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Abstract:
�n this paper we present a new class of decomposi�on
integrals called the collec�on integrals. �rom this class of
integrals we take a closer look on two special types of col-
lec�on integrals� namely the chain integral and the min-
max integral. �uperdecomposi�on �ersion of collec�on
integral is also de�ned and the superdecomposi�on du-
als for the chain and the min-max integrals are presen-
ted. �lso� the condi�on on the collec�on that ensures the
coincidence of the collec�on integral with the �e�esgue
integral is presented. �astly� some computa�onal algo-
rithms are discussed.
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�. �ntrod�c�on
Theory of linear integration has found many ap-

plications throughout mathematics. In the last cen-
tury some concepts of nonlinear integrals appeared
and are under investigation to this day. These nonli-
near integrals found many applications also outside
the world of mathematics, e.g., in psychology, pro-
ductivity maximization, and others.

A wide class of nonlinear integrals that contains
other nonlinear integrals used today, namely decom-
position integrals, were presented not so long ago by
Even and Lehrer [4�. In this paperwe de�ine a subclass
of these integrals andpresent some results concerning
them.

This contribution is organized as follows. Basic
building blocks of this paper are introduced in the
section �. In the section � we de�ine a special class of
decomposition integrals called the collection integrals
and in section 4 two such integrals are closely investi-
gated. In the �ifth sectionwe are interested in two con-
cepts. Firstly in characterizing a positive bases for the
spaces F+ and F and, secondly, in characterizing all
collection integrals that yield to the Lebesgue integral
if restricted to the space of measures. In the section 6,
superdecomposition version of the collection integral
is presented. The last section of this paper is devoted
to the discussion of some computational algorithms.

Recall that, in general, decomposition systems con-
sist of more than one collection. These collections re-
present some choice alternatives. In this paper,wewill
consider only singleton decomposition systems, i.e.,
those consisting of a single collection. Hence the inte-
gral with single decomposition alternative will be dis-
cussed.

2. Preliminaries
In this paper, without loss of generality, we will

consider a �ixed �inite space X = {1, 2, . . . , n} ⊂ N.
A chain on X is any sequence {Ai}ki=1 such that ∅ ̸=
A1 � · · · � Ak ⊆ X . A full chain on X is any chain
{Ai}ki=1 such that k = n.

Also, only positive functions on X will be consi-
dered, i.e., functions with domain X and co-domain
[0,∞[. The class of such functions will be denoted by
F . The set of not strictly increasing functions will be
denoted by F↑.

A capacity is any set function µ : 2X → [0,∞[ that
is grounded, i.e., µ(∅) = 0, andmonotone with respect
to set inclusion, i.e., A ⊆ B implies µ(A) ≤ µ(B). The
class of all capacities will be denoted by M. A mea-
sure is any additive capacity, i.e., if A,B ⊆ X are two
disjoint sets then µ(A ∪ B) = µ(A) + µ(B) holds. A
symbolM+ denotes the set of all measures onX .

A collection, mostly denoted by D, is any non-
empty subset of 2X \{∅}. A decomposition systemH is
any non-empty subset of 22X\{∅}, i.e., a decomposition
system consists of at least one collection.
�e�������� 2.�. A decomposition integral [4, 7] with
respect to a decomposition system H is a mapping
IH : F ×M → [0,∞[ such that IH(f, µ) is equal to

∨
D∈H

∨{∑
A∈D

aAµ(A) : aA ≥ 0,
∑
A∈D

aA1A ≤ f

}
.

Based on the choice of H we get a different types
of decomposition integrals. In the following example
some of the well known decomposition integrals are
presented.
Example 2.2. IfH1 consists of all singleton collections,
we speak about the Shilkret integral [8], i.e.,

Sh(f, µ) =
∨{

µ(A)min f(A) : A ∈ 2X \ {∅}
}
.

Note that we use the following abbreviate notation
min f(A) = ∧{f(x) : x ∈ A}. If H2 consists only of
partitions of X then we speak about the Pan integral
[9], i.e.,

Pan(f, µ) =
∨{∑

A∈ρ

µ(A)min f(A) : ρ ∈ Prt(X)
}
,

where Prt(X) denotes the set of all partitions on X . In
case thatH3 is the class of all chains onX then the cor-
responding integral is the Choquet integral [1], i.e.,

Ch(f, µ) =
∫ ∞

0

µ(f ≥ t) dt.

1
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for i = 1, 2, . . . , k. Truly,
k∑

i=1

aiµ(Ai) ≤
k∑

i=1

aiµ(Ak) = µ(Ak)

k∑
i=1

ai

≤ µ(Ak)min f(Ak) =

k∑
i=1

biµ(Ai).

The fact that {bi}ki=1 is min-f -B-feasible follows from
the fact that {ai}ki=1 is f -B-feasible.
Case 2: ∑k

i=1 ai > min f(Ak). Then there exists i∗ ∈
{1, 2, . . . , k} such that ∑k

i=i∗+1 ai < min f(Ak) and∑k
i=i∗ ai ≥ min f(Ak). Then {bi}ki=1 is given by

bi =




min f(Ak), if i = k,∑k
i=i∗ ai −min f(Ak), if i = i∗,

ai, if i = 1, . . . , i∗ − 1,

0, otherwise,
for i = 1, 2, . . . , k. Indeed,

k∑
i=1

aiµ(Ai)

=
i∗−1∑
i=1

aiµ(Ai) + ai∗µ(Ai∗) +

k∑
i=i∗+1

aiµ(Ai)

≤
i∗−1∑
i=1

aiµ(Ai) +

(
k∑

i=i∗

ai −min f(Ak)

)
µ(Ai∗)

+min f(Ak)µ(Ak) =

k∑
i=1

biµ(Ai).

Again, the fact that {bi}ki=1 ismin-f -B-feasible follows
directly from the fact that {ai}ki=1 is f -B-feasible and
thus the lemma is proved.

For the following lemma, let us denote
Ξ =

{
{ai}ki=1 : {ai}ki=1 is f -B-feasible

}
,

and
Θ =

{
{ai}ki=1 : {ai}ki=1 is min-f -B-feasible

}
.

