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Abstract:

This paper presents a novel learning methodology
based on the hybrid algorithm for interval type-2 (IT2)
fuzzy logic systems (FLS). Since in the literature only back-
propagation method has been proposed for tuning of both
antecedent and consequent parameters of type-2 fuzzy
logic systems, a hybrid learning algorithm has been
developed. The hybrid method uses recursive orthogonal
least-squares method for tuning of consequent parameters
as well as the back-propagation method for tuning of
antecedent parameters. The systems were tested for three
types of inputs: a) interval singleton b) interval type-1
(T1) non-singleton, c) interval type-2 non-singleton. The
experimental results of the application of the hybrid
interval type-2 fuzzy logic systems for scale breaker entry
temperature prediction in a real hot strip mill were carried
out for three different types of coils. They proved the
feasibility of the systems developed here for scale breaker
entry temperature prediction. Comparison with type-1
fuzzy logic systems shows that the hybrid learning interval
type-2 fuzzy logic systems improve performance in scale
breaker entry temperature prediction under the tested
condition.

Keywords: type-2 fuzzy inference systems, type-2 neuro-
fuzzy systems, hybrid learning, uncertain rule-based fuzzy
logic systems.

1. Introduction

Interval type-2 (IT2) fuzzy logic systems (FLS) consti-
tute an emerging technology. In [1] both one-pass and
back-propagation (BP) methods are presented as IT2
Mamdani FLS learning methods but only BP is presented
for IT2 Takagi-Sugeno-Kang (TSK) FLS systems. The one-
pass method generates a set of IF-THEN rules by using the
given training data one time, and combines the rules to
construct the final FLS. When BP method is used in both
IT2 Mamdani and TSK FLS, none of antecedent and
consequent parameters of the IT2 FLS are fixed at starting
of training process; they are tuned using exclusively BP
method. In [1] recursive least-squares (RLS) and recur-
sive orthogonal least-squares (OLS) algorithms are not
presented as IT2 FLS learning methods.

The aim of this work is to present and discuss the
hybrid learning algorithm for antecedent and consequent
parameters tuning during training process for IT2 Mam-
dani FLS. In the forward pass, the FLS output is calculated
and the consequent parameters are tuned using OLS [2]
method. In the backward pass, the error propagates back-
ward, and the antecedent parameters are tuned using the
BP method. One of the proposed hybrid algorithms

elsewhere [3, 4] is based on RLS, since it is a benchmark
algorithm for parameter estimation or systems identifi-
cation. It has been shown [3, 4] that hybrid algorithms
improve convergence over the BP method. Convergence
of the proposed methods has been practically tested.

Since in the literature, only the back propagation
(BP) learning method for IT2 FLS has been proposed, in
this work a hybrid learning algorithm for IT2 FLS (OLS-BP)
is developed and implemented for temperature predi-
ction. This motivated by the success of the hybrid learn-
ing method in type-1 (T1) FLS (ANFIS) [5] over BP only
method. Convergence has been practically tested for
particular conditions; it is not the purpose of this work
the generalization of the algorithm developed here, but
only to show preliminary comparative results and feasi-
bility of application. Mathematical proof is still to be
done in general for hybrid learning algorithms.

The IT2 FLS were trained using two main learning
mechanisms: the back-propagation (BP) method for
tuning of both antecedent and consequent parameters
and the hybrid training method using recursive ortho-
gonal least-squared (OLS) method for tuning of conse-
quent parameters as well as the BP method for tuning of
antecedent parameters. In this work, the former is
referred to as IT2 FLS (BP), and the latter as hybrid IT2
FLS (OLS-BP).

IT2 FLS is an emerging technology [1] that accounts
for random and systematic components [6] of industrial
measurements. Non-linearity of the processes is handled
by FLS as identifiers and universal approximators of
nonlinear dynamic systems [7, 8, 9, 10]. Such charac-
teristics give IT2 FLS a great potential to model and
controlindustrial processes.

A second but very important purpose of the present
work is to estimate the temperature of the incoming bar
head-end at scale breaker (SB) entry in a real hot strip
mill (HSM) by a hybrid IT2 FLS (OLS-BP) with learning
capabilities. Several IT2 FLS were designed and deve-
loped for head-end SB entry temperature estimation, and
preliminary experimental results are presented and
analyzed. Such experiments show it is feasible to apply
the hybrid IT2 FLS (OLS-BP) for HSM entry temperature
estimation. Although preliminary, validation was carried
out with adaptation, since it is the ultimate goal, the
main reason for the application of these techniques is
their adaptation capabilities. It is important to notice
that the experiments run here were carried out for three
different types of products separately, while in practice,
the same model should be running for all product types
sequentially as they are rolled.
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In temperature prediction, the inputs of the hybrid
IT2 (OLS-BP) fuzzy models, used to predict the SB entry
temperatures, are the surface temperature of the transfer
bar at the roughing mill (RM) exit (x,) and the time
required by the transfer bar head to reach the SB entry
zone (x,). Currently, the surface temperature is measured
using a pyrometer located at the RM exit side. Scale grows
at the transfer bar surface producing a noisy temperature
measurement. The measurement is also affected by envi-
ronment water steam as well as pyrometer location,
calibration, resolution and repeatability. The head end
transfer bar traveling time is estimated by the finishing
mill set-up (FSU) model using the finishing mill esti-
mated thread speed. Such estimation has an error
associated with the inherent FSU model uncertainty.
Although temperature prediction (y) is a critical issue in
a HSM the problem has not been fully addressed by fuzzy
logic control systems [11-13].

