p(a, a).

(4) If a ⊥ b and c ∈ L then

G3(a ∨ b, c) = p(a ∨ b, c) + p(c′, a ∨ b)

= p(a, c) + p(b, c) + p(c′, a) + p(c′, b).

From the other side

G3(a, c) +G3(b, c)−G3(0L, c)

= p(a, c) + p(c′, a) + p(b, c)

+p(c′, b) + p(0L, c) + p(c′, 0L).

The second identity:

G3(c, a ∨ b)

= p(c, a ∨ b) + p((a ∨ b)′, c)

= p(c, a) + p(c, b) + p(1L, c)− p(a ∨ b, c)

= p(c, a) + p(c, b) + p(1L, c)− p(a, c)− p(b, c)

= p(c, a) + p(a′, c) + p(c, b) + p(b′, c)− p(1L, c)

= G3(c, a) +G3(c, b)−G3(c, 0L).

Proposition 4.5 For every s‑map p there exists a G–
mapGp ∈ Γ9 such that

Gp(a, b) = Gp(a, 0L).

Proof. Let

Gp(a, b) = p(a, b) + p(a, b′) = p(a, a),

where p is an arbitrary s‑map. ThenGp ∈ Γ9 and

Gp(a, b) = Gp(a, 0L)

for any b ∈ L. (Q.E.D.)

The results forΓ9−Γ12 are summarized in Table 4.

Tab. 4. Results for Γ9 − Γ12

Γ9 Γ10 Γ11 Γ12

probability of a b a′ b′

5. Probability Measures of Implications on
QLs
Values in vertices for families Γ13 − Γ16 are in the

Table 1. Similarly to the relations between Γ9 ‑ Γ12, for
families Γ13 − Γ16 hold

5
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G ∈ Γ13 iff 1−G ∈ Γ15,

G ∈ Γ14 iff 1−G ∈ Γ16.

Γ15 and Γ16 are analogical cases. For these reasons
only one of the famillies, Γ15,will be focused on.

Lemma 5.1 Let L be a QL and G ∈ Γ15. Then for any
a, b ∈ L it holds
1) G(a, a) = G(a, 1L) = G(0L, a) = 0;
2) G(1L, a) = 1−G(a, 0L) = G(a′, 0L);
3) If a ↔ b thenG(a, b) = G(a ∧ b′, 0L).
4) If a ≤ b thenG(a, b) = 0.

Proof.
1) LetG ∈ Γ15 and a ∈ L, then

0 = G(1L, 1L)

= G(a, 1L) +G(a′, 1L)−G(0L, 1L)

= G(a, 1L) +G(a′, 1L).

Taking into account that G(a, b) ∈ [0, 1], one
concludes that G(a, 1L) = 0 for any a ∈ L. Furt‑
her

0 = G(a, 1L) = G(a, a) +G(a, a′)−G(a, 0L)

= G(a, a) +G(a, 0L) +G(0L, a
′)−G(0L, 0L, )

−G(a, 0L)

= G(a, a) +G(0L, a
′).

ThusG(a, a) = G(0L, a) = 0.
2) Let G ∈ Γ15 and a ∈ L, then with the use of what

preceeds,

G(1L, a) = G(a, a) +G(a′, a)−G(0L, a)

= G(a′, 0L) +G(0L, a)−G(0L, 0L)

= G(a′, 0L).

From the other side,

1 = G(1L, 0L) = G(a, 0L) +G(a′, 0L).

Consequently,

G(1L, a) = 1−G(a, 0L) = G(a′, 0L).

3) If a ↔ b then G(a, b) = G(a ∧ b′, 0L) follows di‑
rectly from Lemma 3.3.

4) a ≤ b is a particular case of a ↔ b, where a ∧ b′ =
0L. This leads immediatelly to

G(a, b) = G(a ∧ b′, 0L) = G(0L, 0L) = 0.

(Q.E.D.)

Lemma 5.2 Let L be a QL andG ∈ Γ15. Then the map
mG : L → [0, 1] de�ined asmG(a) = G(a, 0L) is a state
on L.

