Probability Measures and Logical Connectives on Quantum Logics

Submitted: $13^{\text {th }}$ June 2019; accepted: $10^{\text {th }}$ September 2019

Ol'ga Nánásiová, L’ubica Valǎšková, Viera Čerňanová

DOI: 10.14313/JAMRIS/3-2019/29

Abstract

: The present paper is devoted to modelling of a probability measure of logical connectives on a quantum logic via a G-map, which is a special map on it. We follow the work in which the probability of logical conjunction (AND), disjunction (OR), symmetric difference (XOR) and their negations for non-compatible propositions are studied. Now we study all remaining cases of G-maps on quantum logic, namely a probability measure of projections, of implications, and of their negations. We show that unlike classical (Boolean) logic, probability measures of projections on a quantum logic are not necessarilly pure projections. We indicate how it is possible to define a probability measure of implication using a G-map in the quantum logic, and then we study some properties of this measure which are different from a measure of implication in a Boolean algebra. Finally, we compare the properties of a G-map with the properties of a probability measure related to logical connectives on a Boolean algebra.

Keywords: logical connectives, orthomodular lattice, quantum logic, probability measure, state

1. Introduction

The problem of modelling of probability measures for logical connectives of non-compatible propositions started by publishing the paper Birkhoff, G., von Neumann, J. [2]. Quantum logic allows to model situations with non-compatible events (events that are not simultaneously measurable). Methods of quantum logic appear in data processing, economic models, and in other domains of application e.g. [2, 28, 9, 19, 27].

Calculus for non-compatible observables has been described in [16], while modelling of logical connectives in terms of their algebraic properties and algebraic structures can be found in [7, 8, 21].

The present paper follows up the work [13], where the authors studied logical connectives: conjuction, disjunction, and symmetric difference together with their negations, from the perspective of a probability measure. An overview of various insights into this issue is provided in [25].

The paper is organized as follows. Section 2 reminds some basic notions and their properties. A special function that associates a probability measure to some logical connectives on a quantum logic is defined and studied in Section 3 - Section 5. In the last Section 6 properties of a G-map are compared with properties of a probability measure related to logical connectives on a Boolean algebra.

2. Basic Definitions and Properties

In the first part of this section, we recall fundamental notions: orthomodular lattice, compatibility, orthogonality, state, and their basic properties. For more details, see $[6,24]$. In the second subsection, we recall some situations with two-dimensional states allowing to model a probability measure of logical connectives in the case of non-compatible events [16], [15]- [11], [26].

2.1. Quantum logic

Definition 2.1 An orthomodular lattice (OML) is a lattice L with 0_{L} and 1_{L} as the smallest and the greatest element, respectively, endowed with a unary operation $a \mapsto a^{\prime}$ that satisfies:
(i) $a^{\prime \prime}:=\left(a^{\prime}\right)^{\prime}=a$;
(ii) $a \leq b$ implies $b^{\prime} \leq a^{\prime}$;
(iii) $a \vee a^{\prime}=1_{L}$;
(iv) $a \leq b$ implies $b=a \vee\left(a^{\prime} \wedge b\right)$ (the orthomodular law).

Definition 2.2 Elements a, b of an orthomodular lattice L are called

- orthogonal if $a \leq b^{\prime}$; (notation $a \perp b$);
- compatible if

$$
a=(a \wedge b) \vee\left(a \wedge b^{\prime}\right)
$$

(notation $a \leftrightarrow b$).
Definition 2.3 A state on an $O M L L$ is a function $m: L \rightarrow[0,1]$ such that
(i) $m\left(1_{L}\right)=1$;
(ii) $a \perp b$ implies

$$
m(a \vee b)=m(a)+m(b)
$$

Note that the notions state and probability measure are closely tied, and it is clear that $m\left(0_{L}\right)=0$.

There exist three kinds of OMLs: without any state, with exactly one state and with infinite number of states (see e.g. [20]). The first and the second type of OLMs as a basic structure are not suitable to build a generalized probability theory. The last type of OMLs, which has infinite number of states is considered in the present paper.

Definition 2.4 An OML L with infinite number of states is called a quantum logic (QL).

When studying states on a quantum logic, one can meet some problems, that do not exist on a Boolean algebra. It means, that some of basic properties
of probability measures are not necessarilly satisfied for non-compatible random events. Here are some of them: Bell-type inequalities (e.g. [9,10,23,26]), JauchPiron state, (e.g. [4, 22]), problems of pseudometric (see [13]).

2.2. Probability Measures of Logical Connectives on QLs

In [14], the notion of a map for simultaneous measurements (an s-map) on a QL has been introduced. This function is a measure of conjunction even for noncompatible propositions, see [25].

A map $p: L \times L \rightarrow[0,1]$ is called a map for simultaneous measurements (abbr. s-map) if the following conditions hold:
(s1) $p\left(1_{L}, 1_{L}\right)=1$;
(s2) if $a \perp b$ then $p(a, b)=0$;
(s3) if $a \perp b$ then for any $c \in L$:

$$
\begin{aligned}
& p(a \vee b, c)=p(a, c)+p(b, c), \\
& p(c, a \vee b)=p(c, a)+p(c, b) .
\end{aligned}
$$

The following properties of s-map have been proved:
Let $p: L \times L \rightarrow[0,1]$ be an s-map and $a, b, c \in L$. Then

1) if $a \leftrightarrow b$ then $p(a, b)=p(a \wedge b, a \wedge b)=p(b, a)$;
2) if $a \leq b$ then $p(a, b)=p(a, a)$;
3) if $a \leq b$ then

$$
\begin{aligned}
& p(a, c) \leq p(b, c) \\
& p(c, a) \leq p(c, b)
\end{aligned}
$$

for any $c \in L$;
4) $p(a, b) \leq \min \{p(a, a), p(b, b)\}$;
5) the map $m_{p}: L \rightarrow[0,1]$ defined as $m_{p}(a)=p(a, a)$ is a state on L, induced by p.

The property 1 . shows that s-maps can be seen as providing probabilities of 'virtual' conjunctions of propositions, even non-compatible ones, for in the case of compatible propositions the value $p(a, b)$ coincides with the value that a state m_{p} generated by p takes on the meet $a \wedge b$, which in this case really represents conjunction of a and b [25].

On the other hand, the identity $p(a, b)=p(b, a)$ may not be true in general. So an s-map can be used for describing of stochastic causality [16-18]. Moreover, for any $a \in L: m_{p}(a)=p(a, a)=p\left(1_{L}, a\right)=p\left(a, 1_{L}\right)$.

Logical connectives disjunction ($j-m a p$) and symetric difference (d-map) are studied on a QL $[13,5]$.

Let L be a QL. A map $q: L \times L \rightarrow[0,1]$ is called a join map (j-map) if the following conditions hold:
(j1) $q\left(0_{L}, 0_{L}\right)=0, \quad q\left(1_{L}, 1_{L}\right)=1$;
(j2) if $a \perp b$ then $q(a, b)=q(a, a)+q(b, b)$;
(j3) if $a \perp b$ then for any $c \in L$:

$$
\begin{aligned}
& q(a \vee b, c)=q(a, c)+q(b, c)-q(c, c) \\
& q(c, a \vee b)=q(c, a)+q(c, b)-q(c, c) .
\end{aligned}
$$

If p is an s-map on a QL, m_{p} is a state induced by p and $q_{p}: L \times L \rightarrow[0,1]$ such that for any $a, b \in L$

$$
q_{p}(a, b)=m_{p}(a)+m_{p}(b)-p(a, b),
$$

then q_{p} is a j-map. It is easy to see that if $a \leftrightarrow b$, then

$$
q_{p}(a, b)=m_{p}(a)+m_{p}(b)-m_{p}(a \wedge b)=m_{p}(a \vee b)
$$

which explains its name.
Let L be a QL. A map $d: L \times L \rightarrow[0,1]$ is called a difference map (d-map), if the following conditions hold:
(d1)

$$
\begin{aligned}
& d\left(1_{L}, 1_{L}\right)=d\left(0_{L}, 0_{L}\right)=0 \\
& d\left(1_{L}, 0_{L}\right)=d\left(0_{L}, 1_{L}\right)=1
\end{aligned}
$$

(d2) if $a \perp b$ then $d(a, b)=d\left(a, 0_{L}\right)+d\left(0_{L}, b\right)$;
(d3) if $a \perp b$ then for any $c \in L$:

$$
\begin{aligned}
d(a \vee b, c) & =d(a, c)+d(b, c)-d\left(0_{L}, c\right) \\
d(c, a \vee b) & =d(c, a)+d(c, b)-d\left(c, 0_{L}\right)
\end{aligned}
$$

If $a \leftrightarrow b$, then

$$
d(a, b)=m_{d}(a \triangle b)=m_{d}\left(a \wedge b^{\prime}\right)+m_{d}\left(a^{\prime} \wedge b\right)
$$

where m_{d} is a state induced by d.