This paper is organized as follows. Section 2 gives the
fundamentals of the OLS parameter estimation algo-
rithm. In section 3, the hybrid learning algorithm deve-
loped for temperature prediction is presented. A brief
introduction of the HSM process fundamentals is given in
Section 4. Section 5 deals with the application of the
hybrid IT2 FLS for HSM temperature prediction and the
experimental results are presented in Section 6. Section 7
summarizes the conclusions.

2. Fundamental Principles of the Orthogonal

Least Squares

As mentioned, a hybrid learning IT2 FLS (OLP-BP) is
used for SB entry temperature prediction in an HSM. The
hybrid learning algorithm is based on BP and OLS learn-
ing methods. In this section, a brief presentation of the
basic principles of the OLS method is presented. Since IT2
and BP are very well established methodologies the
readeris referto [1], [14] and [15] respectively.

Suppose that, as in [2], a particular system has one
input u(k) and one output y(k) with an additive noise
e(k) measured during a certain number ¢ of time periods
of T, then it is possible to describe it's dynamic behavior
using the next differences model:

vk )= Zn:ajy(k—j)+2bju(k—j)+ e(k) (1)
Jj=1 j=0

where k = 1,2,3...t; a,, b,e R and n = system order. This

> Uiy Y
can be written in more compact form:

yke)=p" 2k )+ elk) (2)
where:
pT = [bo,al,bl,...,an,bn] (3)

is the parameter estimation matrix of sizeand:

2" (k)= ) (e =1 ule =1)..., yle —n)ulk —n)] (4)
is the measurements vector of size 2n + 1.

The model (2) can be expressed for ¢ input-output
data pairs as:
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Y'(@)=P 2" (t)+E" () (5)
where the output vector of size t, is:

Y ()= Q). y0)] (6)
the measurements matrix of size (2n + 1) xt, is

_u(l)u(Z) ................... ult)
y(O) y(l) ............... ,y(t —l)
1(0) R71() Tome— ult-1)

Y (3 I ™)

y(l=n)y@-n)...y—n)
_u(l —n)u@-n)...,ult— n)_

and the noise vector of size ¢ is:
E7 ()= 1) e)... ()] (8)

For the estimation of P, it is required to minimize the
next criteria:

1=(YO)-2OPO) 1(Y0)-2(1)P()) (9

The symmetric and positive matrix C(t + 1) of size
(2n + 1)x(2n + 1) is defined as:

Ct+1)=[Z't+1)Z(1+1]" (10)
which works as a covariance attenuation matrix of the
identification process.

On the other hand, the linear equation system
Ax=b (11)
where A is a matrix of size mixn, x is a vector of size n,

b is a vector of size m, and m>n, does not have an exact
solution, and can be written as:

Ax-b=e (12)

where e, a vector of size m, is the error of any solution of
(12). If:

A'A=FF (13)

where F is any upper or lower triangular matrix of size n,
then (11) can be written as:

Fx=(F")'A'Db (14)
A least-squares solution can be found using (14).
Now, considering the orthogonal transformation or

rotational matrix defined as

T =T"' (15)

Rewriting (12) as

ool |- (1)
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where D_= [A : X] is a matrix of size m x (n+1), and
x'=| X |is a vector of size (n+1). Now applying the
orthogonal transformation matrix T to (6), we can
obtain:

TDx =Te (17)

If D’ = TD = F is a triangular matrix, and b" =
=Te = (F")"'A"b then (17) and (14) are equivalent. F,
the resulting upper or lower triangular matrix of size n is
the squared-root of (13).

It is possible to apply the orthogonal transformation
solution to equations system for parameters identifi-
cation of discrete models.

The least-squares solution of (5) can be expressed as

[Z' () ZOIP'=Z" () Y () (18)

which can be obtained through the orthogonal transfor-
mations algorithm. This equation can be reduced to an
equivalent triangular system:

F@OP=q() (19)

where F(¢) is the square root of Z (t) Z(¢) and q(¢) is
vector of size of 2n+1. This method can be used on-line
with F(0) =0 and q(0) = 0astheinitial conditions.

For each period of time, the previous algorithm [2]
reduces to zero one row of the compound vector
[z' (1) y' (¢)] of size 2n+2. The parameters of P(¢) can
easily be calculated by the REDCO routine givenin [2].