Lemma 4.4. Let f ∈ F , µ ∈ M, and B = {Ai}ki=1 be
any chain onX . Let us denote

ξ =
∨{

k∑
i=1

aiµ(Ai) : {ai}ki=1 ∈ Ξ

}

and

θ =
∨{

k∑
i=1

aiµ(Ai) : {ai}ki=1 ∈ Θ

}
.

Then ξ = θ.

Proof. Note that Θ ⊆ Ξ and thus θ ≤ ξ. On the other
hand, based on the previous lemma, for every element
{ai}ki=1 ∈ Ξ there exists an element {bi}ki=1 ∈ Θ such
that

k∑
i=1

aiµ(Ai) ≤
k∑

i=1

biµ(Ai)

and thus ξ ≤ θ which implies that ξ = θ as states the
lemma.

Nowwe canpose andprove a recursive formula for
the chain integral.
Theorem 4.5. Let B = {Ai}ki=1 be a chain on X . Let
τ = min f(Ak) and B̃ = {Ai}k−1

i=1 . Then

chB(f, µ) = τµ(Ak) + chB̃(f̃ , µ̃),

where f̃ = f�Ak−1
−τ and µ̃ = µ�2Ak−1 .

Proof. From previous two lemmas we can easily see
that

chB(f, µ) =
∨{

k∑
i=1

aiµ(Ai) : {ai}ki=1 ∈ Ξ

}

=
∨{

k∑
i=1

biµ(Ai) : {bi}ki=1 ∈ Θ

}

= µ(Ak)τ

+
∨{

k−1∑
i=1

biµ(Ai) : {bi}ki=1 is min-f -B̃-feasible
}

which proves the theorem.
Inducing the previous theorem we obtain the fol-

lowing formula.
Corollary 4.6. Let f ∈ F , µ ∈ M, and let B =
{Ai}ki=1 be any chain onX . Then

chB(f, µ) = µ(Ak)min f(Ak)

+
k−1∑
i=1

µ(Ai)
(
min f(Ai)−min f(Ai+1)

)
,

or

chB(f, µ) =
k∑

i=1

µ(Ai)
(
min f(Ai)−min f(Ai+1)

)

with convention thatmin f(Ak+1) = 0.

Also from the previous formulae we can �ind a lo-
wer bound on the chain integral as follows.
Corollary 4.7. Let f ∈ F , µ ∈ M, and let B =
{Ai}ki=1 be any chain. Then

chB(f, µ) ≥ µ(Ak)min f(Ak).

From the theory of Choquet integration it is known
that

Ch(f, µ) =
m∑
i=1

(
fi − fi−1

)
µ(Ai)

where {fi}mi=1 is the increasing enumeration of
Im(f) ∪ {0} and

Ai = {x ∈ X : f(x) > fi−1}

for i = 1, 2, . . . ,m. Then it can be seen that

Ch(f, µ) =
m∑
i=1

µ(Ai)
(
min f(Ai)−min f(Ai+1)

)

with convention that min f(Am+1) = 0.
In other words, for every function f ∈ F there ex-

ists a chain B such that chB(f, µ) = Ch(f, µ). This
chain is called Ch-maximizing chain.
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Lastly, conceding thatH4 = 22
X\{∅} weget the concave

integral cov(f, µ) introduced by Lehrer [5]. Note that
the choiceH5 =

{
2X \ {∅}

}
also yields to the concave

integral.

The decomposition integrals represent the inte-
gration frombelowas, for example, the lowerRiemann
sum. The integration from above is represented by so-
called superdecomposition integrals.

�e������o� 2.3. A superdecomposition integral [6]
with respect to a decomposition systemH is a mapping
I∗H : F ×M → [0,∞] such that I∗H(f, µ) is equal to

∧
D∈H

∧{∑
A∈D

aAµ(A) : aA ≥ 0,
∑
A∈D

aA1A ≥ f

}
.

Note that the decomposition integral can attain
only �inite values. In the case of superdecomposition
integrals also unbounded values, i.e., ∞, can be attai-
ned. Take, for example,X = {1, 2},H = {{{1}}}, and
f(x) = 1.

Example 2.4. For decomposition integrals mentioned
in previous example there is a corresponding superde-
composition integral. Observe that in the case of the de-
composition systemH3 the same integral is obtained.

In general, the inequality IH(f, µ) ≤ I∗H(f, µ) does
not hold and thus the superdecomposition integral
can attain values lower than the corresponding de-
composition integral.

In this paper wewill be interested also in the equi-
valence of a special class of decomposition integrals
with Lebesgue integral. The Lebesgue integral of a
function f with respect to a measure µ will be deno-
ted by Leb(f, µ).

�. C�lle���n Integral
In this section we will de�ine a collection integral

that represents special class of decomposition inte-
grals.

�e������o� 3.�. A collection integral with respect to a
collection D is a mapping ID : F × M → [0,∞[ such
that ID(f, µ) = IH(f, µ) where H = {D}. Analo-
gously, super-collection integral is a mapping I∗

D : F ×
M → [0,∞] such that I∗

D(f, µ) = I∗H(f, µ).

As already mentioned, the value of a superdecom-
position integral might be lower than the value of the
corresponding decomposition integral. If we restrict
ourselves to only measures and collection integrals
this is no longer the case.

Theorem 3.2. Let f ∈ F , µ ∈ M+ and let D be any
collection. Then

ID(f, µ) ≤ Leb(f, µ) ≤ I∗
D(f, µ).

Proof. From thede�initionof the collection integralwe

obtain

ID(f, µ) =
∨{∑

A∈D
aAµ(A) :

∑
A∈D

aA1A ≤ f

}

=
∨{∑

x∈X

µ({x})
∑
A∈D

aA1A(x) :
∑
A∈D

aA1A ≤ f

}

≤
∑
x∈X

µ({x})f(x) = Leb(f, µ).

The inequality Leb(f, µ) ≤ I∗
D(f, µ) can be proved

analogously and thus the theorem follows.