3. Special Bivariables Maps on QLs

3.1. Measures and Boolean Functions

Let \mathcal{B} be a Boolean algebra and $f: \mathcal{B}^{n} \rightarrow \mathcal{B}$ be a Boolean function. It means, that f is such n-ary operation on \mathcal{B}, which is composed of binary operations \vee, \wedge, a unary operation complement ${ }^{\prime}$, and brackets ().

For the sake of simplification, the expressions of the type

$$
\left(x_{1}, \cdots, x_{i-1}, a_{i}, x_{i+1}, \cdots, x_{n}\right)
$$

will be written as ($\bar{y}_{1}, a_{i}, \bar{y}_{2}$)
Proposition 3.1 Let \mathcal{B} be a Boolean algebra, $f: \mathcal{B}^{n} \rightarrow \mathcal{B}$ a Boolean function and $m: \mathcal{B} \rightarrow[0,1]$ be a probability measure on \mathcal{B}. Then the composition of functions $m \circ f: \mathcal{B}^{n} \rightarrow[0,1]$,

$$
(m \circ f)\left(x_{1}, \cdots, x_{n}\right)=m\left(f\left(x_{1}, \cdots, x_{n}\right)\right)
$$

satisfies following properties:
(G1) Let $x_{1}, \cdots, x_{n} \in\left\{0_{\mathcal{B}}, 1_{\mathcal{B}}\right\}^{n}$. Then

$$
m\left(f\left(x_{1}, \cdots, x_{n}\right)\right) \in\{0,1\}
$$

(G2) Let $a_{i}, b_{j} \in \mathcal{B}, a_{i} \perp b_{j}$. Then

$$
\begin{aligned}
m\left(f\left(\bar{y}_{1}, a_{i}, \bar{y}_{2}, b_{j}, \bar{y}_{3}\right)\right)= & m\left(f\left(\bar{y}_{1}, 0_{\mathcal{B}}, \bar{y}_{2}, b_{j}, \bar{y}_{3}\right)\right) \\
& +m\left(f\left(\bar{y}_{1}, a_{i}, \bar{y}_{2}, 0_{\mathcal{B}}, \bar{y}_{3}\right)\right) \\
& -m\left(f\left(\bar{y}_{1}, 0_{\mathcal{B}}, \bar{y}_{2}, 0_{\mathcal{B}}, \bar{y}_{3}\right)\right) .
\end{aligned}
$$

(G3) Let $a_{i}, b_{i} \in \mathcal{B}, a_{i} \perp b_{i}$. Then

$$
\begin{aligned}
m\left(f\left(\bar{y}_{1}, a_{i} \vee b_{i}, \bar{y}_{2}\right)\right)= & m\left(f\left(\bar{y}_{1}, a_{i}, \bar{y}_{2}\right)\right) \\
& +m\left(f\left(\bar{y}_{1}, b_{i}, \bar{y}_{2}\right)\right) \\
& -m\left(f\left(\bar{y}_{1}, 0_{\mathcal{B}}, \bar{y}_{2}\right)\right) .
\end{aligned}
$$

Proof.

(G1) Let $f: \mathcal{B}^{n} \rightarrow \mathcal{B}$ be a Boolean function. Let $x_{1}, \cdots, x_{n} \in\left\{0_{\mathcal{B}}, 1_{\mathcal{B}}\right\}^{n}$. Then

$$
f\left(x_{1}, \cdots, x_{n}\right) \in\left\{0_{\mathcal{B}}, 1_{\mathcal{B}}\right\}
$$

and then

$$
m\left(f\left(x_{1}, \cdots, x_{n}\right)\right) \in\{0,1\} .
$$

(G2) Let $f: \mathcal{B}^{n} \rightarrow \mathcal{B}$ be a Boolean function. Then for any $a, b \in\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\begin{equation*}
f\left(\bar{y}_{1}, a, \bar{y}_{2}, b, \bar{y}_{3}\right)=f\left(x_{1}, \cdots, x_{n}\right) \wedge U, \tag{1}
\end{equation*}
$$

where $\left.U=\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right) \vee\left(a^{\prime} \wedge b^{\prime}\right) \vee(a \wedge b)\right)$. This can be rewritten as
$f\left(\bar{y}_{1}, a, \bar{y}_{2}, b, \bar{y}_{3}\right)=\left(a \wedge b^{\prime} \wedge Q_{1}\right) \vee\left(a^{\prime} \wedge b \wedge Q_{2}\right) \vee$ $\vee\left(a^{\prime} \wedge b^{\prime} \wedge Q_{3}\right) \vee\left(a \wedge b \wedge Q_{4}\right)$,
where $Q_{i}, i=1,2,3,4$, are boolean expressions that do not contain any of the elements $a, a^{\prime}, b, b^{\prime}$. Assume that $a \perp b$. Then
$f\left(\bar{y}_{1}, a, \bar{y}_{2}, b, \bar{y}_{3}\right)=\left(a \wedge Q_{1}\right) \vee\left(b \wedge Q_{2}\right) \vee\left(a^{\prime} \wedge b^{\prime} \wedge Q_{3}\right)$.
If we put $m\left(f\left(\bar{y}_{1}, a, \bar{y}_{2}, b, \bar{y}_{3}\right)\right)=\mu$, then
$\mu=m\left(a \wedge Q_{1}\right)+m\left(b \wedge Q_{2}\right)+m\left(a^{\prime} \wedge b^{\prime} \wedge Q_{3}\right)$.
Since m is a probability measure, it follows that

$$
\begin{aligned}
\mu= & m\left(a \wedge Q_{1}\right)+m\left(b \wedge Q_{2}\right)+m\left(Q_{3}\right) \\
& -m\left((a \vee b) \wedge Q_{3}\right) \\
= & m\left(a \wedge Q_{1}\right)+m\left(b \wedge Q_{2}\right)+m\left(Q_{3}\right) \\
& -m\left(a \wedge Q_{3}\right)-m\left(b \wedge Q_{3}\right) \\
= & m\left(a \wedge Q_{1}\right)+m\left(a^{\prime} \wedge Q_{3}\right)+m\left(b \wedge Q_{2}\right) \\
& +m\left(b^{\prime} \wedge Q_{3}\right)-m\left(Q_{3}\right)
\end{aligned}
$$

On the other side, from (2) we obtain

$$
\begin{aligned}
& m\left(f\left(\bar{y}_{1}, a, \bar{y}_{2}, 0_{\mathcal{B}}, \bar{y}_{3}\right)\right)=m\left(a \wedge Q_{1}\right)+m\left(a^{\prime} \wedge Q_{3}\right) \\
& m\left(f\left(\bar{y}_{1}, 0_{\mathcal{B}}, \bar{y}_{2}, b, \bar{y}_{3}\right)\right)=m\left(b \wedge Q_{2}\right)+m\left(b^{\prime} \wedge Q_{3}\right), \\
& m\left(f\left(\bar{y}_{1}, 0_{\mathcal{B}}, \bar{y}_{2}, 0_{\mathcal{B}}, \bar{y}_{3}\right)\right)=m\left(Q_{3}\right)
\end{aligned}
$$