3. The Hybrid Learning Methodology for IT2
FLS (OLS-BP)

3.1 Limitations of Hybrid Learning for IT2 FLS

In [1], only BP is proposed as learning algorithm for
IT2 FLS. During backward pass antecedent and conse-
quent parameters are estimated as shown in Table 1.

Table 1. One pass in learning procedure for IT2 FLS.

Forward Pass | Backward Pass

Antecedent Parameters Fixed BP

Consequent Parameters Fixed BP

In the hybrid algorithm developed here, recursive OLS
is used during forward pass for consequent parameters
tuning, and BP method during backward pass for antece-
dent parameters tuning as shown in Table 2. This hybrid
learning method is an extension of the ANFIS training
method proposed for T1 FLS [5, 16].

Table 2. Two passes in the hybrid learning for IT2 FLS.

Forward Pass | Backward Pass

Antecedent Parameters Fixed BP

Consequent Parameters oLS Fixed

According to [1], there are three points that prevent
the use of OLS for consequent parameters estimation in T2
FLS:

1. The starting point for the OLS method to designing an
interval singleton FLS is a T1 FBF expansion. No such
FBF expansion exists for a general singleton T2 FLS.
It looks like a least-square method can be used to tune
the parameters in y’, (matrix transpose of M left-
points y' of consequent centroids) and y’, (matrix
transpose of M right-points ¥, of consequent cen-
troids). Unfortunately, this is incorrect. The problem
is that, in order to know the FBF p,(x) and p,(x), each
y',andy’ (the M left-points and right-points of interval
consequent centroids) must be known first. Since
initially there are no numerical values for those
elements, it is impossible to do this; hence the FBF
p/x) and p,(x) cannot be calculated. This situation
does not occur for T1 FBF expansion. A T2 FLS output
y(x) is expressed by:

y@=1 [y7p 0+ v, )] (20)

2. Althoughy,andy, (the end-points of T2 FLS center-of-
sets type-reduced set Y ,) can be expressed as an
interval f’j’] in terms of their lower ( s') and upper
(7') M firing sets, whereas the corresponding M
consequent lefty’, points can be expressed as:

—1 —L n
y, :y,(f A 1,...,£M,y,1,...,y,M) (21)

and the corresponding M consequent right-points
!
y, as:

1 R —FR+1 —M
y,.=y,,Q s SRR M) (22)

where L is the index to the rule-ordered FBF expan-
sions at which y,is a minimum, and R is the index at
whichy, is a maximum; they are not known in advance
[1]. Once the points L and R are known, (6) is very
useful to organize and describe the calculations of

ylandyr'

3. The next problem has to do with the re-ordering [1] of
¥, and y'. The T1 FBF expansions have always had an
inherent rule ordering associated with them; i.e. rules
R, R’..., R" always established as the first,
second,..., and Mth FBF. In T2 FBF this order is lost
and itis necessary to be restored for later use.

Here, the previous points were overcome using the
following approach:

1. Since the values of y', and y'have been initially fixed
as initial condition, it is possible to use OLS method
for consequent centroids left-point and right-point
parameters estimation using the standard deviation of
the variable at each calculation.

2. Thevalues of p,(x) and p,(x) from (5) can be calculated
using the initial values of ', and y', and then use them
as the base for OLS estimation methods.

3. The lost rule-ordered FBF expansions can be restored
[1] and used for next consequent centroids estimation
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3.2 The Hybrid Algorithm for IT2 FLS

The membership functions of the developed hybrid
training method are Gaussian functions and they are
based on initial conditions of the antecedent parameters
(x, and x,, the interval mean m', e [m/,, m',] and the
standard deviation &), consequent parameters (y, y', and
y') and measurement parameters (the interval of stan-
dard deviation 6, € [Gy,, Gy,]). Antecedent and measure-
ment parameters are tuned using the BP training method,
while consequent parameters are tuned using OLS train-
ing method. Given N input-output training data pairs, the
hybrid training algorithm for E training epochs, should
minimize the error function:

e(r) _ ; [fs2 (X(r)) _ y(t)]z (23)

The hybrid training algorithm is as follows:

1. Initialize all parameters in antecedent and
consequent membership functions. Choose the mean
values of the T2 gaussian fuzzy numbers to be
centered at the measurements and initialize the
standard deviation interval end-points of these
numbers.

2. Set the counter, ep, of the training epoch to zero;
i.e., ep=0.

3. Set the counter, ¢, of the training data to unity; i.e.,
t=1.

4. Apply the input x to the IT2 FLS and compute the
total firing interval for each rule; i.e. compute ¢
and 7.

5. Compute y, and y, using the iterative method descri-
bedin [1]. Having done this, establish Land R values.

6. Compute the defuzzified output, f,,(x").

7. Determine the explicit dependence of y, and y, on
membership functions. Because L and R obtained in
step 5 usually change from one t-iteration to the
next, the dependence of y, and y, on membership
functions will also usually change from one t-iter-
ation to the next.