�e are interested in the problem of �inding such
collections D which lead to the equality ID = Leb.
From the proof of the previous theorem we trivially
get the following corollary.

Corollary 3.3. ID = Leb if and only if for every
function f ∈ F there exist aA ≥ 0,A ∈ D, such that

∑
A∈D

aA1A = f.

4. ��a��le� �� C�lle���n Integral�
In this sectionwewill take a closer look to two spe-

cial types of collection integrals called a chain integral
and a min-max integral.
4.1. Chain Integral

The chain integral is a collection integral with re-
spect to a single chain.

�e������o� 4.�. Let B be a chain on X . A mapping
chB = IB is called a chain integral with respect to a
chainB.

The following de�inition will be useful in proving a
recursive equation for the chain integral.

�e������o� 4.2. Let B = {Ai}ki=1 be a chain. A se-
quence {ai}ki=1 will be called f -B-feasible if and only
if ai ≥ 0, 1 ≤ i ≤ k, and

k∑
i=1

ai1Ai
≤ f.

A f -B-feasible sequence {ai}ki=1 will be called min-f -
B-feasible if and only if ak = min f(Ak).

Lemma 4.3. Let B = {Ai}ki=1 be a chain. For every
f -B-feasible sequence {ai}ki=1 there exists min-f -B-
feasible sequence {bi}ki=1 such that

k∑
i=1

aiµ(Ai) ≤
k∑

i=1

biµ(Ai).

Proof. Theproof of this lemmawill bedivided into two
cases. Case 1:∑k

i=1 ai ≤ min f(Ak). Then we can de-
�ine {bi}ki=1 by

bi =

{
min f(Ak), if i = k,

0, otherwise,

2
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for i = 1, 2, . . . , k. Truly,
k∑

i=1

aiµ(Ai) ≤
k∑

i=1

aiµ(Ak) = µ(Ak)

k∑
i=1

ai

≤ µ(Ak)min f(Ak) =

k∑
i=1

biµ(Ai).

The fact that {bi}ki=1 is min-f -B-feasible follows from
the fact that {ai}ki=1 is f -B-feasible.
Case 2: ∑k

i=1 ai > min f(Ak). Then there exists i∗ ∈
{1, 2, . . . , k} such that ∑k

i=i∗+1 ai < min f(Ak) and∑k
i=i∗ ai ≥ min f(Ak). Then {bi}ki=1 is given by

bi =




min f(Ak), if i = k,∑k
i=i∗ ai −min f(Ak), if i = i∗,

ai, if i = 1, . . . , i∗ − 1,

0, otherwise,
for i = 1, 2, . . . , k. Indeed,

k∑
i=1

aiµ(Ai)

=
i∗−1∑
i=1

aiµ(Ai) + ai∗µ(Ai∗) +

k∑
i=i∗+1

aiµ(Ai)

≤
i∗−1∑
i=1

aiµ(Ai) +

(
k∑

i=i∗

ai −min f(Ak)

)
µ(Ai∗)

+min f(Ak)µ(Ak) =

k∑
i=1

biµ(Ai).

Again, the fact that {bi}ki=1 ismin-f -B-feasible follows
directly from the fact that {ai}ki=1 is f -B-feasible and
thus the lemma is proved.

For the following lemma, let us denote
Ξ =

{
{ai}ki=1 : {ai}ki=1 is f -B-feasible

}
,

and
Θ =

{
{ai}ki=1 : {ai}ki=1 is min-f -B-feasible

}
.

Lemma 4.4. Let f ∈ F , µ ∈ M, and B = {Ai}ki=1 be
any chain onX . Let us denote

ξ =
∨{

k∑
i=1

aiµ(Ai) : {ai}ki=1 ∈ Ξ

}

and

θ =
∨{

k∑
i=1

aiµ(Ai) : {ai}ki=1 ∈ Θ

}
.

Then ξ = θ.

Proof. Note that Θ ⊆ Ξ and thus θ ≤ ξ. On the other
hand, based on the previous lemma, for every element
{ai}ki=1 ∈ Ξ there exists an element {bi}ki=1 ∈ Θ such
that

k∑
i=1

aiµ(Ai) ≤
k∑

i=1

biµ(Ai)

and thus ξ ≤ θ which implies that ξ = θ as states the
lemma.

Nowwe canpose andprove a recursive formula for
the chain integral.
Theorem 4.5. Let B = {Ai}ki=1 be a chain on X . Let
τ = min f(Ak) and B̃ = {Ai}k−1

i=1 . Then

chB(f, µ) = τµ(Ak) + chB̃(f̃ , µ̃),

where f̃ = f�Ak−1
−τ and µ̃ = µ�2Ak−1 .

Proof. From previous two lemmas we can easily see
that

chB(f, µ) =
∨{

k∑
i=1

aiµ(Ai) : {ai}ki=1 ∈ Ξ

}

=
∨{

k∑
i=1

biµ(Ai) : {bi}ki=1 ∈ Θ

}

= µ(Ak)τ

+
∨{

k−1∑
i=1

biµ(Ai) : {bi}ki=1 is min-f -B̃-feasible
}

which proves the theorem.
Inducing the previous theorem we obtain the fol-

lowing formula.
Corollary 4.6. Let f ∈ F , µ ∈ M, and let B =
{Ai}ki=1 be any chain onX . Then

chB(f, µ) = µ(Ak)min f(Ak)

+
k−1∑
i=1

µ(Ai)
(
min f(Ai)−min f(Ai+1)

)
,

or

chB(f, µ) =
k∑

i=1

µ(Ai)
(
min f(Ai)−min f(Ai+1)

)

with convention thatmin f(Ak+1) = 0.

Also from the previous formulae we can �ind a lo-
wer bound on the chain integral as follows.
Corollary 4.7. Let f ∈ F , µ ∈ M, and let B =
{Ai}ki=1 be any chain. Then

chB(f, µ) ≥ µ(Ak)min f(Ak).