Thus (G2) is satisfied.
(G3) Similarly, any Boolean function $f: B^{n} \rightarrow B$ can be written as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{i} \wedge Q\right) \vee\left(x_{i}^{\prime} \wedge P\right)
$$

where the Boolean expressions Q, P do not contain x_{i}, x_{i}^{\prime}. Thus

$$
\begin{equation*}
m\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=m\left(x_{i} \wedge Q\right)+m\left(x_{i}^{\prime} \wedge P\right) \tag{3}
\end{equation*}
$$

Consider $a, b \in \mathcal{B}, a \perp b$, and put $x_{i}=a \vee b$. Then

$$
\begin{aligned}
& m\left(f\left(\bar{y}_{1}, a \vee b, \bar{y}_{2}\right)\right) \\
= & m((a \vee b) \wedge Q)+m\left((a \vee b)^{\prime} \wedge P\right) \\
= & m(a \wedge Q)+m(b \wedge Q)+m(P) \\
& -m(a \wedge P)-m(b \wedge P) \\
= & m(a \wedge Q)+m\left(a^{\prime} \wedge P\right)+m(b \wedge Q) \\
& +m\left(b^{\prime} \wedge P\right)-m(P)
\end{aligned}
$$

On the other side, from (3) we obtain

$$
\begin{aligned}
& m\left(f\left(\bar{y}_{1}, a, \bar{y}_{2}\right)\right)=m(a \wedge Q)+m\left(a^{\prime} \wedge P\right) \\
& m\left(f\left(\bar{y}_{1}, b, \bar{y}_{2}\right)\right)=m(b \wedge Q)+m\left(b^{\prime} \wedge P\right) \\
& m\left(f\left(\bar{y}_{1}, 0_{\mathcal{B}}, \bar{y}_{2}\right)\right)=m(P)
\end{aligned}
$$

Thus (G3) is satisfied. (Q.E.D.)
It follows from the previous proposition that each probability measure of any boolean function has the properties (G1) - (G3). Then it should be interesing to study a function $G: \mathcal{B}^{n} \rightarrow[0,1]$ which is endowed with properties (G1) - (G3). It is easy to see, that for $n=1$ a function G is a classical measure $\left(G\left(1_{\mathcal{B}}\right)=1\right.$ and $G\left(0_{\mathcal{B}}\right)=0$) or a negative measure $\left(G\left(1_{\mathcal{B}}\right)=0\right.$ and $G\left(0_{\mathcal{B}}\right)=1$) on \mathcal{B}.

This article is devoted to functions G on a QL for $n=2$.

3.2. Bivariable G-Maps on QLs

A special bivariable map G satisfying

$$
G\left(0_{L}, 1_{L}\right)=G\left(1_{L}, 0_{L}\right)
$$

has been introduced in [13]. The following definition brings an extended version of this G-map.

Definition 3.2 Let L be a QL. A map

$$
G: L \times L \rightarrow[0,1]
$$

is called a G-map if the following holds:
(G1) if $a, b \in\left\{0_{L}, 1_{L}\right\}$ then $G(a, b) \in\{0,1\}$;
(G2) if $a \perp b$ then

$$
G(a, b)=G\left(a, 0_{L}\right)+G\left(0_{L}, b\right)-G\left(0_{L}, 0_{L}\right) ;
$$

(G3) if $a \perp b$ then for any $c \in L$:

$$
\begin{aligned}
& G(a \vee b, c)=G(a, c)+G(b, c)-G\left(0_{L}, c\right) \\
& G(c, a \vee b)=G(c, a)+G(c, a)-G\left(c, 0_{L}\right)
\end{aligned}
$$

A G-map enables modelling of probability of logical connectives even for non-compatible propositions.

Lemma 3.3 Let $G: L \times L \rightarrow[0,1]$ be a G-map, where L is a QL. Then for $a \leftrightarrow b$ it holds

$$
\begin{aligned}
G(a, b)= & G(a \wedge b, a \wedge b)+G\left(a \wedge b^{\prime}, 0_{L}\right) \\
& +G\left(0_{L}, a^{\prime} \wedge b\right)-2 G\left(0_{L}, 0_{L}\right)
\end{aligned}
$$

Proof. See in [12].

Proposition 3.4 Let $G: L \times L \rightarrow[0,1]$ be a G-map, where L is a $Q L$. Then the map $G^{\prime}=1-G$ is a G-map.

Proof. See in [12].
There are sixteen families $\Gamma_{i},(i=1, \ldots, 16)$ of maps G according to values in vertices

$$
\left(1_{L}, 1_{L}\right),\left(1_{L}, 0_{L}\right),\left(0_{L}, 1_{L}\right),\left(0_{L}, 0_{L}\right)
$$

Eight of them with $G\left(1_{L}, 0_{L}\right)=G\left(0_{L}, 1_{L}\right)$ are studied in [13]. More details can be found in Table 5, section 6.

Family Γ_{2} is the set of all s-maps (measures of conjuntion), Γ_{3} the set of all j-maps (measures of disjunction), and Γ_{4} is that of all d-maps (measures of symmetric difference) on a QL (see [13] for more details).

In the present paper, the remaining cases Γ_{i} ($i=9, \ldots, 16$) with

$$
G\left(1_{L}, 0_{L}\right) \neq G\left(0_{L}, 1_{L}\right)
$$

are focused on.

4. Probability Measures of Projections on QLs

This part is devoted to $\Gamma_{9}-\Gamma_{12}$ with values in the vertices shown in the Table 1 . As $G \in \Gamma_{11}$ iff $1-G \in \Gamma_{9}$, and $G \in \Gamma_{12}$ iff $1-G \in \Gamma_{10}$ (Proposition 3.4 and Table 1), and moreover, Γ_{9} and Γ_{10} are analogical cases (Γ_{11} and Γ_{12} as well), only Γ_{9} is studied in detail.

Lemma 4.1 Let L be a $Q L$ and $G \in \Gamma_{9}$. Then for any $a, b \in L$ it holds

1) $G\left(1_{L}, a\right)=1, G\left(0_{L}, a\right)=0$;
2) $G\left(a, 0_{L}\right)=G(a, a)=G\left(a, 1_{L}\right)$;
3) $G\left(a, 0_{L}\right)=\frac{1}{2}\left(G(a, b)+G\left(a, b^{\prime}\right)\right)$;
4)

$$
G\left(a, 0_{L}\right)=\frac{1}{n} \sum_{i=1}^{n} G\left(a, b_{i}\right)
$$

where b_{1}, \cdots, b_{n} is an orthogonal partition of unity 1_{L}.

Proof. See in [12].
Proposition 4.2 Let L be a $Q L$, and $G \in \Gamma_{9}$. Then for any $a, b \in L$ it holds

1) If $a \leftrightarrow b$ then $G(a, b)=G\left(a, 0_{L}\right)$.
2) For any choice of b, the map $m_{b}: L \rightarrow[0,1]$:

$$
m_{b}(a)=G(a, b)
$$

is a state on L.
Proof. See in [12].
From Proposition 4.2 it follows that any $G \in \Gamma_{9}$ is a probability measure of the projection onto the first coordinate. Analogical properties are fullfiled for any $G \in \Gamma_{10}$, which is a probability measure of the projection onto the second coordinate.

If L is a Boolean algebra, then for any $G \in \Gamma_{9}$ it holds $G(a, b)=G\left(a, 0_{L}\right)$ for all $a, b \in L$. Analogously for any $G \in \Gamma_{10}$ it holds $G(a, b)=G\left(0_{L}, b\right)$ for all $a, b \in L$.

If L is a QL but not a Boolean algebra, then the identity does not hold in general, as illustrates the following example.