8. Test each component of x to determine the active
branches.

9. Tune the parameters of the active branches of the
consequent using OLS algorithm.

10.Tune the parameters of the active branches of the
antecedent's membership functions using the
steepest descent algorithm.

11.Set t=t+1. If =N+1 (N is the input data vector
size), go to step 12; otherwise, go to step 4.

12.Set ep=ep+1. If ep=E (E is the total number of
epochs), STOP; otherwise go to step 3.

Fig. 1 shows a flow chart of the hybrid training
algorithm.
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Fig. 1. A flow chart of the hybrid training.

4. Hot Strip Mills

In a Hot Strip Mill (HSM), as in any other industrial
process, keeping the quality requirements such as thick-
ness and finishing temperature (the latter determines
strip mechanical properties) is a major concern. The most
critical section of the coil is the head-end. This is due to
the uncertainties involved at the head-end of the incom-
ing steel bar, and the varying conditions from bar to bar.
Currently, in order to achieve the head-end quality requi-
rements, there are automation systems based on physical
modeling, particularly in the Finishing Mill (FM) [11].

The models calculate the rolling variables as tempe-
rature, force, and mill stretch in order to Set-Up the FM,
i.e. setting the initial FM controller references such as
cylinder position, motor speed, strip tension, etc.
In order to calculate force and stretch, the models use, in
most cases, material deformation curves, one per steel
grade or family, and mill stretch curves. The former curves
are adapted mainly from force errors via a gain. Besides,
there are commonly used additive terms to correct pre-
diction error based on gage and roller gap errors, which
generally come from proportional (P) or proportional plus
integral (PI) like structures [12]. Since heat bar conser-
vation is crucial, the model calculations have to be per-
formed on-line and at the shortest possible time.

The market is becoming more competitive and world-
wide and therefore more demanding [13, 17]. It requires
a more stringent control of quality parameters and a more
flexible manufacturing, capable of rolling a wider gamma
of products in shorter periods of time. Such flexibility
requirements, yield higher time varying conditions for
the rolling process, thus demanding automation systems
with higher adapting capabilities. Most commercial sys-
tems compensation techniques (P or PI based) only
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compensate for error under current conditions, therefore,
the first of batch coils frequently present out of specifi-
cation head-ends [18]. In recent years, research on esti-
mation of process variable in a HSM by Adaptive Neural
Networks (ANN) and Fuzzy Logic Systems (FLS) has recei-
ved particular attention worldwide. ANN and FLS offer the
advantages of reliably representing highly non-linear
relations, automatically updating the knowledge they
contain and providing fast processing times [13, 19].

One of the first works carried out in this field is pre-
sented in [17]. An FLS was developed in order to compen-
sate the thickness error based on the force prediction
error in two intermediate stands in the FM. The FM Set-Up
is performed by the conventional methods. A system
which integrates the operator expertise and a FLS to Set-
Up gaps and speeds in the FM is presented by Watanabe et
al. [19]. Several ANN based systems for FM variable
estimation, such force, stack temperature, and full set-up
have been proposed [11, 18, 19, 20, 21, 22].In [3, 4], an
IT2 FLS with a hybrid learning algorithm for head-end
scale breaker (SB) entry temperature prediction is pre-
sented, however, the systems are trained to predict
mathematical model estimation.

Strip resistance, and therefore, force and gap set-up,
highly depends on the strip temperature. Strip tempe-
rature of the incoming bar is also essential for speed set-
up, since finishing temperature depends on entry tempe-
rature. On the other hand, temperature measurement is
highly uncertain. SB entry mean and surface tempe-
ratures are used by the Finishing Mill Set-Up (FSU) model
[12] to preset the FM stand screws and to calculate the
transfer bar (TB) thread speed, both required to achieve,
respectively, the FM exit target head gage and FM exit
target head temperature. However, the bar surface tem-
perature measurement at SB entry is not reliable due to
scale formation, therefore it is measured using a pyro-
meter located at the roughing mill (RM) exit side and
later the head-end bar SB entry temperature is estimated
and used for FM Set-Up. The measurement at RM exit is
affected by noise produced by TB scale growth, environ-
mental water steam, pyrometer location, calibration,
resolution and repeatability. The head-end TB traveling
time from RM exit to SB entry is estimated by FSU model.
This estimation is associated with the inherent FSU
model imprecision. Although temperature prediction is
a critical issue in a HSM the problem has not been fully
addressed by FLS or ANN.

Fig. 2 depicts a simplified diagram of a HSM, from its
initial stage, the reheat furnace entry, to the final stage,
the coilers.

Horizontal ~ Holding  Finishing

Scale Table Scale X-Ray
Breaker Transfer Breaker Gage Dow‘ncoil‘ers
\ | \ !
000000
CH B HIHO eBsces I e
Reheat  Roughing Crop Finishing Run-out
Furnace Mill Shear Mill Cooling

Fig. 2. Schematic view of a typical hot strip mill.

