
68

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Using LabVIEW and ROS for Planning and Coordination of Robot Missions,
the Example of ERL Emergency Robots and University Rover Challenge

Competitions

Agnieszka Węgierska, Kacper Andrzejczak, Mateusz Kujawiński, Grzegorz Granosik

Submitted: 18th March 2019; accepted: 16th May 2019

DOI: 10.14313/JAMRIS/2-2019/20

Abstract:
The article presents the main functionalities and prin-
ciples for operating a software for multi-robotic mission
coordination developed for competitions ERL Emergency
Robots 2017, as well as its adaptation during University
Rover Challenge. We have started with an overview of
similar software used in commercial applications or
developed by other research groups. Then, our solution
is thoroughly described, with its user interface made in
LabVIEW and the communication layer based on ROS
software. Two cases of robotic competitions proved
our software to be useful both for planning and for
managing the mission. The system supports the opera-
tor in teleoperation and during partial autonomy of the
robots. It offers reporting on the robots’ positions, Points
of Interest (POI), tasks status. Reports are generated in
KML/KMZ formats, and allow us to replay the mission,
and analyze it.

Keywords: Mission coordination, Planning, Robotic
competitions, KML/KMZ, LabVIEW

1. Introduction
During last few years interest in mobile robots

is at a raise. Currently, robots are used not only in
inspection, military or human response applications
but also are becoming more and more available in in-
dustrial, agriculture or service applications. Some of
the reasons for this are: the decreasing size and cost
of sensors, increasing computing power of microcom-
puters, development of localization algorithms and
growing popularity of neural network algorithms for
recognition and reasoning.

An important source of robot development and so-
cial awareness about them comes from robotic compe-
titions. The participants customize their solutions for
simulated scenarios or application cases, usually taken
from the real word. Hence, researchers are able to find
various solutions applicable to real life situations more
easily. What is more, competitions give a lot of freedom
to choose the best solutions and finally compare them
in front of other teams. These are then oftentimes tak-
en to the next stage of commercialization.

In this paper we present a situation in which the
participation in two international robotic contests re-

quired development of a specialized software for the
group of our mobile robots. We show research done
during the last two years: starting with a short de-
scription of the contests’ scenarios, analysis of appli-
cations available in the market, motivation to develop
our own software, detailed description of its struc-
ture and functionalities, followed by conclusions and
future plans.

One of the most challenging aspects of robotic
competitions is mission planning and supporting
the operator in action. Proper task strategy and well
planned mission time are important success factors.
Software for mission management is able to solve
both of these problems. Although it is mainly utilized
for multi-robotic missions it is also useful in single do-
main tasks.

An example of such a competition is ERL Emergen-
cy Robots, where competing teams came from different
higher education institutions, companies or research
centers [6]. The main goal for this competition was to
draw attention to mission cooperation problems be-
tween robots from different domains – aerial, water
and ground – in rescue mission. The teams perfor-
mance was based on the quality of multi-robots coop-
eration, creation of 2D or 3D terrain maps, localizing
missing workers and gas leakages, delivering the first
aid kit to the missing worker. The competition required
land, water, and aerial robots cooperating with each
other. Most of the teams came from different countries
and were experts in a single domain. This required co-
ordination not only at robotics level but also human
communication level. It was a stimulus to develop
software for mission coordination which could reduce
communication problems, universalize contact, and
increase mission efficiency in situations where several
different robots or people needed to cooperate.

What also triggered the research was that each
team had to provide logs in KML/KMZ format to show
their actions and progress in a clear way.

During the ERL competition, operators of every ro-
bot were located in different base stations. They were
not allowed to communicate directly to each other. To
compensate this, our coordination software provides
the mission manager and operators a clear view on
the mission status, task execution progress, time re-
maining, mission problems, manager decisions, and
upcoming tasks.

On the other hand, such software can also be used
in single domain competitions to increase efficiency
and quality of a given task performed by a single ro-

69

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles 69

application used Open Street Map for adding targets,
drawing sectors and pointers, adding photos, or plan-
ning robot’s path (waypoints, starting and end point
of the path, properties of each point like velocity or
reaching accuracy).