Example 4.3 Consider $L=\left\{0_{L}, 1_{L}, a, a^{\prime}, b, b^{\prime}\right\}$, a horizontal sum of Boolean algebras

$$
\begin{aligned}
\mathcal{B}_{a} & =\left\{0_{L}, 1_{L}, a, a^{\prime}\right\} \\
\mathcal{B}_{b} & =\left\{0_{L}, 1_{L}, b, b^{\prime}\right\}
\end{aligned}
$$

Consider $r_{1}, r_{2}, u_{1}, u_{2} \in[0,1]$. Every $G \in \Gamma_{9}$ can be fully defined by Table 2, where

$$
\begin{aligned}
& \alpha=\frac{1}{2}\left(r_{1}+r_{2}\right), \\
& \beta=\frac{1}{2}\left(u_{1}+u_{2}\right)
\end{aligned}
$$

according to Lemma 4.1. If $r_{1} \neq r_{2}$ then

$$
G(a, b) \neq G\left(a, 0_{L}\right)
$$

From Table 2, one can extract all states on L, related to the choice of $r_{1}, r_{2}, u_{1}, u_{2}$. Each column in the Table 2 represents a state on L. As example, m_{b} and m_{0} are in Table 3.

Definition 4.4 Let $G \in \Gamma_{9}$. The map G is called a measure of pure projection (a pure projection) if

$$
G(a, b)=G\left(a, 0_{L}\right)
$$

for any $a, b \in L$.
On a Boolean algebra, the projection onto the first coordinate may be expressed by a Boolean function

$$
f(a, b)=(a \wedge b) \vee\left(a \wedge b^{\prime}\right)=(a \wedge b) \vee\left(b^{\prime} \wedge a\right)=a
$$

what motivates us to define on a QL L four G-maps with the use of $p \in \Gamma_{2}$:

$$
\begin{aligned}
G_{1}(a, b) & =p(a, b)+p\left(a, b^{\prime}\right) \\
G_{2}(a, b) & =p(b, a)+p\left(b^{\prime}, a\right) \\
G_{3}(a, b) & =p(a, b)+p\left(b^{\prime}, a\right) \\
G_{4}(a, b) & =p(b, a)+p\left(a, b^{\prime}\right)
\end{aligned}
$$

Maps G_{i} are measures of projection onto the first coordinate, i.e. $G_{i} \in \Gamma_{9}$ what we prove below. If p is a commutative s-map, all G_{i} coincide,

$$
G_{i}(a, b)=p(a, a)
$$

what is a pure projection. If p is a non-commutative s map, then

$$
G_{1}(a, b)=G_{2}(a, b)=p(a, a)
$$

is a pure projection, while G_{3} and G_{4} are not pure projections since:

$$
G_{3}(a, b)=p(a, b)+p(a, a)-p(b, a),
$$

Tab. 1. $\Gamma_{9}-\Gamma_{16}$ values in vertices

	Γ_{9}	Γ_{10}	Γ_{11}	Γ_{12}	Γ_{13}	Γ_{14}	Γ_{15}	Γ_{16}
$G\left(0_{L}, 0_{L}\right)$	0	0	1	1	1	1	0	0
$G\left(0_{L}, 1_{L}\right)$	0	1	1	0	1	0	0	1
$G\left(1_{L}, 0_{L}\right)$	1	0	0	1	0	1	1	0
$G\left(1_{L}, 1_{L}\right)$	1	1	0	0	1	1	0	0

Tab. 2. G-maps from Γ_{9} on a hor izontal sum of Boolean algebras

	a	a^{\prime}	b	b^{\prime}	0_{L}	1_{L}
a	α	α	r_{1}	r_{2}	α	α
a^{\prime}	$1-\alpha$	$1-\alpha$	$1-r_{1}$	$1-r_{2}$	$1-\alpha$	$1-\alpha$
b	u_{1}	u_{2}	β	β	β	β
b^{\prime}	$1-u_{1}$	$1-u_{2}$	$1-\beta$	$1-\beta$	$1-\beta$	$1-\beta$
0_{L}	0	0	0	0	0	0
1_{L}	1	1	1	1	1	1

Tab. 3. States on L

	a	a^{\prime}	b	b^{\prime}	0_{L}	1_{L}
m_{b}	r_{1}	$1-r_{1}$	β	$1-\beta$	0	1
m_{0}	α	$1-\alpha$	β	$1-\beta$	0	1

and

$$
G_{3}\left(a, 0_{L}\right)=p(a, a)
$$

and if $p(a, b) \neq p(b, a)$ then $G_{3}(a, b) \neq G_{3}\left(a, 0_{L}\right)$. Now we prove that G_{3} is a projection (case G_{4} is analogical).
(1) $G_{3}(a, b) \in[0,1]$

$$
\begin{aligned}
0 & \leq G_{3}(a, b)=p(a, b)+p\left(b^{\prime}, a\right) \\
& \leq p(b, b)+p\left(b^{\prime}, b^{\prime}\right)=1
\end{aligned}
$$

(2) Values in vertices:

$$
\begin{aligned}
& G_{3}\left(0_{L}, 0_{L}\right)=G_{3}\left(0_{L}, 1_{L}\right)=0 \\
& G_{3}\left(1_{L}, 0_{L}\right)=G_{3}\left(1_{L}, 1_{L}\right)=1 .
\end{aligned}
$$

(3) If $a \perp b$, i.e. $a \leq b^{\prime}$ then

$$
G_{3}(a, b)=p(a, b)+p\left(b^{\prime}, a\right)=0+p(a, a)
$$

From the other side

$$
\begin{aligned}
& G_{3}\left(a, 0_{L}\right)+G_{3}\left(0_{L}, b\right)-G_{3}\left(0_{L}, 0_{L}\right) \\
& =p\left(a, 0_{L}\right)+p\left(1_{L}, a\right)+p\left(0_{L}, b\right)+p\left(b^{\prime}, 0_{L}\right)-0 \\
& =p(a, a)
\end{aligned}
$$

(4) If $a \perp b$ and $c \in L$ then

$$
\begin{aligned}
G_{3}(a \vee b, c) & =p(a \vee b, c)+p\left(c^{\prime}, a \vee b\right) \\
& =p(a, c)+p(b, c)+p\left(c^{\prime}, a\right)+p\left(c^{\prime}, b\right)
\end{aligned}
$$

From the other side

$$
\begin{aligned}
& G_{3}(a, c)+G_{3}(b, c)-G_{3}\left(0_{L}, c\right) \\
= & p(a, c)+p\left(c^{\prime}, a\right)+p(b, c) \\
& +p\left(c^{\prime}, b\right)+p\left(0_{L}, c\right)+p\left(c^{\prime}, 0_{L}\right)
\end{aligned}
$$

The second identity:

$$
\begin{aligned}
& G_{3}(c, a \vee b) \\
= & p(c, a \vee b)+p\left((a \vee b)^{\prime}, c\right) \\
= & p(c, a)+p(c, b)+p\left(1_{L}, c\right)-p(a \vee b, c) \\
= & p(c, a)+p(c, b)+p\left(1_{L}, c\right)-p(a, c)-p(b, c) \\
= & p(c, a)+p\left(a^{\prime}, c\right)+p(c, b)+p\left(b^{\prime}, c\right)-p\left(1_{L}, c\right) \\
= & G_{3}(c, a)+G_{3}(c, b)-G_{3}\left(c, 0_{L}\right) .
\end{aligned}
$$

Proposition 4.5 For every s-map p there exists $a G$ $\operatorname{map} G_{p} \in \Gamma_{9}$ such that

$$
G_{p}(a, b)=G_{p}\left(a, 0_{L}\right)
$$

Proof. Let

$$
G_{p}(a, b)=p(a, b)+p\left(a, b^{\prime}\right)=p(a, a)
$$

where p is an arbitrary s-map. Then $G_{p} \in \Gamma_{9}$ and

$$
G_{p}(a, b)=G_{p}\left(a, 0_{L}\right)
$$

for any $b \in L . \quad$ (Q.E.D.)
The results for $\Gamma_{9}-\Gamma_{12}$ are summarized in Table 4.