Proof.
1) mG(1L) = G(1L, 0L) = 1

2) If a ⊥ b, then
mG(a ∨ b) = G(a ∨ b, 0L)

= G(a, 0L) +G(b, 0L)−G(0L, 0L)

= mG(a) +mG(b).

(Q.E.D.)
Proposition 5.3 Let L be a QL. The famillies Γ2 and
Γ15 are isomor�i�.

Proof. Since Γ2 is the set of all s‑maps on L, it suf�ices
to prove:
i) If G ∈ Γ15 and pG(a, b) = G(a, b′), then pG is an

s‑map on L.
ii) If p is an s‑map on L and Gp(a, b) = p(a, b′), then

Gp ∈ Γ15.
i) Let G ∈ Γ15 and pG(a, b) = G(a, b′). The proper‑

ties (s1) – (s3) of s‑map are veri�ied bellow.
(s1) pG(1L, 1L) = G(1L, 0L) = 1

(s2) If a ⊥ b, then pG(a, b) = G(a, b′) = 0. It im‑
plies from Lemma 5.1 as a ≤ b′.
(s3) If a ⊥ b and c ∈ L, then
pG(a ∨ b, c) = G(a ∨ b, c′)

= G(a, c′) +G(b, c′)−G(0L, c
′)

= pG(a, c) + pG(b, c).

The second identity:
pG(c, a ∨ b) = G(c, (a ∨ b)′) = G(c, a′ ∧ b′)

pG(c, a) + pG(c, b) = G(c, a′) +G(c, b′).

It suf�ices to show that G(c, a′) + G(c, b′) =
G(c, a′ ∧ b′). From the orthomodular law it follows
that a′ = b ∨ (b′ ∧ a′) and b′ = a ∨ (a′ ∧ b′).

G(c, a′) +G(c, b′)

= G(c, b) +G(c, a′ ∧ b′)−G(c, 0L)

+G(c, a′ ∧ b′) +G(c, a)−G(c, 0L)

= (G(c, b) +G(c, a)−G(c, 0L))

+G(c, a′ ∧ b′)−G(c, 0L)

+G(c, a′ ∧ b′)

= G(c, a ∨ b) +G(c, (a ∨ b)′)

−G(c, 0L) +G(c, a′ ∧ b′)

= G(c, 1L) +G(c, a′ ∧ b′)

= G(c, a′ ∧ b′).

Consequently
pG(c, a ∨ b) = pG(c, a) + pG(c, b).

ii) Let p be an s‑map andGp(a, b) = p(a, b′). We want
to proveG ∈ Γ15.
‑ It is clear that the values ofGp in vertices match
the maps of Γ15.

‑ Let a ⊥ b. Then Gp(a, b) = p(a, b′) = p(a, a) as
a ≤ b′. On the other hand

Gp(a, 0L) +Gp(0L, b)−Gp(0L, 0L)

= p(a, 1L) + p(0L, b
′)− p(0L, 1L)

= p(a, a) = Gp(a, b).

6



70

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  13,      N°  3      2019

Articles70

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 3 2019

‑ Let a, b, c ∈ L and a ⊥ b. Then
Gp(a ∨ b, c) = p(a ∨ b, c′)

= p(a, c′) + p(b, c′)

= Gp(a, c) +Gp(b, c)−Gp(0L, c).

The second identity:
Gp(c, a ∨ b) = p(c, a′ ∧ b′)

Gp(c, a) +Gp(c, b)−Gp(c, 0L)

= p(c, a′) + p(c, b′)− p(c, 1L).

It suf�ices to show that
p(c, a′ ∧ b′) = p(c, a′) + p(c, b′)− p(c, 1L).

Since
p(c, a ∨ b) = p(c, a) + p(c, b)

p(c, a ∨ b) = p(c, 1L)− p(c, a′ ∧ b′)

p(c, 1L)− p(c, a′ ∧ b′)

= p(c, 1L)− p(c, a′) + p(c, 1L)− p(c, b′)

thus
p(c, a′ ∧ b′) = p(c, a′) + p(c, b′)− p(c, 1L).

(Q.E.D.)

In a classical Boolean logic it holds (principle of a
proof by contraposition)

a ⇒ b ⇔ b′ ⇒ a′.