From the theory of Choquet integration it is known
that

Ch(f, µ) =
m∑
i=1

(
fi − fi−1

)
µ(Ai)

where {fi}mi=1 is the increasing enumeration of
Im(f) ∪ {0} and

Ai = {x ∈ X : f(x) > fi−1}

for i = 1, 2, . . . ,m. Then it can be seen that

Ch(f, µ) =
m∑
i=1

µ(Ai)
(
min f(Ai)−min f(Ai+1)

)

with convention that min f(Am+1) = 0.
In other words, for every function f ∈ F there ex-

ists a chain B such that chB(f, µ) = Ch(f, µ). This
chain is called Ch-maximizing chain.
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Theorem 5.4. A sequence B = {Ex}x∈X ⊆ F↑ is a
positive basis ofF↑ if and only ifB is ↑-compatible basis.

Proof. Let B = {Ex}x∈X be a positive basis and let
f ∈ F↑. We will �ind a positive real numbers {αx}x∈X

such that
f =

∑
x∈X

αx1Ex
.

Let us recursively de�ine

αx = f(x)−
x−1∑
y=1

αy1Ey (x).

Firstly, we need to prove that αx ≥ 0 for all x =
1, 2, . . . , n. We will use the proof by induction. For x =
1 we obtain that α1 = f(1) ≥ 0 and thus α1 is non-
negative. Now, let us assume that α1, α2, . . . , αx ≥ 0.
We want to prove that αx+1 ≥ 0. It follows that

0 ≤ f(x+ 1)− f(x)

= αx+1 +

x∑
y=1

αy1Ey
(x+ 1)− αx −

x−1∑
y=1

αy1Ey
(x)

= αx+1 −
x∑

y=1

αy

(
1Ey

(x)− 1Ey
(x+ 1)

)

which implies that

αx+1 ≥
x∑

y=1

αy

(
1Ey (x)− 1Ey (x+ 1)

)
.

Now it is suf�icient to prove that 1Ey
(x) ≥ 1Ey

(x+ 1)
for all y ≤ x. If y = x then the claim holds trivially.
Now for y < x let us assume that the claim does not
hold, i.e., 1Ey (x) = 0 and 1Ey (x + 1) = 1, or, equiva-
lently,x ̸∈ Ey and (x+1) ∈ Ey .We havex ̸∈ Ay where
x > y and thus based on the Remark 5.3 it follows that
z ̸∈ Ay for all z > x. Choose z = x + 1 which contra-
dicts that (x+ 1) ∈ Ay and thus 1Ey

(x) ≥ 1Ey
(x+ 1)

for all y ≤ x. This proves that αx+1 ≥ 0 implying that
αx are non-negative for all x ∈ X . Now it is easy to see
that

∑
x∈X

αx1Ex(y) =

y−1∑
x=1

αx1Ex(y) + αy

︸ ︷︷ ︸
f(y)

+

n∑
x=y+1

αx 1Ex
(y)︸ ︷︷ ︸
0

= f(y).

Now we need to prove that the reversed claim
holds, i.e., if any of the conditions of Theorem 5.4 is
omitted then there exist a function that is not decom-
poseable by B. Let us thus assume that the condition
1 of the positive basis of F↑ does not hold, i.e., there
exists an element x ∈ X such that minEx ̸= x. Let x∗

be the smallest such element and de�ine

f(x) =

{
1, if x ≥ x∗,

0, otherwise.

If x∗ ∈ Ey then αy = 0. On the other hand, if x∗ ̸∈ Ey

then 1Ey
(x∗) = 0. This implies that
∑
y∈X

αy1Ey
(x∗) = 0 ̸= 1 = f(x∗)

and thus f is not decomposeable by B. If the second
condition of Theorem 5.4 is omitted then the function
f can be constructed analogously.

Example 5.5. Let X = {1, 2, 3, 4}. The sequences
{Ex}x∈X given by
- E1 = {1},E2 = {2},E3 = {3};
- E1 = {1, 2, 3, 4},E2 = {2, 3, 4},E3 = {3, 4};
- E1 = {1, 2},E2 = {2, 3},E3 = {3, 4};
and E4 = {4} form positive bases of the space consis-
ting of increasing non-negative functionsF↑. On the ot-
her hand, sequences
- E1 = {1, 2, 3, 4},E2 = {1, 3, 4},E3 = {3, 4};
- E1 = {1, 4},E2 = {2, 4},E3 = {3, 4};
andE4 = {4} do not form such bases.

Remark 5.6. Note that the set {4} is always part of ↑-
compatible basis.

Following the results in theory of positive linear
dependence [2] we get that every positive basis of F↑
in spite of Theorem 5.4 is minimal and thus the follo-
wing result follows.

Theorem5.7. LetD be any collection onX . Then there
exist coef�icients αA ≥ 0,A ∈ D, such that

∑
A∈D

αA1A = f

for all f ∈ F↑ if and only if there exist a B ⊆ D such
that B is ↑-compatible basis.

Note that for every non-negative function f ∈ F
there exists a permutation σ : X → X such that f ◦ σ
belongs to F↑. Thus we can de�ine sets

Fσ = {f ∈ F : f ◦ σ ∈ F↑} .

For these sets it is easy to characterize bases.

Theorem 5.8. Let σ be any permutation of X . A col-
lection B is a basis of Fσ if and only if

σ(B) = {σ(A) : A ∈ B}

is ↑-compatible basis.

Proof. Let fσ ∈ Fσ and let B be a collection such that
σ(B) is a basis in spite of Theorem5.4. Note that f◦σ ∈
F↑ and there are coef�icients aA ≥ 0, A ∈ σ(B), such
that ∑

A∈σ(B)

aA1A = f ◦ σ.

Now apply σ−1 on the right and obtain that
∑

A∈σ(B)

aA1A ◦ σ−1 = f.

5
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�e������o� 4.�. A chain B = {Ai}ki=1 is called Ch-
maximizing for function f if and only if

{min f(Ai) : i = 1, 2, . . . , k} \ {0} = Im(f) \ {0}.

Then the following theorem follows from the the-
ory of Choquet integration.

Theorem 4.9. A chain B is Ch-maximizing for a
function f if and only if chB(f, µ) = Ch(f, µ).