2.2. Mobile Planer – Omron
The requirements of the factory environment are

different. The first one is the map which should pro-
vide mostly corridors or easy identifiable obstacles,
easy to read by the final user. One of the solutions to
this problem is provided by MobilePlanner designed
by Omron company [11]. The map consists of a pre-
viously scanned 2D map with 10 cm segments which
inform about traversability. For segments with a low
value, the traversability is easy, with high value the
overcome is impossible or very difficult. In addition,
users can define special zones on the map (e.g., pro-
hibited zones, low-speed zones or one-way zones)
and point of interest (e.g., loading or unloading places,
battery charging location). The graphical user inter-
face with the map is shown in Fig. 2.

Fig. 2. The user interface of MobilePlanner – Omron [11]

Moreover, an autonomous and intelligent fleet
management system is important for factory automa-
tion. The presented solution is able to manage up to
100 robots. In MobilePlanner, each target has a de-
fined value of goal position tolerance. Users could link
a task with a specific target or create sophisticated
tasks from a list of predefined actions. To deal with
the problem of reaching one target by several robots
at the same time, the software could put the robots
into the queue reducing the chances for traffic prob-
lems. Tasks can be sequential or parallel.

2.3. MIRFleet
The MIRFleet [12] is similar to Omron’s solution

built by MIR company (Mobile Industrial Robots) for
centralized control of up to 100 mobile robots. The
company’s portfolio gives options to choose robots
with different payload capacity or hook attachment.
The web-based user interface is shown in Fig. 3. It
works on any device with a web browser, and in the
range of robot’s Wi-Fi.

There are two ways to create a floor plan used
for robot localization – the robot creates it by itself

bot. One example is the University Rover Challenge
(URC), during which robots simulate a Mars mission.
The teams control the robots in tasks such as manip-
ulation, navigation, ground sample evaluation and au-
tonomous traversing. In most cases, missions consist
of multiple smaller tasks and the detailed information
related to each of the four missions are revealed by
the judges only several minutes before the mission be-
gins. Sometimes subtasks have to be made in a specif-
ic order or at a determined time. Each subtask could
have different scoring. As a result it is extremely hard
to memorize and later repeat the whole strategy. So
an application for mission planning and coordination
could improve the team’s performance level. In such
instance, the software is limited to planning tasks and
their allocated times in proper order. It allows the op-
erator to follow the mission plan without additional
work and, in case of problems, to abort tasks with the
lowest chances for success.

Finally, lack of similar applications on the market
further confirmed the necessity of its development.

2. Overview of Multi-Robots Mission
Manager Software

Based on extensive research, this paragraph fea-
tures an overview of existing mission manager appli-
cations. Several ongoing projects show the problem
is not new. Five, of the closest to our application are
presented below. They became an inspiration for us
and helped us determine necessary requirements.
The design process was supported by different user
interfaces visible on below figures.

2.1. Project Icarus
The application shown in Fig. 1 was developed un-

der ICARUS program [7, 8] designate for use in search
and rescue missions. The system consists of two lev-
els of control stations. The higher one is responsible
for defining global goals, planning and coordinating
the mission progress, while the lower provides more
details on how to realize the goals.

Fig. 1. User panel of ICARUS software [8]

The main features of the application are building,
monitoring, updating and breaking the mission, add-
ing or relocating resources to other mission sectors,
setting inspection or patrolling zones, setting time
and preferred robot type to achieve appointed goals,
displaying information from robot sensors. ICARUS

70

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles70

or a map is uploaded from CAD or PNG file. The map
restrictions (walls, prohibited zones, preferred drive
zones, blocked zones, speed reducing, a maximum
number of robots in a zone) are defined by colors.
Therefore, the map may be edited in any graphic pro-
gram. The map updates made by robots are shared
with the whole fleet. Access to the application options
is defined by user hierarchy. The additional features
are alerts by SMS or e-mail. The tasks are created us-
ing a standard form including start and end time, mis-
sion name, priority (normal, high), type of the robot
and additional task description. The task start time is
limited to five days in advance. Tasks are divided into
started, pending (robot currently not available or task
start in a different time) and finished. This application
is only prepared to control the MIR robots and does
not give ability to manage robots of any other type.

2.4. ArduPilot – MissionPlaner [5]
Non-commercial users are looking for open source

solutions. One of such is ArduPilot built on an open
code. It can also be upgraded to support multi-robots
and multi-domains capabilities. The user interface
shown in Fig. 4 is used for mission planning with
a single robot.