Tab. 4. Results for $\Gamma_{9}-\Gamma_{12}$

	Γ_{9}	Γ_{10}	Γ_{11}	Γ_{12}
probability of	a	b	a^{\prime}	b^{\prime}

5. Probability Measures of Implications on QLs

Values in vertices for families $\Gamma_{13}-\Gamma_{16}$ are in the Table 1. Similarly to the relations between $\Gamma_{9}-\Gamma_{12}$, for families $\Gamma_{13}-\Gamma_{16}$ hold

$$
\begin{aligned}
& G \in \Gamma_{13} \text { iff } 1-G \in \Gamma_{15} \\
& G \in \Gamma_{14} \text { iff } 1-G \in \Gamma_{16} .
\end{aligned}
$$

Γ_{15} and Γ_{16} are analogical cases. For these reasons only one of the famillies, Γ_{15}, will be focused on.

Lemma 5.1 Let L be a QL and $G \in \Gamma_{15}$. Then for any $a, b \in L$ it holds

1) $G(a, a)=G\left(a, 1_{L}\right)=G\left(0_{L}, a\right)=0$;
2) $G\left(1_{L}, a\right)=1-G\left(a, 0_{L}\right)=G\left(a^{\prime}, 0_{L}\right)$;
3) If $a \leftrightarrow b$ then $G(a, b)=G\left(a \wedge b^{\prime}, 0_{L}\right)$.
4) If $a \leq b$ then $G(a, b)=0$.

Proof.

1) Let $G \in \Gamma_{15}$ and $a \in L$, then

$$
\begin{aligned}
0 & =G\left(1_{L}, 1_{L}\right) \\
& =G\left(a, 1_{L}\right)+G\left(a^{\prime}, 1_{L}\right)-G\left(0_{L}, 1_{L}\right) \\
& =G\left(a, 1_{L}\right)+G\left(a^{\prime}, 1_{L}\right)
\end{aligned}
$$

Taking into account that $G(a, b) \in[0,1]$, one concludes that $G\left(a, 1_{L}\right)=0$ for any $a \in L$. Further

$$
\begin{aligned}
0= & G\left(a, 1_{L}\right)=G(a, a)+G\left(a, a^{\prime}\right)-G\left(a, 0_{L}\right) \\
= & G(a, a)+G\left(a, 0_{L}\right)+G\left(0_{L}, a^{\prime}\right)-G\left(0_{L}, 0_{L},\right) \\
& -G\left(a, 0_{L}\right) \\
= & G(a, a)+G\left(0_{L}, a^{\prime}\right)
\end{aligned}
$$

Thus $G(a, a)=G\left(0_{L}, a\right)=0$.
2) Let $G \in \Gamma_{15}$ and $a \in L$, then with the use of what preceeds,

$$
\begin{aligned}
G\left(1_{L}, a\right) & =G(a, a)+G\left(a^{\prime}, a\right)-G\left(0_{L}, a\right) \\
& =G\left(a^{\prime}, 0_{L}\right)+G\left(0_{L}, a\right)-G\left(0_{L}, 0_{L}\right) \\
& =G\left(a^{\prime}, 0_{L}\right)
\end{aligned}
$$

From the other side,

$$
1=G\left(1_{L}, 0_{L}\right)=G\left(a, 0_{L}\right)+G\left(a^{\prime}, 0_{L}\right)
$$

Consequently,

$$
G\left(1_{L}, a\right)=1-G\left(a, 0_{L}\right)=G\left(a^{\prime}, 0_{L}\right)
$$

3) If $a \leftrightarrow b$ then $G(a, b)=G\left(a \wedge b^{\prime}, 0_{L}\right)$ follows directly from Lemma 3.3.
4) $a \leq b$ is a particular case of $a \leftrightarrow b$, where $a \wedge b^{\prime}=$ 0_{L}. This leads immediatelly to

$$
G(a, b)=G\left(a \wedge b^{\prime}, 0_{L}\right)=G\left(0_{L}, 0_{L}\right)=0
$$

(Q.E.D.)

Lemma 5.2 Let L be a QL and $G \in \Gamma_{15}$. Then the map $m_{G}: L \rightarrow[0,1]$ defined as $m_{G}(a)=G\left(a, 0_{L}\right)$ is a state on L.

Proof.

1) $m_{G}\left(1_{L}\right)=G\left(1_{L}, 0_{L}\right)=1$
2) If $a \perp b$, then

$$
\begin{aligned}
m_{G}(a \vee b) & =G\left(a \vee b, 0_{L}\right) \\
& =G\left(a, 0_{L}\right)+G\left(b, 0_{L}\right)-G\left(0_{L}, 0_{L}\right) \\
& =m_{G}(a)+m_{G}(b)
\end{aligned}
$$

(Q.E.D.)

Proposition 5.3 Let L be a QL. The famillies Γ_{2} and Γ_{15} are isomorfic.

Proof. Since Γ_{2} is the set of all s-maps on L, it suffices to prove:
i) If $G \in \Gamma_{15}$ and $p_{G}(a, b)=G\left(a, b^{\prime}\right)$, then p_{G} is an s-map on L.
ii) If p is an s-map on L and $G_{p}(a, b)=p\left(a, b^{\prime}\right)$, then $G_{p} \in \Gamma_{15}$.
i) Let $G \in \Gamma_{15}$ and $p_{G}(a, b)=G\left(a, b^{\prime}\right)$. The properties (s1) - (s3) of s-map are verified bellow.
(s1) $p_{G}\left(1_{L}, 1_{L}\right)=G\left(1_{L}, 0_{L}\right)=1$
(s2) If $a \perp b$, then $p_{G}(a, b)=G\left(a, b^{\prime}\right)=0$. It implies from Lemma 5.1 as $a \leq b^{\prime}$.
(s3) If $a \perp b$ and $c \in L$, then

$$
\begin{aligned}
p_{G}(a \vee b, c) & =G\left(a \vee b, c^{\prime}\right) \\
& =G\left(a, c^{\prime}\right)+G\left(b, c^{\prime}\right)-G\left(0_{L}, c^{\prime}\right) \\
& =p_{G}(a, c)+p_{G}(b, c)
\end{aligned}
$$

The second identity:

$$
\begin{aligned}
& p_{G}(c, a \vee b)=G\left(c,(a \vee b)^{\prime}\right)=G\left(c, a^{\prime} \wedge b^{\prime}\right) \\
& p_{G}(c, a)+p_{G}(c, b)=G\left(c, a^{\prime}\right)+G\left(c, b^{\prime}\right)
\end{aligned}
$$

It suffices to show that $G\left(c, a^{\prime}\right)+G\left(c, b^{\prime}\right)=$ $G\left(c, a^{\prime} \wedge b^{\prime}\right)$. From the orthomodular law it follows that $a^{\prime}=b \vee\left(b^{\prime} \wedge a^{\prime}\right)$ and $b^{\prime}=a \vee\left(a^{\prime} \wedge b^{\prime}\right)$.

$$
\begin{aligned}
& G\left(c, a^{\prime}\right)+G\left(c, b^{\prime}\right) \\
= & G(c, b)+G\left(c, a^{\prime} \wedge b^{\prime}\right)-G\left(c, 0_{L}\right) \\
& +G\left(c, a^{\prime} \wedge b^{\prime}\right)+G(c, a)-G\left(c, 0_{L}\right) \\
= & \left(G(c, b)+G(c, a)-G\left(c, 0_{L}\right)\right) \\
& +G\left(c, a^{\prime} \wedge b^{\prime}\right)-G\left(c, 0_{L}\right) \\
& +G\left(c, a^{\prime} \wedge b^{\prime}\right) \\
= & G(c, a \vee b)+G\left(c,(a \vee b)^{\prime}\right) \\
& -G\left(c, 0_{L}\right)+G\left(c, a^{\prime} \wedge b^{\prime}\right) \\
= & G\left(c, 1_{L}\right)+G\left(c, a^{\prime} \wedge b^{\prime}\right) \\
= & G\left(c, a^{\prime} \wedge b^{\prime}\right) .
\end{aligned}
$$

Consequently

$$
p_{G}(c, a \vee b)=p_{G}(c, a)+p_{G}(c, b)
$$

ii) Let p be an s-map and $G_{p}(a, b)=p\left(a, b^{\prime}\right)$. We want to prove $G \in \Gamma_{15}$.