Example 4.10. Following the original example with
workers of Lehrer in [5], let us assume that X =
{1, 2, 3, 4} represents the set ofworkers and let f : X →
[0,∞[, f(i) = 5 − i, denote a non-negative function
where f(i) represents the maximum number of wor-
king hours for worker i ∈ X . Let us choose a chain
B = {Ai}3i=1 where A1 = {3}, A2 = {2, 3}, A3 =
{1, 2, 3, 4}. This chain can represent the following situ-
ation: at the same moment only the all workers, only
workers labeled by 2 and 3, and only worker labeled 3
can work at any moment. Let µ represent the number
of articles made per hour: µ(A1) = 3, µ(A2) = 4 and
µ(A3) = 6. Then chB(f, µ) represents the maximum
number of articles made in this situation. From previ-
ous formulae it follows that chB(f, µ) = 13.

4.2. Min-max Integral
Note that the de�inition of the Choquet integral can

be rewritten to the form

Ch(f, µ) =
∨

B={Ai}n
i=1

chB(f, µ)

where the supremumoperator runs over all full chains
B on X . The motivation behind the min-max integral
is to replace the �irst supremum operator by in�imum
operator.

�e������o� 4.11. Amin-max integral of a non-negative
function f ∈ F with respect to a capacity µ ∈ M is
de�ined by

I∧∨(f, µ) =
∧

B={Ai}n
i=1

chB(f, µ)

where the in�imum operator runs over all full chains B
onX .

From the previous discussion on the chain integral
we get a lower bound on the min-max integral.

Lemma4.12. Let f ∈ F and µ ∈ M. Then the inequa-
lity I∧∨(f, µ) ≥ µ(X)min f(X) holds.

Proof. Let B = {Ai}ni=1 be any full chain which im-
plies that An = X . Then by Corollary 4.7 we obtain
that

chB(f, µ) ≥ µ(X)min f(X)

for any full chainB onX which implies that

I∧∨(f, µ) ≥ µ(X)min f(X)

and thus the result follows.

Now we need to prove that this value is not only
the lower bound but also the value of the min-max in-
tegral.
Theorem 4.13. I∧∨(f, µ) = µ(X)min f(X).

Proof. Following the previous lemma it is enough to
�ind a full chain B = {Ai}ni=1 such that chB(f, µ) =
µ(X)min f(X). Let x∗ ∈ X be such that f(x∗) =
min f(X). Then let B be any chain such that A1 =
{x∗} which implies that x∗ ∈ Ai for all i ∈ X . Then
trivially chB(f, µ) = µ(X)min f(X) and thus the the-
orem follows.

To this moment we could not really see that the
min-max integral belongs to the class of collection in-
tegrals. Knowing the formula to compute the value of
the min-max integral we can easily see that this inte-
gral is indeed the collection integral.
Theorem 4.14. The min-max integral belongs to the
class of the collection integrals, I∧∨ = I{{X}}.

Example 4.15. Let f and µ be as in Example 4.10. The
value of the min-max integral I∧∨(f, µ) represents the
maximum number of articles made if only all workers
can work together. In this setting, I∧∨(f, µ) = 6.

Remark4.16. Observe that themin-max integral is the
smallest decomposition integral related to decomposi-
tion systems H dealing with X as an element of some
collection fromH.

�. ���i�alen�e �� ��lle���n an� �e�esg�e
Integrals
In this section we start by characterization of a po-

sitive basis for the space of non-negative functions F
startingwith �inding a basis for the space of increasing
non-negative functions F↑. This discussion will yield
to an easy characterisation of such collections D that
yield to the Lebesgue integral if we restrict ourselves
to the class of measures.

Note that both spaces, F and F↑, are of dimension
n and thus the positive basis will consist of at least n
elements.
�e������o� 5.1. A positive basis of a function space S is
any sequence {Ei}mi=1 ⊆ S such that for every element
f ∈ S there are non-negative real numbers {αi}mi=1

such that
m∑
i=1

αi1Ei
= f.

For the set of increasing functions F↑ we have the
following characterization of a positive basis.
�e������o� 5.2. A set B = {Ex}x∈X ⊆ 2X \ {∅} is
called a ↑-compatible basis if and only if
1) for every x ∈ X we haveminEx = x; and
2) if there exists z ∈ Ax ∩ Ay where z > max{x, y}

then z ∈ Ax ∩Ay .

Remark 5.3. �ote that the second condition of �e�i-
nition 5.2 can be stated as follows: if there exists z ∈
Ax ∩ Ay where z > x > y then x ∈ Ay , or, equiva-
lently, if x ̸∈ Ay where x > y then z ̸∈ Ay for all z > x.
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Theorem 5.4. A sequence B = {Ex}x∈X ⊆ F↑ is a
positive basis ofF↑ if and only ifB is ↑-compatible basis.

Proof. Let B = {Ex}x∈X be a positive basis and let
f ∈ F↑. We will �ind a positive real numbers {αx}x∈X

such that
f =

∑
x∈X

αx1Ex
.

Let us recursively de�ine

αx = f(x)−
x−1∑
y=1

αy1Ey (x).

Firstly, we need to prove that αx ≥ 0 for all x =
1, 2, . . . , n. We will use the proof by induction. For x =
1 we obtain that α1 = f(1) ≥ 0 and thus α1 is non-
negative. Now, let us assume that α1, α2, . . . , αx ≥ 0.
We want to prove that αx+1 ≥ 0. It follows that

0 ≤ f(x+ 1)− f(x)

= αx+1 +

x∑
y=1

αy1Ey
(x+ 1)− αx −

x−1∑
y=1

αy1Ey
(x)

= αx+1 −
x∑

y=1

αy

(
1Ey

(x)− 1Ey
(x+ 1)

)

which implies that

αx+1 ≥
x∑

y=1

αy

(
1Ey (x)− 1Ey (x+ 1)

)
.