Fig. 4. ArduPilot control panel [5]

The software allows to edit the list of target points
(add, delete, set tolerance and heading), set flight

plan, save or read KML/KMZ files, display sensor data
(speed, altitude or heading). Additionally, localization
of the robot may be displayed online in Google Maps,
Bing or Open Street Map and offline inside the appli-
cation from flight logs. Additionally, the location of the

robot may be displayed online in Google Maps, Bing
or Open Street Map and offline inside the application
from flight logs.

2.5. NVL Charter
Not strictly related to robotics is the management

system used in logistics. NVL Charter (see Fig. 5) is
an application for international transport manage-
ment enabling tracking of specific car courses (place
and date of departure, and place and date of arrival),
set via points or editing orders. The main goal of this
software is to suggest the most optimal route – opti-
mizing trip time and cost.

Fig. 5. NVLCharter application window [4]

In robotics the delivery could be treated as reach-
ing the target point by the robot, while track loading
and unloading may be treated as performing the task
in a given localization.

2.6. Comparative Analysis
The above overview of recently developed ap-

plications shows that most of them are very limited,
regarding universality and adaptability to different
robot types and environments. It shows difficulties
with creating a multipurpose user interface and coor-
dinating multi-robot systems, especially in different
environmental domains. Above mentioned applica-
tions are strictly dedicated to specific circumstances.

We could divide all presented applications into an
indoor and outdoor group. Applications for indoor
use are focused on material handling. These applica-
tions can be integrated with factory management sys-
tems but are very limited to cooperate with different
robot types. Different localization systems are used
in indoor and outdoor robots. In many factories the
workload and complexity of processes require sever-
al robots to be used (always with the same kinematic
construction). Some proprietary applications (MIR,
OMRON) use centralized fleet management system.

On the other side there are applications for out-
door use. These systems are mostly limited to display
robots’ locations, mission status or working zones.
The applications are more often focused on mission
coordination than planning repetitive tasks in time.
Outdoor environment is much more diverse com-

Fig. 3. Tracking single robot in MIRFleet [12]

71

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles 71

pared to the industrial one. Therefore, applications
are prepared to perform a limited number of scenar-
ios. Two applications support multiple and heteroge-
neous robots. Outdoor applications seem to be devel-
oped more recently hence are less mature than the
indoor ones. This lack of previous interest may have
been caused by constraints given by the outdoor envi-
ronment and lower demand coming from the market.

Most of the applications have easy access to all data
corresponding to the current task, status and infor-
mation about possible problems. Most of the systems
are designed to work with predefined robots, with no
option to expand it. This close structure was one of
the main obstacles in adapting available software to
our needs. Some of applications have automatic re-
port generation, it may be highly important in rescue
missions where time is one of the most important in-
dicators. The closest to our approach and also at the
furthest level of development was an ICARUS project.

The purpose of our project is to have an easily cus-
tomizable application, able to manage different types
of robots, missions, and environments (indoor or out-
door).

3. Robot Cooperation Structures
After assigning the task to a specific robot we

expect that the task will be finished with a positive
result and in defined time, otherwise the system
should inform the user about the reason of mission
failure. Efficiency may be improved by increasing
the number of robots performing a specific mission
or a single task, as a result we are dealing with ro-
bot cooperation. For simple tasks in most cases we
are using single type robots (e.g. area monitoring),
however, if the task is more complex, using robots
of different types could be much more efficient (e.g.
search and delivery during rescue missions – aerial
robot searches and ground robots could deliver
heavy equipment near to the victim). We can define
four basic system types in relation to number of co-
operating robots [9]:
– singular – do not belong to MRS (multi-robot

systems), robots working by themselves, the task
does not require cooperation,

– double – group consists of two robots cooperating
with each other, robots are able to perform simple
tasks e.g. moving objects,

– multi-unit – consisting of a small group of robots,
– swarms – consisting of a large group of robots.