The slab leaves the furnace at about 1300°C and it is
transported to the RM by the transfer table. Fig. 1 shows
the particular case of a rolling process with two reversible
RM”s. The RM gives in several passes the initial thickness
reduction to the slab, from about 200mm to about
25.4 mm. The sub-product of the RM is called Transfer
Bar (TB).

The TB is taken to the FM where final gage, finishing
temperature and final width specifications have to be
fulfill. Due the TB length, the transfer stage between RM
and FM is about 90m. During the traveling time from RM
to FM, scale formation on the TB surface takes place. The
scale is washed out by the SB in order to allow proper
rolling of the bar.

A great potential to ensure good quality lies in the
automation systems and the used of close loop control
techniques. The most critical process in a HSM is the FM.
The FSU model calculates the finishing mill working
references required to fulfill quality specifications at the
FM exit stand. The FSU inputs are FM exit target gage,
target width, target temperature, steel grade, and
hardness ratio from slab chemistry, load distribution,
gauge offset, temperature offset, roll diameters, TB
gauge, TB width and estimated TB entry temperature.
It is very important for the FSU model to have accurate
information of the SB entry temperature, since a tempe-
rature error would propagate through the entire FM. Due
to scale formation, it is not possible to measure the TB
temperature at the FM entry, and therefore it has to be
estimated from measurements at the RM exit after the
last pass.

Because of the complexities and uncertainties invol-
ved in the rolling process, the development of mathema-
tical theories for temperature calculations has been
largely restricted to one dimensional (assuming infinite
length and width) or two-dimensional (assuming only
infinite length) models applicable to heat behaviorin flat
rolling operations.

The physical model estimates the SB entry tempera-
ture from the RM exit temperature after the last pass and
the TB traveling time to SB entry zone. Therefore the
premises to the developed T2 FLS will be the inputs to the
physical model: RM exit temperature (x,) and TB travel-
ing time to SB entry zone (x,), while the consequent (y)
will be the SB entry temperature.

5. TB Surface SB Entry Temperature

Prediction

The architecture of the hybrid IT2 FLS for SB entry
temperature prediction was established in such a way
that parameters are continuously optimized. As mentio-
ned, the antecedents were chosen to be the RM exit
surface temperature (x,) and the TB head traveling time
(x,). These are the inputs to the physical model used for
head-end temperature estimation in most of the HSM
industrial sites, and they are considered to be the vari-
ables which most influence the SB entry temperature.
Each antecedent-input space was divided into five fuzzy
sets (searching for the compromise between reasonable
good performance and a low number of sets to keep low
computational resources demand) thus, having twenty-
five rules. The output (consequent, y) is the head-end SB
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entry surface temperatures.
Gaussian primary membership-functions with uncertain
means were chosen for both, antecedents and conse-
quents. Each rule of the three T2 FLS was characterized by
six antecedent membership function parameters (two for
left-hand and right-hand bounds of the mean and one for
standard deviation, for each of the two antecedent
Gaussian membership functions) and two consequent
parameters (one for left-hand and one for right-hand end
points of the centroid of the consequent T2 fuzzy set).
The Gaussian primary membership function with
uncertain means for each antecedent is defined as:

2

I|x —mln

u O )=exp _2{ : 1 : } (24)
Ok

where m', e [m',,, m',,] is the uncertain mean, k=1, 2
(the number of antecedents), [=1, 2,..25; n=1, 2 (the
lower and upper bounds of the uncertain mean) and o', is
the standard deviation. The means of the antecedent
fuzzy sets were initially chosen to be uniformly distri-
buted over the entire input space.

Using initially the calculated mean and standard devia-
tion from measurement of input (x,) and input (x,) the
values of the antecedent five intervals of uncertainty
were established. The initial intervals of uncertainty for
input (x,) were selected as shown in Table 3. Fig. 3 shows
the initial membership functions for the antecedent
fuzzy sets of input (x,). The values of the initial intervals
of uncertainty for input (x,) were selected as shown in
Table 4. Fig. 4 depicts the initial membership functions
for the antecedent fuzzy sets of input (x,).

I/

M / [/ ’a
///\

0.4 { af {4 “6 \ %“ 5”‘ “"

- // // ;ﬁf A
1 NN\

Fig. 3. Membership functions for the antecedent fuzzy sets
of x, input.

Table 3. Selected intervals of uncertainty forinput (x,).

m., (°0) m., (°C) o, (°0)
1 950 952 60
2 980 982 60
3 1016 1018 60
4 1048 1050 60
5 1080 1082 60
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Table 4. Selected intervals of uncertainty for forinput (x,).

m,, (s) m,, (s) G, (s)
1 32 34 10
2 38 40 10
3 42 44 10
4 48 50 10
5 56 58 10

For the case of IT2 SFLS the resulting T2 FLS uses T1
singleton fuzzification, maximum t-conorm, product t-
norm, product implication, and center-of-sets type-
reduction, for fuzzy operations see [5]. For IT2 NSFLS-1
the resulting T2 FLS uses T1 non-singleton fuzzification,
maximum t-conorm, product t-norm, product implica-
tion, and center-of-sets type-reduction. And for the case
of IT2 NSFLS-2, the resulting T2 FLS uses T2 non-sing-
leton fuzzification, maximum t-conorm, product t-norm,
productimplication, and center-of-sets type-reduction.