Now it is suf�icient to prove that 1Ey
(x) ≥ 1Ey

(x+ 1)
for all y ≤ x. If y = x then the claim holds trivially.
Now for y < x let us assume that the claim does not
hold, i.e., 1Ey (x) = 0 and 1Ey (x + 1) = 1, or, equiva-
lently,x ̸∈ Ey and (x+1) ∈ Ey .We havex ̸∈ Ay where
x > y and thus based on the Remark 5.3 it follows that
z ̸∈ Ay for all z > x. Choose z = x + 1 which contra-
dicts that (x+ 1) ∈ Ay and thus 1Ey

(x) ≥ 1Ey
(x+ 1)

for all y ≤ x. This proves that αx+1 ≥ 0 implying that
αx are non-negative for all x ∈ X . Now it is easy to see
that

∑
x∈X

αx1Ex(y) =

y−1∑
x=1

αx1Ex(y) + αy

︸ ︷︷ ︸
f(y)

+

n∑
x=y+1

αx 1Ex
(y)︸ ︷︷ ︸
0

= f(y).

Now we need to prove that the reversed claim
holds, i.e., if any of the conditions of Theorem 5.4 is
omitted then there exist a function that is not decom-
poseable by B. Let us thus assume that the condition
1 of the positive basis of F↑ does not hold, i.e., there
exists an element x ∈ X such that minEx ̸= x. Let x∗

be the smallest such element and de�ine

f(x) =

{
1, if x ≥ x∗,

0, otherwise.

If x∗ ∈ Ey then αy = 0. On the other hand, if x∗ ̸∈ Ey

then 1Ey
(x∗) = 0. This implies that
∑
y∈X

αy1Ey
(x∗) = 0 ̸= 1 = f(x∗)

and thus f is not decomposeable by B. If the second
condition of Theorem 5.4 is omitted then the function
f can be constructed analogously.

Example 5.5. Let X = {1, 2, 3, 4}. The sequences
{Ex}x∈X given by
- E1 = {1},E2 = {2},E3 = {3};
- E1 = {1, 2, 3, 4},E2 = {2, 3, 4},E3 = {3, 4};
- E1 = {1, 2},E2 = {2, 3},E3 = {3, 4};
and E4 = {4} form positive bases of the space consis-
ting of increasing non-negative functionsF↑. On the ot-
her hand, sequences
- E1 = {1, 2, 3, 4},E2 = {1, 3, 4},E3 = {3, 4};
- E1 = {1, 4},E2 = {2, 4},E3 = {3, 4};
andE4 = {4} do not form such bases.

Remark 5.6. Note that the set {4} is always part of ↑-
compatible basis.

Following the results in theory of positive linear
dependence [2] we get that every positive basis of F↑
in spite of Theorem 5.4 is minimal and thus the follo-
wing result follows.

Theorem5.7. LetD be any collection onX . Then there
exist coef�icients αA ≥ 0,A ∈ D, such that

∑
A∈D

αA1A = f

for all f ∈ F↑ if and only if there exist a B ⊆ D such
that B is ↑-compatible basis.

Note that for every non-negative function f ∈ F
there exists a permutation σ : X → X such that f ◦ σ
belongs to F↑. Thus we can de�ine sets

Fσ = {f ∈ F : f ◦ σ ∈ F↑} .

For these sets it is easy to characterize bases.

Theorem 5.8. Let σ be any permutation of X . A col-
lection B is a basis of Fσ if and only if

σ(B) = {σ(A) : A ∈ B}

is ↑-compatible basis.

Proof. Let fσ ∈ Fσ and let B be a collection such that
σ(B) is a basis in spite of Theorem5.4. Note that f◦σ ∈
F↑ and there are coef�icients aA ≥ 0, A ∈ σ(B), such
that ∑

A∈σ(B)

aA1A = f ◦ σ.

Now apply σ−1 on the right and obtain that
∑

A∈σ(B)

aA1A ◦ σ−1 = f.

5
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What conditions must D satisfy to ensure that I∗
D

is equivalent to the Lebesgue integral? From the The-
orem 3.2 it follows that the conditions are the same as
in the case of ID .

Theorem 6.5. LetD be any collection onX and let I∗
D

be a super-collection integral with respect to the col-
lectionD. Then

I∗
D�F×M+

= Leb

if and only if {{x} : x ∈ X} ⊆ D.

7. Com�uta�onal Algorithms
The last section is devoted to the discussion of

known computational algorithms for special types of
decomposition integrals.
7.�. Conca�e Integra�on as �inear ���mi�a�on �ro-

blem
Note that the problem of the concave integration

can be rewritten to the following optimization pro-
blem:

maximize
2n−1∑
i=1

aiµ(Pi)

subject to Aa ≤ f and a ≥ 0

where {Pi}2
n−1

i=1 is any enumeration of 2X \ {∅}, A
is n × (2n − 1) matrix with Ai,j = 1Pj (xi), f is n-
dimensional vector whose ith element is f(xi) and a
is unknown (2n − 1)-dimensional vector.

The following result concerning this optimization
problem was proved [3].

Theorem 7.1. The problem of the concave integration
posed as a linear optimization problem is harder than
NP.

7.2. Choquet and Chain Integrals
The Choquet integral can be computed using the

ordered values of Im(f). Ordering of n elements can
be done in O(n logn) steps which yield O(n logn) al-
gorithm.

Similar approach can be taken for the chain inte-
gral. This again yields toO(n logn) algorithm.
7.3. Min-Max Integral

The computation of the min-max integral is straig-
htforward, i.e.,

I∧∨(f, µ) = µ(X)min f(X).

The only unknown value is the value ofmin f(X). This
can be done using onlyO(n) steps. Thus the algorithm
computing the value of the min-max integral will take
at mostO(n) steps.
7.4. Brute Force Algorithms

With other types of decomposition integrals, e.g.,
the Shilkret and the Pan integrals, the situation is not
so easy. Brute force algorithms, i.e., algorithms that
check all possible combinations, must be used.

Theorem7.2. Computation of the Shilkret and the Pan
integrals belong to at most NP class.