On a Boolean algebra is any measure of both the left
and the right hand side the same. Quantum logics and
some measures of implication G ∈ Γ13 (induced by
a non‑commutative s‑map) enable to model a situa‑
tion where these measures are not equal. First look at
basic properties of the class of implications, Γ13.

Lemma 5.4 Let L be a QL and G ∈ Γ13. Then for any
a, b ∈ L it holds
1) G(a, a) = G (a, 1L) = G (0L, a) = 1;
2) G(1L, a) = 1−G(a, 0L) = G (a′, 0L);
3) If a ↔ b thenG(a, b) = G (a′ ∨ b, 0L);
4) If a ≤ b thenG(a, b) = 1.

Proposition 5.5 Let L be a QL andG ∈ Γ13. Then the
mapmG : L → [0, 1] de�ined asmG(a) = G(1L, a) is a
state on L.

Proposition 5.6 LetLbe aQL. The familiesΓ2 andΓ13

are isomor�i�.

Proof. The statement follows immediately from:
i) p ∈ Γ2 iff Gp ∈ Γ15,whereGp(a, b) = p (a, b′) .

ii) G ∈ Γ15 iff 1−G ∈ Γ13.
From the above it is clear that p ∈ Γ2 iff Gp ∈ Γ13,
where

Gp(a, b) = 1− p(a, b′)

The measure of implicationGp is called a measure in‑
duced by s‑map p. (Q.E.D.)

Let us return to the tautology

a ⇒ b iff b′ ⇒ a′.

Wewould expect an equal measure of propositions

a ⇒ b & b′ ⇒ a′,

or equivalently: for any G ∈ Γ13 it holds G(a, b) =
G (b′, a′) . As already noted, this is true on a Boolean
algebra, but not necessarilly on a quantum logic. In‑
deed, if a measure of implication Gp is induced by a
non‑commutative s‑map p, and the events a, b are not
compatible, one can obtain

G(a, b) = 1− p (a, b′)

different of

G (b′, a′) = 1− p (b′, a) .

Note that, if a measure of implication is induced by
a commutative s‑map p, we have a classical situation.

6. Conclusion
An overview of all classes is in Table 5 and in Table

6. It is clear from these tables that on a Boolean alge‑
bra, a value of a G‑map is a probability measure of a
Boolean expression, according to the known table for
thepropositional logic. This leads to the interpretation
of values of a function G on a quantum logic.
6.1. Relations between Classes Γ1 ‐ Γ16.

On a Boolean algebra classesΓi andΓj are isomor‑
phic for i, j �= 1, 8. Another situation occurs in the case
of non‑compatible random events, that is, in the case
of a quantum logic:
‑ Γ4 and Γ7 are isomorphic.
‑ Γi and Γj are isomorphic for

i, j ∈ {2, 3, 5, 6, 13− 16}.

‑ In [13] it is shown that for any p ∈ Γ2 there exists a
Gp ∈ Γ4 induced by p. On the other side, there exists
G ∈ Γ4 such that the map pG induced byG is not in
Γ2 (pG is not an s‑map).

‑ Γ9 ‑ Γ12 are mutually isomorphic, but their relation
to other classes is not quite clear. Nevertheless, for
any s‑map there exists a projection, as it follows
from Proposition 4.5.

6.2. Problem of Existence ofG‐maps on QLs.
Twoprincipal questions related toG‑maps arise in

a quantum logic: existence of suchmap and its proper‑
ties.

From the foregoing considerations it follows that
the existence of a probability measure of conjunction
(s‑map) guarantees the existenceof a probabilitymea‑
sure of all other logical connectives. Therefore, the key
question, listed as an open problem Q3 in [25], is the
existence of an s‑map on any quantum logic.

The existence of an s‑map in the case of a separable
quantum logic and additive states has been solved in
[15] and [14].
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Tab. 5. Results from the paper [13]

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

G(0L, 0L) 0 0 0 0 1 1 1 1
G(1L, 0L) 0 0 1 1 1 0 0 1
G(0L, 1L) 0 0 1 1 1 0 0 1
G(1L, 1L) 0 1 1 0 0 0 1 1

probability of 0L a ∧ b a ∨ b (a ⇔ b)′ a′ ∨ b′ a′ ∧ b′ a ⇔ b 1L
a ↔ b a ↔ b a ↔ b a ↔ b a ↔ b a ↔ b

Tab. 6. Γ9 ‐ Γ16,G(1L, 0L) ̸= G(0L, 1L). For a ↔ b: a ⇒ b = a′ ∨ b.