;x/ ,,r /; \\\\\ \\

ol // //// // // \ \\\ \
I / \\ \\ AN

. e .
4d 50 ﬁl’) 70 &0 20 100

Fig. 4. Membership functions for the antecedent fuzzy sets
of x, input.

For parameter optimization, the hybrid learning me-
thods, OLS-BP, is used. Experimental results to compare
them against BP only method is presented.

The primary membership functions for each input of
IT2 NSFLS-1 was:

72

1| x; —x

Hx, (xk ): 28Y —{k k] (25)
2| oy,

where: k = 1,2 (the number of T1 non-singleton inputs)
and Wy, (x,) centered at the measured input x, = x’,. The
standard deviation of RM exit surface temperature
measurement G,, was initially set to 13.0°C and the
standard deviation head-end traveling time measure-
ment G,, was initially set to 2.41s. These values were also
selected experimentally.

The primary membership function for each input of
IT2 NSFLS-2 was:

¢ T2
O @5

kn

where: 6, €[0,, 0,,] k=1,2 (the number of T2 non-
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singleton inputs), n=1, 2 (the lower and upper bounds of
the uncertain mean) and p,,(x,) centered at the mea-
sured input x, = x’,. The uncertain standard deviation
[0, 0,,] of RM exit surface temperature measurement
was initially set as [11.0, 14.0]°C and the uncertain
standard deviation [G,,, 0,,] of head-end traveling time
measurement was initially set to [1.41, 3.41]s.

Noisy input-output data pairs of three different coil types
with different target gage, target width and steel grade
were taken and used as training and validation data, see
Table 5, and experiments were carried out for these
different coil types.

Table 5. Material type coils.

Table 6. One pass initial value of antecedent and
consequent parameters of IT2 FLS.

Target gage | Target width | Steel grade

(mm) (mm) (SAE/AISI)
Coil A 1.95 1104.0 1006
Coil B 5.33 1066.0 1009
Coil € 3.04 939.0 1045

The standard deviation of temperature noise G, was
initially set to 1.0°C and the standard deviation of time
noise ¢, was setto 1.0s.

The T2 fuzzy rule base consists of a set of IF-THEN
rules that represents the model of the system. The
interval non-singleton T2 have two inputs x, € X, and
x,€ X, and one outputy €Y, which have a corresponding
rule base size of M= 25 rules of the form:

RU:GIF x, is F! and x, is Fy, (27)
THEN y is G'

where[=1,2,...25. These rules represent a fuzzy relation
between the input space X, x X, and the output space Y,
and it is complete, consistent and continuous [30], as
shownin Table 6.

The primary membership function for each conse-
quent is a Gaussian function with uncertain means, as
defined in (8). Since the center-of-sets type-reducer
replaces each consequent set CG, by its centroid, then y/,
andy’ are the consequent parameters.

Initially, only the input-output data training pairs
@y, @@y?),..., (x:y"™) are available and there is
no data information about the consequents, hence the
initial values for the centroid parametersy’,andy’, may be
determined according to the linguistic rules from human
experts or be chosen arbitrarily in the output space [16].
In this work the initial values of parameters y',and y', are
such that the corresponding membership functions uni-
formly cover the output space. Table 6 also shows the
initial values of consequent centroids of the twenty-five
rules.

l m, my, o, my, my O, y11 y/,

1 950 952 60 32 34 10 938 940
2 950 952 60 38 40 10 933 935
3 950 952 60 42 44 10 928 930
4 950 952 60 48 50 10 924 926
5 950 952 60 56 58 10 920 922
6 980 982 60 32 34 10 958 960
7 980 982 60 38 40 10 954 956
8 980 982 60 42 44 10 950 952
9 980 982 60 48 50 10 946 948
10 980 982 60 56 58 10 942 944
11 1016 1018 60 32 34 10 978 980
12 1016 1018 60 38 40 10 974 976
13 1016 1018 60 42 44 10 970 972
14 1016 1018 60 48 50 10 966 970
15 1016 1018 60 56 58 10 962 964
16 1048 1050 60 32 34 10 998 1000
17 1048 1050 60 38 40 10 994 996
18 1048 1050 60 42 44 10 990 992
19 1048 1050 60 48 50 10 986 988
20 1048 1050 60 56 58 10 982 984
21 1080 1082 60 32 34 10 1020 1022
22 1080 1082 60 38 40 10 1016 1018
23 1080 1082 60 42 44 10 1012 1014
24 1080 1082 60 48 50 10 1008 1010
25 1080 1082 60 56 58 10 1002 1004

6. Experimental Results

Three different designs: IT2 SFLS, IT2 NSFLS-1 and IT2
NSFLS-2 were trained to predict the SB entry temperature
and then tested. Three different sets of data for the three
different coil types mentioned and shown in Table 5 were
taken from a real-life mill. Each of these data sets was
split into two sets, training and validation sets, taking
every other data point. Experiments were run for each
product type set independently. For each input-output
data pairs, for each product type set, the twenty-five
rules of the nine FLS were tuned.