Proof. To prove this claim it is enough to �ind po-
lynomial veri�iers for both integrals. The solution of
Shilkret integral is identi�ied with a set from 2X \
{∅}. Given such set A, the minimum of f(A) can be
computed in polynomial time and also the product
µ(A)min f(A). This gives polynomial veri�ier for the
Shilkret integral. For the Pan integral, the solution is
identi�ied with a partition {Ai}i∈J of X . Such parti-
tion has at most n elements and thus min f(Ai) for
i ∈ J can be computed using polynomial time algo-
rithm. Also, the sum

∑
i∈J

µ(Ai)min f(Ai)

can be computed in polynomial time yielding to a po-
lynomial veri�ier. Thus the computation of the Shilkret
and the Pan integrals belong to at most NP class of
computational problems.

Brute force algorithm for computing the Shil-
kret integral goes as follows. For every set A ∈
2X \ {∅} compute min f(A) and �ind a minimum of
µ(A)min f(A). The computation ofµ(A)min f(A) for
anyA takes at mostO(n) operations. The set 2X \ {∅}
has exactly (2n − 1) elements which yield to O(2nn)
algorithm.

For the Pan integral we need to check all partiti-
ons. The number of partitions of a set win n elements
is bounded by Catalan numbers, i.e., to generate all
partitions we need O(3n) operations. For each parti-
tion we need to compute at most n minimums which
yield to O(n2) operations per partition and thus the
brute force algorithm for the Pan integral takes at le-
astO(3nn2) operations.

7.�. ��ecial Classes o� Ca�aci�es
If we restrict ourselves to a special class of capaci-

ties then the computation of decomposition integrals
might be simpli�ied. The �irst such considered class is
the class of all measures, i.e., all additive capacities.

Theorem 7.3. If µ is a measure then

Ch(f, µ) = Pan(f, µ) = cov(f, µ) = Leb(f, µ).

The same theorem holds if µ is a sub-additive ca-
pacity, i.e., µ(A ∪ B) ≤ µ(A) + µ(B) for all disjoint
sets A,B ∈ 2X . For the super-additive capacities, i.e.,
set functions µ such that µ(A ∪ B) ≥ µ(A) + µ(B)
for all disjoint sets A,B ∈ 2X , the situation is more
complicated.

A capacity is super-modular if and only if

µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B)

holds for allA,B ∈ 2X .

Theorem 7.4. If µ is a super-modular capacity then
cov(f, µ) = Ch(f, µ).
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Note that
∑

A∈σ(B)

aA1A ◦ σ−1 =
∑

σ−1(A)∈B

aA1σ−1(A)

=
∑
A∈B

aσ−1(A)1A

and thus ∑
A∈B

aσ−1(A)1A = fσ

which implies that for every function fσ ∈ Fσ there
are coef�icients bA = aσ−1(A) ≥ 0,A ∈ B, such that

∑
A∈B

bA1A = fσ.

Also note that |B| = |σ(B)| = n and thus B is the mi-
nimal basis of Fσ which completes the proof.

�e������o� 5.�. Let σ be any permutation of X . A set
B is called σ-compatible basis if and only if σ(B) is ↑-
compatible basis.

Again, based on the theory of positive linear de-
pendence, we obtain the following result.
Theorem 5.10. LetD be any collection onX and let σ
be any permutation on X . Then there exist coef�icients
aA ≥ 0,A ∈ D, such that

∑
A∈D

aA1A = f

for all f ∈ Fσ if and only if there exist B ⊆ D such that
B is σ-compatible basis.

Remark 5.11. Note that the set σ−1({4}) is always
part of σ-compatible basis.

Now it is trivial to see that

F =
⋃
σ

Fσ

where the union operator runs through all permuta-
tions σ on X . Finally, we can formulate the theorem
that characterizes all collectionsD that decompose all
functions from F .
Theorem 5.12. Let D be any collection on X . Then
there exist coef�icients aA ≥ 0,A ∈ D, such that

∑
A∈D

aA1A = f

for all f ∈ F if and only if there exists a subset Bσ ⊆ D
such thatBσ is a σ-compatible basis for every permuta-
tion σ onX .

�e������o� 5.13. A collection D is called Leb-
compatible if and only if there exist Bσ ⊆ D such that
Bσ is σ-compatible basis for every permutation σ onX .

This de�inition of Leb-compatible collections
might seem hard to imagine. The following theo-
rem gives an easy property that characterizes such
collections.

Theorem5.14. A collectionD is Leb-compatible if and
only if {{x} : x ∈ X} ⊆ D.

Proof. Let us denoteP = {{x} : x ∈ X}. Firstly, let us
assume that D is Leb-compatible. Then we know that
σ−1({n}) ∈ D for every permutation σ on X which
implies that P ⊆ D. On the other hand, let us assume
thatP ⊆ D. Thenwewant to prove that every function
is decomposable by D, i.e., there exist non-negative
numbers aA ≥ 0,A ∈ D, such that

∑
A∈D

aA1A = f

for every f ∈ F . The choice

aA =

{
f(x), ifA = {x},
0, otherwise,

yields the desired decomposition.

To this moment we characterised all collectionsD
that are Leb-compatible, i.e., every function can be de-
composed to somenon-negative linear combination of
elements in D. Now we can formulate the main theo-
rem of this section and characterise all collections D
such that ID , restricted to the class ofmeasures, yields
to the Lebesgue integral.

Theorem 5.15. Let D be any collection on X and let
ID be a collection integral with respect to the collection
D. Then

ID�F×M+
= Leb

if and only if {{x} : x ∈ X} ⊆ D.

Proof. Follows directly from Corollary 3.3 and Theo-
rem 5.14.

�n this section we provide the de�inition of the
super-collection integral and discuss superdecompo-
sition duals of the chain and the min-max integral.

�e������o� 6.1. A super-collection integral with re-
spect to a collection D is a mapping I∗

D : F × M →
[0,∞] such that I∗

D = I∗{D}.

The superdecomposition duals of integrals discus-
sed in Section 4 are presented in the following exam-
ples.

Example 6.2. A super-chain integral of a function f ∈
F with respect to a capacity µ ∈ M is de�ined by
ch∗B(f, µ) = I∗

B(f, µ).

Example 6.3. A max-min integral of a function f ∈
F with respect to a capacity µ ∈ M is de�ined by
I∨∧(f, µ) = µ(X)max f(X).