Γ9 Γ10 Γ11 Γ12 Γ13 Γ14 Γ15 Γ16

G(0L, 0L) 0 0 1 1 1 1 0 0
G(0L, 1L) 0 1 1 0 1 0 0 1
G(1L, 0L) 1 0 0 1 0 1 1 0
G(1L, 1L) 1 1 0 0 1 1 0 0

probability of a b a′ b′ a ⇒ b a ⇐ b (a ⇒ b)′ (a ⇐ b)′

a ↔ b a ↔ b a ↔ b a ↔ b

Proposition 6.1 ( [15], Proposition 1.1.) Let L be an
OML, let {ai}ni=1 ∈ L, n ∈ N where ai ⊥ aj , for
i �= j. If for any i there exists a state αi, such that
αi(ai) = 1, then there exists σ‑CS such that for any
k = (k1, · · · , kn), where ki ∈ [0, 1] for i ∈ {1, · · · , n}
with the property

∑
i ki = 1, there exists a conditional

state fk : L× Lc → [0, 1], such that for any i and each
d ∈ L

fk(d, ai) = αi(d);

and for each aj

fk (aj ,∨iai) = ki.

Proposition 6.2 ( [14] Proposition 2.2.) Let L be an
OML, let there be an s‑map p. Then there exists a con‑
ditional state fp such that

p(a, b) = fp(a, b)fp(b, 1L).

Let L be a QL and let Lc = L− {0L}. If

f : L× Lc → [0, 1]

is a conditional state, then there exists an s‑map

pf : L× L → [0, 1].

s‑maps, whose existence is guaranteed by the
above cited propositions, can be constructed using
techniques similar to those known for the con‑
struction of copulas. ( [1,3] ).

6.3. Some Differences Between G‐maps on a Boolean
algebra andG‐maps on a QL.

1) Each probability measure on B induces a pseudo‑
metric. It means, that for any probability measure
m, themap dm: dm(a, b) = m(a∧b′)+m(a′∧b) is a
pseudometric onB inducedbym. On aquantum lo‑
gic, if p ∈ Γ2 and dp(a, b) = p(a, b′) + p(a′, b), then
dp ∈ Γ4 but it can happen that dp is not a pseudo‑
metric.

2) Let L be a QL,m be a state on L and p be an s‑map
on L. The �irst Bell‑type inequality (4) is not ne‑
cessarily ful�illed for all values a, b ∈ L while its
version (5), via an s‑map p is always satis�ied.

m(a) +m(b) − m(a ∧ b) ≤ 1 (4)
p(a, a) + p(b, b)− p(a, b) ≤ 1 (5)

The second Bell‑type innequality (6) is not neces‑
sarily ful�illed for all values a, b, c ∈ Lwhile its ver‑
sion (7) is ful�illed for every s‑map, which induces
a pseudometric on L [26].

m(a)+m(b)+m(c)−m(a∧b)−m(a∧c)−m(c∧b) ≤ 1
(6)

p(a, a)+p(b, b)+p(c, c)−p(a, b)−p(a, c)−p(c, b) ≤ 1
(7)

3) Analogically, implication (8) (Jauch‑Piron state, see
e.g. [4,22]) can be violated onL but implication (9)
is always valid

m(a) = m(b) = 1 ⇒ m(a ∧ b) = 1 (8)

p(a, a) = p(b, b) = 1 ⇒ p(a, b) = 1, (9)
and moreover for any c ∈ L

p(a, c) = p(c, a) = p(c, c).

4) On a Boolean algebra, every projection is a pure
projection. On a quantum logic, a G‑map G (G ∈
Γi, i ∈ {9, 10, 11, 12} ) is not necessarilly a pure
projection, see Example 4.3.

5) Quantum logics andG‑maps enable to model situ‑
ations that can not occur in a Boolean algebra. The
use of G‑maps to model these situations on QLs is
illustrated by the following considerations:

a) Quantum logics and non‑commutative s‑maps
(class Γ2) enable to model stochastic causality.