The performance evaluation for each of the learning

methods is based on the root mean-squared error (RMSE)
criteria:

RMSE = \/i > [v(r)-1,, (x ))]2 (28)

where Y(k) is the output validation data vector i.e. the
actual SB entry temperature measurements vector for
system evaluation, different to the training data vector
but from the same coil type, and f,(x") is the tempe-
rature vector predicted by the tested T2 FLS.

Figures 5, 6 and 7 show the RMSE of the three used IT2
FLS systems for type A coils after fifteen epoch compu-
tations. The behavior of type B and C coils is similar and
not shown here for the sake of briefness.

Articles
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RMSE

Epoch

Fig. 5. IT2 SFLS (*) RMSE (BP); (0) RMSE Hybrid (OLS-BP).

RMSE

W\*

Epoch

Fig. 6. IT2 NSFLS-1 (*) RMSE (BP); (o) RMSE Hybrid
(0LS BP).

In the Figures, the horizontal axis represent the num-
ber of training epochs, while in the vertical axis, the
RMSE of the validation run with the test set after the cor-
responding number of training epochs in the horizontal
axis is shown, as outlined in [23]. Therefore, the initial
value is the validation RMSE after one epoch training.
Fifteen epochs were chosen for display purposes since
convergence has already taken place for all the systems
and for all the experiment. As mentioned, the results pre-
sented here are preliminary with the purpose of showing
convergence and feasibility of T2 FLS in SB temperature
prediction in HSM. However, validation was carried-out
allowing tuning (unlike the results of [23]), since the on-
line adaptation capabilities mainly motivated rolling
variables estimation by either FLS or ANN, and such would
be the ultimate applications of these systems.

RMSE

Epoch

Fig. 7. IT2 NSFLS-2 (*) RMSE (BP); (o) RMSE Hybrid
(0LS-BP).

Articles

Table 7. Final values of antecedent and consequent para-
meters at epoch fifteen of hybrid IT2 NSFLS-1 (OLS-BP).

mll le 0-1 le mZZ 62 y[l y’r

947.4 951.7 57.0 32.2 33.2 12.3 830.5 986.3
949.8 952.4 59.0 37.5 39.5 11.2 803.4 943.1
950.4 951.5 59.9 40.4 42.4 12.9 987.2 1036.2
950.4 952.0 60.5 44.8 46.4 12.6 878.2 955.0
950.6 951.7 60.6 55.2 55.9 16.0 948.2 970.1
979.0 980.7 58.0 26.5 34.4 11.1 917.1 975.5
979.7 983.3 61.4 36.3 43.8 9.6 605.3 1088.7
978.5 982.3 59.1 41.1 45.4 12.0 909.5 952.6
979.0 982.9 59.6 44.2 45.1 14.7 858.8 911.0
980.0 981.4 59.7 52.4 56.9 18.0 839.8 1098.4
1015.3 1017.7 59.7 35.0 40.7 15.6 913.3 959.7
1016.0 1019.0 62.1 38.8 41.6 17.9 550.4 784.8
1016.9 1017.0 60.7 39.5 42.8 14.1 742.5 945.7
1016.0 1019.3 60.7 50.1 59.7 39.2 1006.8 1067.5
1016.0 1017.6 59.7 54.1 58.4 16.0 988.8 991.3
1049.1 1050.8 58.6 31.1 38.5 17.0 1112.9 1363.0
1047.5 1050.3 59.7 38.2 39.9 12.8 919.5 1319.7
1047.7 1048.8 61.7 42.2 42.2 15.4 782.9 870.6
1047.7 1050.1 59.9 45.6 49.5 11.6 966.7 972.9
1048.0 1050.0 60.0 57.5 62.3 0.6 901.9 922.9
1080.3 1082.0 59.9 31.6 34.1 14.4 1029.5 1342.1
1078.6 1080.6 62.0 35.6 36.9 14.3 1004.5 1277.6
1079.8 1081.8 59.7 33.5 37.9 14.4 1208.8 1263.8
1079.2 1081.3 61.7 43.9 48.5 11.6 891.5 980.4
1080.5 1082.1 59.7 57.2 57.9 13.1 931.7 992.9
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Table 7 shows the final values of the adapted para-
meters for the hybrid IT2 NSFLS-2 (OLS-BP) system.