- It is clear that the values of G_{p} in vertices match the maps of Γ_{15}.
- Let $a \perp b$. Then $G_{p}(a, b)=p\left(a, b^{\prime}\right)=p(a, a)$ as $a \leq b^{\prime}$. On the other hand

$$
\begin{aligned}
& G_{p}\left(a, 0_{L}\right)+G_{p}\left(0_{L}, b\right)-G_{p}\left(0_{L}, 0_{L}\right) \\
= & p\left(a, 1_{L}\right)+p\left(0_{L}, b^{\prime}\right)-p\left(0_{L}, 1_{L}\right) \\
= & p(a, a)=G_{p}(a, b) .
\end{aligned}
$$

- Let $a, b, c \in L$ and $a \perp b$. Then

$$
\begin{aligned}
G_{p}(a \vee b, c) & =p\left(a \vee b, c^{\prime}\right) \\
& =p\left(a, c^{\prime}\right)+p\left(b, c^{\prime}\right) \\
& =G_{p}(a, c)+G_{p}(b, c)-G_{p}\left(0_{L}, c\right) .
\end{aligned}
$$

The second identity:

$$
\begin{aligned}
& G_{p}(c, a \vee b)=p\left(c, a^{\prime} \wedge b^{\prime}\right) \\
& G_{p}(c, a)+G_{p}(c, b)-G_{p}\left(c, 0_{L}\right) \\
= & p\left(c, a^{\prime}\right)+p\left(c, b^{\prime}\right)-p\left(c, 1_{L}\right)
\end{aligned}
$$

It suffices to show that

$$
p\left(c, a^{\prime} \wedge b^{\prime}\right)=p\left(c, a^{\prime}\right)+p\left(c, b^{\prime}\right)-p\left(c, 1_{L}\right)
$$

Since

$$
\begin{aligned}
& p(c, a \vee b)=p(c, a)+p(c, b) \\
& p(c, a \vee b)=p\left(c, 1_{L}\right)-p\left(c, a^{\prime} \wedge b^{\prime}\right) \\
& p\left(c, 1_{L}\right)-p\left(c, a^{\prime} \wedge b^{\prime}\right) \\
& =p\left(c, 1_{L}\right)-p\left(c, a^{\prime}\right)+p\left(c, 1_{L}\right)-p\left(c, b^{\prime}\right)
\end{aligned}
$$

thus

$$
p\left(c, a^{\prime} \wedge b^{\prime}\right)=p\left(c, a^{\prime}\right)+p\left(c, b^{\prime}\right)-p\left(c, 1_{L}\right)
$$

(Q.E.D.)

In a classical Boolean logic it holds (principle of a proof by contraposition)

$$
a \Rightarrow b \quad \Leftrightarrow \quad b^{\prime} \Rightarrow a^{\prime}
$$

On a Boolean algebra is any measure of both the left and the right hand side the same. Quantum logics and some measures of implication $G \in \Gamma_{13}$ (induced by a non-commutative s-map) enable to model a situation where these measures are not equal. First look at basic properties of the class of implications, Γ_{13}.
Lemma 5.4 Let L be a QL and $G \in \Gamma_{13}$. Then for any $a, b \in L$ it holds

1) $G(a, a)=G\left(a, 1_{L}\right)=G\left(0_{L}, a\right)=1$;
2) $G\left(1_{L}, a\right)=1-G\left(a, 0_{L}\right)=G\left(a^{\prime}, 0_{L}\right)$;
3) If $a \leftrightarrow b$ then $G(a, b)=G\left(a^{\prime} \vee b, 0_{L}\right)$;
4) If $a \leq b$ then $G(a, b)=1$.

Proposition 5.5 Let L be a $Q L$ and $G \in \Gamma_{13}$. Then the map $m_{G}: L \rightarrow[0,1]$ defined as $m_{G}(a)=G\left(1_{L}, a\right)$ is a state on L.

Proposition 5.6 Let L be a QL. The families Γ_{2} and Γ_{13} are isomorfic.

Proof. The statement follows immediately from:
i) $p \in \Gamma_{2}$ iff $G_{p} \in \Gamma_{15}$, where $G_{p}(a, b)=p\left(a, b^{\prime}\right)$.
ii) $G \in \Gamma_{15}$ iff $1-G \in \Gamma_{13}$.

From the above it is clear that $p \in \Gamma_{2}$ iff $G_{p} \in \Gamma_{13}$, where

$$
G_{p}(a, b)=1-p\left(a, b^{\prime}\right)
$$

The measure of implication G_{p} is called a measure induced by s-map p.
(Q.E.D.)

Let us return to the tautology

$$
a \Rightarrow b \text { iff } b^{\prime} \Rightarrow a^{\prime}
$$

We would expect an equal measure of propositions

$$
a \Rightarrow b \quad \& \quad b^{\prime} \Rightarrow a^{\prime}
$$

or equivalently: for any $G \in \Gamma_{13}$ it holds $G(a, b)=$ $G\left(b^{\prime}, a^{\prime}\right)$. As already noted, this is true on a Boolean algebra, but not necessarilly on a quantum logic. Indeed, if a measure of implication G_{p} is induced by a non-commutative s-map p, and the events a, b are not compatible, one can obtain

$$
G(a, b)=1-p\left(a, b^{\prime}\right)
$$

different of

$$
G\left(b^{\prime}, a^{\prime}\right)=1-p\left(b^{\prime}, a\right)
$$

Note that, if a measure of implication is induced by a commutative s-map p, we have a classical situation.

6. Conclusion

An overview of all classes is in Table 5 and in Table 6. It is clear from these tables that on a Boolean algebra, a value of a G-map is a probability measure of a Boolean expression, according to the known table for the propositional logic. This leads to the interpretation of values of a function G on a quantum logic.

6.1. Relations between Classes $\Gamma_{1}-\Gamma_{16}$.

On a Boolean algebra classes Γ_{i} and Γ_{j} are isomorphic for $i, j \neq 1,8$. Another situation occurs in the case of non-compatible random events, that is, in the case of a quantum logic:

- Γ_{4} and Γ_{7} are isomorphic.
- Γ_{i} and Γ_{j} are isomorphic for

$$
i, j \in\{2,3,5,6,13-16\} .
$$

- In [13] it is shown that for any $p \in \Gamma_{2}$ there exists a $G_{p} \in \Gamma_{4}$ induced by p. On the other side, there exists $G \in \Gamma_{4}$ such that the map p_{G} induced by G is not in Γ_{2} (p_{G} is not an s-map).
- $\Gamma_{9}-\Gamma_{12}$ are mutually isomorphic, but their relation to other classes is not quite clear. Nevertheless, for any s-map there exists a projection, as it follows from Proposition 4.5.

6.2. Problem of Existence of G-maps on QLs.

Two principal questions related to G-maps arise in a quantum logic: existence of such map and its properties.

From the foregoing considerations it follows that the existence of a probability measure of conjunction (s-map) guarantees the existence of a probability measure of all other logical connectives. Therefore, the key question, listed as an open problem Q3 in [25], is the existence of an s-map on any quantum logic.

The existence of an s-map in the case of a separable quantum logic and additive states has been solved in [15] and [14].