8
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‑ Let a, b, c ∈ L and a ⊥ b. Then
Gp(a ∨ b, c) = p(a ∨ b, c′)

= p(a, c′) + p(b, c′)

= Gp(a, c) +Gp(b, c)−Gp(0L, c).

The second identity:
Gp(c, a ∨ b) = p(c, a′ ∧ b′)

Gp(c, a) +Gp(c, b)−Gp(c, 0L)

= p(c, a′) + p(c, b′)− p(c, 1L).

It suf�ices to show that
p(c, a′ ∧ b′) = p(c, a′) + p(c, b′)− p(c, 1L).

Since
p(c, a ∨ b) = p(c, a) + p(c, b)

p(c, a ∨ b) = p(c, 1L)− p(c, a′ ∧ b′)

p(c, 1L)− p(c, a′ ∧ b′)

= p(c, 1L)− p(c, a′) + p(c, 1L)− p(c, b′)

thus
p(c, a′ ∧ b′) = p(c, a′) + p(c, b′)− p(c, 1L).

(Q.E.D.)

In a classical Boolean logic it holds (principle of a
proof by contraposition)

a ⇒ b ⇔ b′ ⇒ a′.

On a Boolean algebra is any measure of both the left
and the right hand side the same. Quantum logics and
some measures of implication G ∈ Γ13 (induced by
a non‑commutative s‑map) enable to model a situa‑
tion where these measures are not equal. First look at
basic properties of the class of implications, Γ13.

Lemma 5.4 Let L be a QL and G ∈ Γ13. Then for any
a, b ∈ L it holds
1) G(a, a) = G (a, 1L) = G (0L, a) = 1;
2) G(1L, a) = 1−G(a, 0L) = G (a′, 0L);
3) If a ↔ b thenG(a, b) = G (a′ ∨ b, 0L);
4) If a ≤ b thenG(a, b) = 1.

Proposition 5.5 Let L be a QL andG ∈ Γ13. Then the
mapmG : L → [0, 1] de�ined asmG(a) = G(1L, a) is a
state on L.

Proposition 5.6 LetLbe aQL. The familiesΓ2 andΓ13

are isomor�i�.

Proof. The statement follows immediately from:
i) p ∈ Γ2 iff Gp ∈ Γ15,whereGp(a, b) = p (a, b′) .

ii) G ∈ Γ15 iff 1−G ∈ Γ13.
From the above it is clear that p ∈ Γ2 iff Gp ∈ Γ13,
where

Gp(a, b) = 1− p(a, b′)

The measure of implicationGp is called a measure in‑
duced by s‑map p. (Q.E.D.)

Let us return to the tautology

a ⇒ b iff b′ ⇒ a′.

Wewould expect an equal measure of propositions

a ⇒ b & b′ ⇒ a′,

or equivalently: for any G ∈ Γ13 it holds G(a, b) =
G (b′, a′) . As already noted, this is true on a Boolean
algebra, but not necessarilly on a quantum logic. In‑
deed, if a measure of implication Gp is induced by a
non‑commutative s‑map p, and the events a, b are not
compatible, one can obtain

G(a, b) = 1− p (a, b′)

different of

G (b′, a′) = 1− p (b′, a) .

Note that, if a measure of implication is induced by
a commutative s‑map p, we have a classical situation.

6. Conclusion
An overview of all classes is in Table 5 and in Table

6. It is clear from these tables that on a Boolean alge‑
bra, a value of a G‑map is a probability measure of a
Boolean expression, according to the known table for
thepropositional logic. This leads to the interpretation
of values of a function G on a quantum logic.
6.1. Relations between Classes Γ1 ‐ Γ16.

On a Boolean algebra classesΓi andΓj are isomor‑
phic for i, j �= 1, 8. Another situation occurs in the case
of non‑compatible random events, that is, in the case
of a quantum logic:
‑ Γ4 and Γ7 are isomorphic.
‑ Γi and Γj are isomorphic for

i, j ∈ {2, 3, 5, 6, 13− 16}.