As it can be seen from Fig. 5 to 7, all the IT2 FLS deve-
loped here for SB temperature estimation, converged for
the conditions tested, thus proving experimentally their
stability in this application and for the conditions tested.
Furthermore, the T2 FLS with the hybrid learning algo-
rithm also showed better performance than the BP IT2
FLS in terms of RMSE. These results show the feasibility of
the T2 FLS, both for BP only and hybrid learning, for this
particular industrial application. The IT2 FLS antecedent
membership functions and consequent centroids absor-
bed the uncertainty introduced by training noisy data:
noisy temperature and noisy traveling time measure-
ments since they finally converged to a RMSE value. The
noisy data was not shown here since each data point is
the average temperature at the head segment of the TB
and the measured time for each TB to get from RM to SB
entry. They may vary from one TB to the next for different
reasons and not only because of the measurement noise.
Therefore, in order to show the noise a deeper analysis is
required.

The hybrid learning systems OLS-BP have better per-
formance than only BP methods for the conditions tested
and in terms of RMSE. There are not works reported in the
literature using OLS algorithm for IT2 FLS adaptation.
In [3, 4] the systems developed were trained and valida-
ted from the physical model estimations (the system was
modeling the physical model) rather than real data from
the mill, therefore, as expected, the results reported
show better RMSE than those reported here, since in the
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real data measurement noise and natural random
variations of the modeled variable is also presented (real
SB entry temperature).

Fig. 8 shows the application of singleton ANFIS. This
corresponding to the T2 FLS experiment showed in Fig. 5.
By comparison of figures 8 and 5, it can be concluded
that the T2 FLS have better performance in terms of RMSE
than ANFIS, both for, hybrid and BP only tuning. Table 8
shows the RMSE convergence values after 15 epochs of all
hybrid learning ANFIS OLS-BP and IT2 FLS for entry
temperature estimation, note that the ANFIS were not
tested for IT2 no-singleton inputs. As it can be seen in
Table 8, IT2 FLS has consistently lower convergence
values and hence, better performance than ANFIS. Table
8 third column shows RMSE improvement in percentage
when T2 FLS is applied. The improvement ranges from
14% to 59%, furthermore in four cases out of the six
tested, the improvement is 27% or above, which is
satisfactory.

Table 8. Comparision between RMSE after 15 epoches of
ANFIS and hybrid IT2 FLS.

IT2 FLS | T1 FLS |Difference (%)
Coil A - singleton 5.1 7.5 47
Coil A - T1 non-singleton 5.8 7 20
Coil B - singleton 5.6 7.9 41
Coil B - T1 non-singleton 6.3 7.5 19
Coil C - singleton 9.4 15 59
Coil C - T1 non-singleton | 12.9 14.8 14

However, the greater disadvantage of T2 fuzzy is the
high computational resources demand. In order to count
for uncertainties, two fuzzy sets are introduced instead
of one, therefore the memory requirements to keep these
functions double. Consequently, the number of opera-
tions increases demanding more CPU time, see Figures 3
and 4. Furthermore, since the hybrid learning algorithm
developed here requires to reestablish the lost FBF
expansion rule ordered after every iteration the number
of operations also increases, see the limitation and step
7 of the algorithm given in section 4, see also Fig. 2. In
future, work has to be done in order to get improvements
on these aspects.

%

RMSE

Epéch

Fig. 8. RMSE for Type A coil and ANFIS for singleton input.

Although more exhaustive experiments with a more
complete statistical test of the prediction error are requi-
red, as well as exhaustive comparison with the physical
model performance, it is believed that the results shown
here may motivate further study of IT2 FLS industry
application, in general and in particular for rolling vari-
able estimation.

It is also important to consider in future some extra
factors which may influence the temperature behavior
and may be difficult to incorporate to the mathematical
model, such as: steel chemical composition, TB thick-
ness, and rolling pace among others. This would increase
of course the number of fuzzy sets and operations
required and therefore resources demand. As mentioned,
the experiments run here were carried out for three
different types of products, while in practice; the same
model should be running for all product types or at least
for a wide range of products. Tests on different products
have to be performed. Estimation of temperatures for the
rest of the rolling process is also to be studied.

7. Conclusions

New applications of IT2 FLS, using a hybrid learning
method, are presented. The IT2 FLS antecedent member-
ship functions and consequent centroids absorbed the
uncertainty introduced by training noisy data: noisy
temperature and noisy traveling time measurements. The
uncertainty of the input data and measurements was
modeled as stationary additive noise using T1 fuzzy sets
and as non-stationary additive noise using T2 fuzzy sets.
The only BP and the hybrid OLS-BP methods were tested
and have demonstrated the power of hybrid parameters
estimation. There is a substantial improvement in perfor-
mance and stability of the hybrid method over BP. The
hybrid OLS-BP achieves the better RMSE performance as
can be seen in the experimental results. They show that
the developed hybrid algorithm can be applied for model-
ing entry SB temperature of steel bars. Comparative
results show that IT2 FLS over-performs ANFIS, in most
cases substantially. The results shown here may motivate
a further study in this topic. In future, the algorithm
developed here has to be tested more exhaustively,
against the physical model and for different products;
incorporation of extra factors may also be useful in this
matter. On the other hand, optimization of the algorithm
would be desirable. Estimation of temperatures for the
rest of the rolling process is also to be studied.
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