Remark 6.4. Analogously to Remark 4.16, the value of
max-min integral is the upper bound to the values of
those decomposition integrals IH that contain X in at
least one collection.

6
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What conditions must D satisfy to ensure that I∗
D

is equivalent to the Lebesgue integral? From the The-
orem 3.2 it follows that the conditions are the same as
in the case of ID .

Theorem 6.5. LetD be any collection onX and let I∗
D

be a super-collection integral with respect to the col-
lectionD. Then

I∗
D�F×M+

= Leb

if and only if {{x} : x ∈ X} ⊆ D.

7. Com�uta�onal Algorithms
The last section is devoted to the discussion of

known computational algorithms for special types of
decomposition integrals.
7.�. Conca�e Integra�on as �inear ���mi�a�on �ro-

blem
Note that the problem of the concave integration

can be rewritten to the following optimization pro-
blem:

maximize
2n−1∑
i=1

aiµ(Pi)

subject to Aa ≤ f and a ≥ 0

where {Pi}2
n−1

i=1 is any enumeration of 2X \ {∅}, A
is n × (2n − 1) matrix with Ai,j = 1Pj (xi), f is n-
dimensional vector whose ith element is f(xi) and a
is unknown (2n − 1)-dimensional vector.

The following result concerning this optimization
problem was proved [3].

Theorem 7.1. The problem of the concave integration
posed as a linear optimization problem is harder than
NP.

7.2. Choquet and Chain Integrals
The Choquet integral can be computed using the

ordered values of Im(f). Ordering of n elements can
be done in O(n logn) steps which yield O(n logn) al-
gorithm.

Similar approach can be taken for the chain inte-
gral. This again yields toO(n logn) algorithm.
7.3. Min-Max Integral

The computation of the min-max integral is straig-
htforward, i.e.,

I∧∨(f, µ) = µ(X)min f(X).

The only unknown value is the value ofmin f(X). This
can be done using onlyO(n) steps. Thus the algorithm
computing the value of the min-max integral will take
at mostO(n) steps.
7.4. Brute Force Algorithms

With other types of decomposition integrals, e.g.,
the Shilkret and the Pan integrals, the situation is not
so easy. Brute force algorithms, i.e., algorithms that
check all possible combinations, must be used.

Theorem7.2. Computation of the Shilkret and the Pan
integrals belong to at most NP class.

Proof. To prove this claim it is enough to �ind po-
lynomial veri�iers for both integrals. The solution of
Shilkret integral is identi�ied with a set from 2X \
{∅}. Given such set A, the minimum of f(A) can be
computed in polynomial time and also the product
µ(A)min f(A). This gives polynomial veri�ier for the
Shilkret integral. For the Pan integral, the solution is
identi�ied with a partition {Ai}i∈J of X . Such parti-
tion has at most n elements and thus min f(Ai) for
i ∈ J can be computed using polynomial time algo-
rithm. Also, the sum

∑
i∈J

µ(Ai)min f(Ai)

can be computed in polynomial time yielding to a po-
lynomial veri�ier. Thus the computation of the Shilkret
and the Pan integrals belong to at most NP class of
computational problems.

Brute force algorithm for computing the Shil-
kret integral goes as follows. For every set A ∈
2X \ {∅} compute min f(A) and �ind a minimum of
µ(A)min f(A). The computation ofµ(A)min f(A) for
anyA takes at mostO(n) operations. The set 2X \ {∅}
has exactly (2n − 1) elements which yield to O(2nn)
algorithm.

For the Pan integral we need to check all partiti-
ons. The number of partitions of a set win n elements
is bounded by Catalan numbers, i.e., to generate all
partitions we need O(3n) operations. For each parti-
tion we need to compute at most n minimums which
yield to O(n2) operations per partition and thus the
brute force algorithm for the Pan integral takes at le-
astO(3nn2) operations.

7.�. ��ecial Classes o� Ca�aci�es
If we restrict ourselves to a special class of capaci-

ties then the computation of decomposition integrals
might be simpli�ied. The �irst such considered class is
the class of all measures, i.e., all additive capacities.

Theorem 7.3. If µ is a measure then

Ch(f, µ) = Pan(f, µ) = cov(f, µ) = Leb(f, µ).

The same theorem holds if µ is a sub-additive ca-
pacity, i.e., µ(A ∪ B) ≤ µ(A) + µ(B) for all disjoint
sets A,B ∈ 2X . For the super-additive capacities, i.e.,
set functions µ such that µ(A ∪ B) ≥ µ(A) + µ(B)
for all disjoint sets A,B ∈ 2X , the situation is more
complicated.

A capacity is super-modular if and only if

µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B)

holds for allA,B ∈ 2X .

Theorem 7.4. If µ is a super-modular capacity then
cov(f, µ) = Ch(f, µ).

7



48

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  13,      N°  3      2019

Articles48

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 3 2019

8. Conclusion
In this contribution we constructed a special class

of decomposition integrals called the collection inte-
gral. From this class we took a closer look on two spe-
cial integrals, namely to the chain integral and themin-
max integral and we closely investigated their proper-
ties.

Superdecomposition dual of the collection inte-
gral, the super-collection integral, was also de�ined
and brief discussion of superdecomposition duals
for the chain and the min-max integrals, namely the
super-chain and the max-min integrals, is presented.

The main result is in characterizing all collections
such that if we restrict ourselves to the class of all me-
asures we obtain the collection integral that coincides
with the Lebesgue integral. An interesting question is
what conditions must a decomposition system H ful-
�ill to ensure that the decomposition integral coincides
with the Lebesgue integral.

Open problem. LetH be a decomposition system.
What conditions mustH ful�ill to ensure that

IH�F×M+= Leb?

Lastly, basic computational algorithms for compu-
ting the value of somedecomposition integrals, i.e., the
Choquet, the Shilkret and the Pan integrals, are exa-
mined. Also algorithms for computing the chain and
themin-max integrals are discussed. Nevertheless, the
computational complexity of such algorithms is analy-
zed.
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