‑ In [13] it is shown that for any p ∈ Γ2 there exists a
Gp ∈ Γ4 induced by p. On the other side, there exists
G ∈ Γ4 such that the map pG induced byG is not in
Γ2 (pG is not an s‑map).

‑ Γ9 ‑ Γ12 are mutually isomorphic, but their relation
to other classes is not quite clear. Nevertheless, for
any s‑map there exists a projection, as it follows
from Proposition 4.5.

6.2. Problem of Existence ofG‐maps on QLs.
Twoprincipal questions related toG‑maps arise in

a quantum logic: existence of suchmap and its proper‑
ties.

From the foregoing considerations it follows that
the existence of a probability measure of conjunction
(s‑map) guarantees the existenceof a probabilitymea‑
sure of all other logical connectives. Therefore, the key
question, listed as an open problem Q3 in [25], is the
existence of an s‑map on any quantum logic.

The existence of an s‑map in the case of a separable
quantum logic and additive states has been solved in
[15] and [14].
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Tab. 5. Results from the paper [13]

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

G(0L, 0L) 0 0 0 0 1 1 1 1
G(1L, 0L) 0 0 1 1 1 0 0 1
G(0L, 1L) 0 0 1 1 1 0 0 1
G(1L, 1L) 0 1 1 0 0 0 1 1

probability of 0L a ∧ b a ∨ b (a ⇔ b)′ a′ ∨ b′ a′ ∧ b′ a ⇔ b 1L
a ↔ b a ↔ b a ↔ b a ↔ b a ↔ b a ↔ b

Tab. 6. Γ9 ‐ Γ16,G(1L, 0L) ̸= G(0L, 1L). For a ↔ b: a ⇒ b = a′ ∨ b.

Γ9 Γ10 Γ11 Γ12 Γ13 Γ14 Γ15 Γ16

G(0L, 0L) 0 0 1 1 1 1 0 0
G(0L, 1L) 0 1 1 0 1 0 0 1
G(1L, 0L) 1 0 0 1 0 1 1 0
G(1L, 1L) 1 1 0 0 1 1 0 0

probability of a b a′ b′ a ⇒ b a ⇐ b (a ⇒ b)′ (a ⇐ b)′

a ↔ b a ↔ b a ↔ b a ↔ b

Proposition 6.1 ( [15], Proposition 1.1.) Let L be an
OML, let {ai}ni=1 ∈ L, n ∈ N where ai ⊥ aj , for
i �= j. If for any i there exists a state αi, such that
αi(ai) = 1, then there exists σ‑CS such that for any
k = (k1, · · · , kn), where ki ∈ [0, 1] for i ∈ {1, · · · , n}
with the property

∑
i ki = 1, there exists a conditional

state fk : L× Lc → [0, 1], such that for any i and each
d ∈ L

fk(d, ai) = αi(d);

and for each aj

fk (aj ,∨iai) = ki.

Proposition 6.2 ( [14] Proposition 2.2.) Let L be an
OML, let there be an s‑map p. Then there exists a con‑
ditional state fp such that

p(a, b) = fp(a, b)fp(b, 1L).

Let L be a QL and let Lc = L− {0L}. If

f : L× Lc → [0, 1]

is a conditional state, then there exists an s‑map

pf : L× L → [0, 1].

s‑maps, whose existence is guaranteed by the
above cited propositions, can be constructed using
techniques similar to those known for the con‑
struction of copulas. ( [1,3] ).

6.3. Some Differences Between G‐maps on a Boolean
algebra andG‐maps on a QL.

1) Each probability measure on B induces a pseudo‑
metric. It means, that for any probability measure
m, themap dm: dm(a, b) = m(a∧b′)+m(a′∧b) is a
pseudometric onB inducedbym. On aquantum lo‑
gic, if p ∈ Γ2 and dp(a, b) = p(a, b′) + p(a′, b), then
dp ∈ Γ4 but it can happen that dp is not a pseudo‑
metric.