Tab. 5. Results from the paper [13]

	Γ_{1}	Γ_{2}	Γ_{3}	Γ_{4}	Γ_{5}	Γ_{6}	Γ_{7}	Γ_{8}
$G\left(0_{L}, 0_{L}\right)$	0	0	0	0	1	1	1	1
$G\left(1_{L}, 0_{L}\right)$	0	0	1	1	1	0	0	1
$G\left(0_{L}, 1_{L}\right)$	0	0	1	1	1	0	0	1
$G\left(1_{L}, 1_{L}\right)$	0	1	1	0	0	0	1	1
probability of	0_{L}	$a \wedge b$	$a \vee b$	$(a \Leftrightarrow b)^{\prime}$	$a^{\prime} \vee b^{\prime}$	$a^{\prime} \wedge b^{\prime}$	$a \Leftrightarrow b$	1_{L}
		$a \leftrightarrow b$						

Tab. 6. $\Gamma_{9}-\Gamma_{16}, G\left(1_{L}, 0_{L}\right) \neq G\left(0_{L}, 1_{L}\right)$. For $a \leftrightarrow b: a \Rightarrow b=a^{\prime} \vee b$.

	Γ_{9}	Γ_{10}	Γ_{11}	Γ_{12}	Γ_{13}	Γ_{14}	Γ_{15}	Γ_{16}
$G\left(0_{L}, 0_{L}\right)$	0	0	1	1	1	1	0	0
$G\left(0_{L}, 1_{L}\right)$	0	1	1	0	1	0	0	1
$G\left(1_{L}, 0_{L}\right)$	1	0	0	1	0	1	1	0
$G\left(1_{L}, 1_{L}\right)$	1	1	0	0	1	1	0	0
probability of	a	b	a^{\prime}	b^{\prime}	$a \Rightarrow b$ $a \leftrightarrow b$	$a \Leftarrow b$ $a \leftrightarrow b$	$(a \Rightarrow b)^{\prime}$ $a \leftrightarrow b$	$(a \Leftarrow b)^{\prime}$ $a \leftrightarrow b$

Proposition 6.1 ([15], Proposition 1.1.) Let L be an OML, let $\left\{a_{i}\right\}_{i=1}^{n} \in L, n \in N$ where $a_{i} \perp a_{j}$, for $i \neq j$. If for any i there exists a state α_{i}, such that $\alpha_{i}\left(a_{i}\right)=1$, then there exists σ-CS such that for any $k=\left(k_{1}, \cdots, k_{n}\right)$, where $k_{i} \in[0,1]$ for $i \in\{1, \cdots, n\}$ with the property $\sum_{i} k_{i}=1$, there exists a conditional state $f_{k}: L \times L_{c} \rightarrow[0,1]$, such that for any i and each $d \in L$

$$
f_{k}\left(d, a_{i}\right)=\alpha_{i}(d) ;
$$

and for each a_{j}

$$
f_{k}\left(a_{j}, \vee_{i} a_{i}\right)=k_{i}
$$

Proposition 6.2 ([14] Proposition 2.2.) Let L be an OML, let there be an s-map p. Then there exists a conditional state f_{p} such that

$$
p(a, b)=f_{p}(a, b) f_{p}\left(b, 1_{L}\right) .
$$

Let L be a QL and let $L_{c}=L-\left\{0_{L}\right\}$. If

$$
f: L \times L_{c} \rightarrow[0,1]
$$

is a conditional state, then there exists an s-map

$$
p_{f}: L \times L \rightarrow[0,1] .
$$

s-maps, whose existence is guaranteed by the above cited propositions, can be constructed using techniques similar to those known for the construction of copulas. ($[1,3]$).

6.3. Some Differences Between G-maps on a Boolean algebra and G-maps on a QL.

1) Each probability measure on \mathcal{B} induces a pseudometric. It means, that for any probability measure m, the map $d_{m}: d_{m}(a, b)=m\left(a \wedge b^{\prime}\right)+m\left(a^{\prime} \wedge b\right)$ is a pseudometric on \mathcal{B} induced by m. On a quantum logic, if $p \in \Gamma_{2}$ and $d_{p}(a, b)=p\left(a, b^{\prime}\right)+p\left(a^{\prime}, b\right)$, then $d_{p} \in \Gamma_{4}$ but it can happen that d_{p} is not a pseudometric.
2) Let L be a QL, m be a state on L and p be an s-map on L. The first Bell-type inequality (4) is not necessarily fulfilled for all values $a, b \in L$ while its version (5), via an s-map p is always satisfied.

$$
\begin{align*}
m(a)+m(b)-m(a \wedge b) & \leq 1 \tag{4}\\
p(a, a)+p(b, b)-p(a, b) & \leq 1 \tag{5}
\end{align*}
$$

The second Bell-type innequality (6) is not necessarily fulfilled for all values $a, b, c \in L$ while its version (7) is fulfilled for every s-map, which induces a pseudometric on L [26].
$m(a)+m(b)+m(c)-m(a \wedge b)-m(a \wedge c)-m(c \wedge b) \leq 1$
$p(a, a)+p(b, b)+p(c, c)-p(a, b)-p(a, c)-p(c, b) \leq 1$
3) Analogically, implication (8) (Jauch-Piron state, see e.g. $[4,22]$) can be violated on L but implication (9) is always valid

$$
\begin{gather*}
m(a)=m(b)=1 \Rightarrow m(a \wedge b)=1 \tag{8}\\
p(a, a)=p(b, b)=1 \Rightarrow p(a, b)=1 \tag{9}
\end{gather*}
$$

and moreover for any $c \in L$

$$
p(a, c)=p(c, a)=p(c, c) .
$$

4) On a Boolean algebra, every projection is a pure projection. On a quantum logic, a G-map $G(G \in$ $\left.\Gamma_{i}, i \in\{9,10,11,12\}\right)$ is not necessarilly a pure projection, see Example 4.3.
5) Quantum logics and G-maps enable to model situations that can not occur in a Boolean algebra. The use of G-maps to model these situations on QLs is illustrated by the following considerations:
a) Quantum logics and non-commutative s-maps (class Γ_{2}) enable to model stochastic causality.

Tab. 7. d-map not satisfying triangle inequality if $k>0$

	a	b	c	a^{\prime}	b^{\prime}	c^{\prime}	0_{L}	1_{L}
a	0	k	0	1	$1-k$	1	α	$1-\alpha$
b	k	0	0	$1-k$	1	1	β	$1-\beta$
c	0	0	0	1	1	1	γ	$1-\gamma$
a^{\prime}	1	$1-k$	1	0	k	0	$1-\alpha$	α
b^{\prime}	$1-k$	1	1	k	0	0	$1-\beta$	β
c^{\prime}	1	1	1	0	0	0	$1-\gamma$	γ
0	α	β	γ	$1-\alpha$	$1-\beta$	$1-\gamma$	0	1
1	$1-\alpha$	$1-\beta$	$1-\gamma$	α	β	γ	1	0

Let L be a quantum logic, p an s-map on L, and $a, b \in L$. The conditional probability of some event a, given the occurrence of some other event b is

$$
P(a \mid b)=\frac{p(a, b)}{p(b, b)}
$$

Assume that p is a non-commutative s-map. Then there are non-compatible events a, b, for which $p(a, b) \neq p(b, a)$. This situation models a stochastic causality using a non-commutative measure of conjuction p. In this case Bayes's theorem is violated ($[16,17]$).

Assume moreover that the event a is independent of b, i.e. it holds

$$
P(a \mid b)=\frac{p(a, b)}{p(b, b)}=p(a, a) .
$$

On the other side, the event b is not independent of a, as

$$
P(b \mid a)=\frac{p(b, a)}{p(a, a)}=\frac{p(b, a) p(b, b)}{p(a, b)} \neq p(b, b) .
$$

Using a commutative s-map, we have a classical situation. A commutative s-map p_{s} can be obtained from an arbitrary s-map p e.g. as

$$
p_{s}(x, y)=\frac{1}{2}(p(x, y)+p(y, x)) .
$$

Whether an event a is independent of b or not is determined by the measure of conjunction. Therefore it is suitable to say that a is independent of b with respect to a measure (s-map p).
b) Quantum logics and some d-maps (class Γ_{4}) enable to distinguish elements that are not distinguishable on a Boolean algebra.