2) Let L be a QL,m be a state on L and p be an s‑map
on L. The �irst Bell‑type inequality (4) is not ne‑
cessarily ful�illed for all values a, b ∈ L while its
version (5), via an s‑map p is always satis�ied.

m(a) +m(b) − m(a ∧ b) ≤ 1 (4)
p(a, a) + p(b, b)− p(a, b) ≤ 1 (5)

The second Bell‑type innequality (6) is not neces‑
sarily ful�illed for all values a, b, c ∈ Lwhile its ver‑
sion (7) is ful�illed for every s‑map, which induces
a pseudometric on L [26].

m(a)+m(b)+m(c)−m(a∧b)−m(a∧c)−m(c∧b) ≤ 1
(6)

p(a, a)+p(b, b)+p(c, c)−p(a, b)−p(a, c)−p(c, b) ≤ 1
(7)

3) Analogically, implication (8) (Jauch‑Piron state, see
e.g. [4,22]) can be violated onL but implication (9)
is always valid

m(a) = m(b) = 1 ⇒ m(a ∧ b) = 1 (8)

p(a, a) = p(b, b) = 1 ⇒ p(a, b) = 1, (9)
and moreover for any c ∈ L

p(a, c) = p(c, a) = p(c, c).

4) On a Boolean algebra, every projection is a pure
projection. On a quantum logic, a G‑map G (G ∈
Γi, i ∈ {9, 10, 11, 12} ) is not necessarilly a pure
projection, see Example 4.3.

5) Quantum logics andG‑maps enable to model situ‑
ations that can not occur in a Boolean algebra. The
use of G‑maps to model these situations on QLs is
illustrated by the following considerations:

a) Quantum logics and non‑commutative s‑maps
(class Γ2) enable to model stochastic causality.

8
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Tab. 7. d‐map not satisfying triangle inequality if k > 0

a b c a′ b′ c′ 0L 1L
a 0 k 0 1 1− k 1 α 1− α
b k 0 0 1− k 1 1 β 1− β
c 0 0 0 1 1 1 γ 1− γ
a′ 1 1− k 1 0 k 0 1− α α
b′ 1− k 1 1 k 0 0 1− β β
c′ 1 1 1 0 0 0 1− γ γ
0 α β γ 1− α 1− β 1− γ 0 1
1 1− α 1− β 1− γ α β γ 1 0

Let L be a quantum logic, p an s‑map on L, and
a, b ∈ L. The conditional probability of some
eventa, given theoccurrenceof someother event
b is

P (a|b) = p(a, b)

p(b, b)
.

Assume that p is a non‑commutative s‑map. Then
there are non‑compatible events a, b, for which
p(a, b) �= p(b, a). This situationmodels a stochas‑
tic causality using a non‑commutative measure
of conjuction p. In this case Bayes’s theorem is vi‑
olated ( [16,17]).

Assume moreover that the event a is indepen‑
dent of b, i.e. it holds

P (a|b) = p(a, b)

p(b, b)
= p(a, a).

On the other side, the event b is not independent
of a, as

P (b|a) = p(b, a)

p(a, a)
=

p(b, a)p(b, b)

p(a, b)
�= p(b, b).

Using a commutative s‑map, we have a classical
situation. A commutative s‑map ps can be obtai‑
ned from an arbitrary s‑map p e.g. as

ps(x, y) =
1

2
(p(x, y) + p(y, x)) .

Whether an event a is independent of b or not is
determined by the measure of conjunction. The‑
refore it is suitable to say that a is independent
of bwith respect to a measure (s‑map p).

b) Quantum logics and some d‑maps (classΓ4) ena‑
ble to distinguish elements that are not distin‑
guishable on a Boolean algebra.

Symmetric difference (d‑map) on aBoolean alge‑
bra ful�ills the triangle inequality

d(a, b) ≤ d(a, c) + d(c, b).

Consequently, if a, c and b, c are indistinguisha‑
ble, then a, b are also, because

d(a, c) = d(c, b) = 0 ⇒ d(a, b) = 0.

On a quantum logic exists a set of symmetric dif‑
ferencies (subclass of Γ4), that do not ful�ill the

triangle inequality. Table 7 gives an example of
such symmetric difference under condition k >
0.
For elements a, b, c it holds:

d(a, c) = d(c, b) = 0,

but d(a, b) = k > 0.
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between joint distribution and compatibi‑
lity”, Reports on Mathematical Physics, vol.
19, no. 3, 1984, 349–359, 10.1016/0034‑
4877(84)90007‑7.

[8] L. Herman, E. L. Marsden, and R. Piziak, “Implica‑
tion connectives in orthomodular lattices”,Notre
Dame Journal of Formal Logic, vol. 16, no. 3, 1975,
305–328, 10.1305/ndj�l/1093891789.

[9] A. Y. Khrennikov, “EPR‑Bohm experiment and
Bell’s inequality: Quantum physics meets pro‑
bability theory”, Theoretical and Mathemati‑
cal Physics, vol. 157, no. 1, 2008, 1448–1460,
10.1007/s11232‑008‑0119‑3.

[10] A. Khrennikov, “Violation of Bell’s Inequa‑
lity and non‑Kolmogorovness”, Foundations
of Probability and Physics‑5. AIP Conference
Proceedings, vol. 1101, no. 1, 2009, 86–99,
10.1063/1.3109976.
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Tab. 7. d‐map not satisfying triangle inequality if k > 0

a b c a′ b′ c′ 0L 1L
a 0 k 0 1 1− k 1 α 1− α
b k 0 0 1− k 1 1 β 1− β
c 0 0 0 1 1 1 γ 1− γ
a′ 1 1− k 1 0 k 0 1− α α
b′ 1− k 1 1 k 0 0 1− β β
c′ 1 1 1 0 0 0 1− γ γ
0 α β γ 1− α 1− β 1− γ 0 1
1 1− α 1− β 1− γ α β γ 1 0

Let L be a quantum logic, p an s‑map on L, and
a, b ∈ L. The conditional probability of some
eventa, given theoccurrenceof someother event
b is

P (a|b) = p(a, b)

p(b, b)
.

Assume that p is a non‑commutative s‑map. Then
there are non‑compatible events a, b, for which
p(a, b) �= p(b, a). This situationmodels a stochas‑
tic causality using a non‑commutative measure
of conjuction p. In this case Bayes’s theorem is vi‑
olated ( [16,17]).

Assume moreover that the event a is indepen‑
dent of b, i.e. it holds

P (a|b) = p(a, b)

p(b, b)
= p(a, a).

On the other side, the event b is not independent
of a, as

P (b|a) = p(b, a)

p(a, a)
=

p(b, a)p(b, b)

p(a, b)
�= p(b, b).

Using a commutative s‑map, we have a classical
situation. A commutative s‑map ps can be obtai‑
ned from an arbitrary s‑map p e.g. as

ps(x, y) =
1

2
(p(x, y) + p(y, x)) .

Whether an event a is independent of b or not is
determined by the measure of conjunction. The‑
refore it is suitable to say that a is independent
of bwith respect to a measure (s‑map p).

b) Quantum logics and some d‑maps (classΓ4) ena‑
ble to distinguish elements that are not distin‑
guishable on a Boolean algebra.

Symmetric difference (d‑map) on aBoolean alge‑
bra ful�ills the triangle inequality

d(a, b) ≤ d(a, c) + d(c, b).

Consequently, if a, c and b, c are indistinguisha‑
ble, then a, b are also, because

d(a, c) = d(c, b) = 0 ⇒ d(a, b) = 0.

On a quantum logic exists a set of symmetric dif‑
ferencies (subclass of Γ4), that do not ful�ill the

triangle inequality. Table 7 gives an example of
such symmetric difference under condition k >
0.
For elements a, b, c it holds:

d(a, c) = d(c, b) = 0,

but d(a, b) = k > 0.
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and s‑map on a quantum logic”, Information
Sciences, vol. 179, no. 24, 2009, 4199–4207,
10.1016/j.ins.2009.08.011.

[2] G. Birkhoff and J. Von Neumann, “The Logic of
QuantumMechanics”,Annals ofMathematics, vol.
37, no. 4, 1936, 823–843, 10.2307/1968621.

[3] M. Bohdalova and O. Nanasiova. “Note to Copula
Functions”, 2006.

[4] L. J. Bunce, M. Navara, P. Pták, and J. D. M. Wright,
“Quantum logics with Jauch‑Piron states”, The
Quarterly Journal of Mathematics, vol. 36, no. 3,
1985, 261–271, 10.1093/qmath/36.3.261.

9

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 3 2019
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