Symmetric difference (d-map) on a Boolean algebra fulfills the triangle inequality

$$
d(a, b) \leq d(a, c)+d(c, b)
$$

Consequently, if a, c and b, c are indistinguishable, then a, b are also, because

$$
d(a, c)=d(c, b)=0 \Rightarrow d(a, b)=0 .
$$

On a quantum logic exists a set of symmetric differencies (subclass of Γ_{4}), that do not fulfill the
triangle inequality. Table 7 gives an example of such symmetric difference under condition $k>$ 0.

For elements a, b, c it holds:

$$
d(a, c)=d(c, b)=0
$$

but $d(a, b)=k>0$.

ACKNOWLEDGEMENTS

Olga Nánásiová would like to thank for the support of the VEGA grant agency by means of grant VEGA 1/0710/15 and the author Lubica Valášková would like to thank for the support of VEGA 1/0420/15.

AUTHORS

Ol'ga Nánásiová* - Inst. of Computer Science and Mathematics, Slovak University of Technology in Bratislava, Ilkovičova 3, 81219 Bratislava, Slovakia, e-mail: nanasiova@stuba.sk, www: matika.elf.stuba.sk/KMAT/OlgaNanasiova.
Ĺubica Valášková - Department of Mathematics and Descriptive Geometry, Slovak University of Technology, Radlinského 11, 81005 Bratislava, Slovakia, e-mail: valaskova@stuba.sk, www: math.sk.
Viera Čerňanová - Department of Mathematics and Computer Science, Faculty of Education, Trnava University, Priemyselná 4, 91843 Trnava, Slovakia, e-mail: vieracernanova@hotmail.com, www: pdf.truni.sk/katedry/kmi/pracovnici.
*Corresponding author

REFERENCES

[1] A. M. Al-Adilee and O. Nánásiová, "Copula and s-map on a quantum logic", Information Sciences, vol. 179, no. 24, 2009, 4199-4207, 10.1016/j.ins.2009.08.011.
[2] G. Birkhoff and J. Von Neumann, "The Logic of Quantum Mechanics", Annals of Mathematics, vol. 37, no. 4, 1936, 823-843, 10.2307/1968621.
[3] M. Bohdalova and O. Nanasiova. "Note to Copula Functions", 2006.
[4] L. J. Bunce, M. Navara, P. Pták, and J. D. M. Wright, "Quantum logics with Jauch-Piron states", The Quarterly Journal of Mathematics, vol. 36, no. 3, 1985, 261-271, 10.1093/qmath/36.3.261.
[5] E. Drobná, O. Nánásiová, and L.Valášková, "Quantum logics and bivariable functions", Kybernetika, vol. 46, no. 6, 2010, 982-995.
[6] A. Dvurecenskij and S. Pulmannová, New Trends in Quantum Structures, Mathematics and Its Applications, Springer Netherlands, 2000, 10.1007/978-94-017-2422-7.
[7] A. Dvurečenskij and S. Pulmannová, "Connection between joint distribution and compatibility", Reports on Mathematical Physics, vol. 19, no. 3, 1984, 349-359, 10.1016/0034-4877(84)90007-7.
[8] L. Herman, E. L. Marsden, and R. Piziak, "Implication connectives in orthomodular lattices", Notre Dame Journal of Formal Logic, vol. 16, no. 3, 1975, 305-328, 10.1305/ndjfl/1093891789.
[9] A. Y. Khrennikov, "EPR-Bohm experiment and Bell's inequality: Quantum physics meets probability theory", Theoretical and Mathematical Physics, vol. 157, no. 1, 2008, 1448-1460, 10.1007/s11232-008-0119-3.
[10] A. Khrennikov, "Violation of Bell's Inequality and non-Kolmogorovness", Foundations of Probability and Physics-5. AIP Conference Proceedings, vol. 1101, no. 1, 2009, 86-99, 10.1063/1.3109976.
[11] O.l. Nánásiová and L. Valášková, "Marginality and Triangle Inequality", International Journal of Theoretical Physics, vol. 49, no. 12, 2010, 3199-3208, 10.1007/s10773-010-0414-2.
[12] O. Nánásiová, V. Čerňanová, and L. Valášková, "Probability Measures and Projections on Quantum Logics". In: P. Kulczycki, J. Kacprzyk, L. T. Kóczy, R. Mesiar, and R. Wisniewski, eds., Information Technology, Systems Research, and Computational Physics, Cham, 2020, 321-330, 10.1007/978-3-030-18058-4_25.
[13] O. Nánásiová and L. Valášková, "Maps on a quantum logic", Soft Computing, vol. 14, no. 10, 2010, 1047-1052, 10.1007/s00500-009-0483-4.
[14] O. Nánásiová, "Map for Simultaneous Measurements for a Quantum Logic", International Journal of Theoretical Physics, vol. 42, no. 9, 2003, 1889-1903, 10.1023/A:1027384132753.
[15] O. Nánásiová, "Principle Conditioning", International Journal of Theoretical Physics, vol. 43, no. 7, 2004, 1757-1767, 10.1023/B:IJTP.0000048818.23615.28.
[16] O. Nánásiová and M. Kalina, "Calculus for NonCompatible Observables, Construction Through Conditional States", International Journal of Theoretical Physics, vol. 54, no. 2, 2015, 506-518, 10.1007/s10773-014-2243-1.
[17] O. Nánásiová and A. Khrennikov, "Representation Theorem of Observables on a Quantum System", International Journal of Theoretical Physics, vol. 45, no. 3, 2006, 469-482, 10.1007/s10773-006-9030-6.
[18] O. Nánásiová and J. Pykacz, "Modelling of Uncertainty and Bi-Variable Maps", Journal of Electrical Engineering, vol. 67, no. 3, 2016, 169-176, 10.1515/jee-2016-0024.
[19] M. Pavicic and N. D. Megill, "Is Quantum Logic a Logic?", arXiv:0812.2698 [quant-ph], 2008, arXiv: 0812.2698.
[20] M. Pavičić, "Exhaustive generation of orthomodular lattices with exactly one nonquantum state", Reports on Mathematical Physics, vol. 64, no. 3, 2009, 417-428, 10.1016/S0034-4877(10)00005-4.
[21] M. Pavičić. "Classical Logic and Quantum Logic with Multiple and Common Lattice Models", 2016.
[22] C. Piron and J. Jauch, "On the structure of quantal proposition systems", Birkhäuser, 1969, 10.5169/seals-114098.
[23] I. Pitowsky, Quantum Probability - Quantum Logic, Lecture Notes in Physics, Springer-Verlag: Berlin Heidelberg, 1989, 10.1007/BFb0021186.
[24] P. Pták and S. Pulmannová, Orthomodular structures as quantum logics, number v. 44 in Fundamental theories of physics, Kluwer Academic Publishers: Dordrecht ; Boston, 1991.
[25] J. Pykacz and P. Frąckiewicz, "The Problem of Conjunction and Disjunction in Quantum Logics", International Journal of Theoretical Physics, vol. 56, no. 12, 2017, 3963-3970, 10.1007/s10773-017-3402-y.
[26] J. Pykacz, L. Valášková, and O. Nánásiová, "BellType Inequalities for Bivariate Maps on Orthomodular Lattices", Foundations of Physics, vol. 45, no. 8, 2015, 900-913, 10.1007/s10701-015-9906-5.
[27] G. Sergioli, G. M. Bosyk, E. Santucci, and R. Giuntini, "A Quantum-inspired Version of the Classification Problem", International Journal of Theoretical Physics, vol. 56, no. 12, 2017, 3880-3888, 10.1007/s10773-017-3371-1.
[28] S. Sozzo, "Conjunction and negation of natural concepts: A quantum-theoretic modeling", Journal of Mathematical Psychology, vol. 66, 2015, 83-102, 10.1016/j.jmp.2015.01.005.