Alternatively, we could define systems in relation
to performance possibilities and morphology [9]:
– identical – the same locomotion of all robots inside

the group,
– homogeneous – all robots have similar locomotion

but not always the same, there are small differences
in functionalities of each robot. Absence of one
robot leads to the situation that the task could not
be fully finished,

– heterogeneous – different way of locomotion.
Another element defining the way of cooperation

is communication between robots [9]:

– all robots communicate with each other –
decentralized management,

– communication between robots and control
station – centralized management,

– robots communicate with each other and make
decision without the base – multimaster.
Multi-robots systems might be divided in terms of

ability to cooperate (see Fig. 6), according to [10] four
levels could be recognized: cooperation, knowledge,
coordination and management.

Fig. 6. Taxonomy of Multi-Robot Systems [10]

Cooperation is present only when performing
a specific task requires at least two robots. Using
more than two, in some cases, could be much more
efficient e.g. terrain mapping. The knowledge about
other robots working in cooperation could be divided
into two groups – aware and unaware. Robot coordi-
nation is related to cooperation. All robots take into
consideration current states of other ones in a team
and make decisions about providing consistent work
flow of the task. In systems based on strict coordina-
tion we could define the following organization levels:
– strictly centralized – systems have one leader,
– weakly centralized – leader function could be

provided by any robot,
– distributed – any robot could make decisions by

itself.

4. The Mission Planner App for the ERL
Competition

As mentioned, robotic contests serve as motiva-
tion to find solutions to real-life problems. The organ-
izers of the ERL Emergency Robots competition were
inspired by the Fukushima accident (earthquake and
tsunami) and created the following rescue scenar-
io. Due to highly radioactive elements, the rescue
team used mobile robots to keep a safe distance. The
main problem was the communication between ro-
bot operators and robots themselves, because each
control station was located in a different place that
required coordination. The main goal was to search
for missing people in the open space at the seaside,
inside the damaged building and underwater, this re-
quired robots from different domains, such as: UGV
(Unmanned Ground Vehicle), UAV (Unmanned Aerial
Vehicle), AUV (Autonomous Underwater Vehicle).

72

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles72

One of the tasks requiring cooperation was the de-
livery of a first aid kit by an aerial robot to a ground
robot. The UGV was supposed to send information to
the UAV when the kit was needed, specifying its lo-
cation. As time was a crucial factor, the task was not
as simple as described, especially with the kit due on
the ground shortly after the signal. Another task was
finding a leaking pipe and closing the correct valve
by the UGV and AUV at the same time to avoid radi-
oactive contamination. These types of coordination
between robots can be connected to appropriate task
delegation, including only reconnaissance. For exam-
ple, a damaged pipe outdoors can be recognized by
an aerial robot or it can provide an approximate GPS
position of a missing worker (mannequin-dummy)
when it is out of the drone’s range. This information
can then be used by other robots in their missions.
An important requirement was providing a report in
KML/KMZ format within one hour after the mission.
More details about this format will be provided in
chapter 5.3.

For the purpose of the ERL Emergency Robots
competition our Mission Planner application was cre-
ated in LabVIEW software. It acts as an information
flow coordinator between robots, so that each mem-
ber of the group knows the current action status of
all the others. It allows cooperation between robots
in joint tasks such as examples mentioned before. The
coordinator can also send common messages to other
robots for work synchronization.

The system architecture is based on a central con-
trol system. The Mission Planner is responsible for
event logging and is to be located on one of the com-
puters in the base station. The user panel was created
in LabVIEW and the exchange of messages is possi-
ble through the ROS node. Initially, communication
between different masters in the ROS environment
was possible thanks to the multimaster_fkie package,
unfortunately, its operation turned out to be unstable,
and we had to create the LabVIEW procedure acting
as a multimaster (coordinator). The software consists
of the three modules shown in Fig. 7.

Fig. 7. The Mission Planner app modules

Each module has a separate user interface. The
communication module is needed for correct opera-
tions. It is mainly responsible for gathering the data
from robots and stations, including historical com-
mon messages between ROS masters providing data
to other Mission Planner modules. The other modules
can be started depending on their specific needs. The
map module provides visualization of robots’ posi-
tions on the map, stating the distance between them
and GPS coordinates of waypoints. The Mission coor-
dination module displays the mission progress and
common messages from others, sends the coordina-
tor’s commands, collects navigation and mission data
to further convert to KML/KMZ formats.

4.1. Communication Module
The communication module is the most important

part of this software because in the past, operators of
different robots in our team use separate applications
to control them. The UAV and AUV users could com-
municate and control the robot with ROS, but for the
UGV the activities were split between LabVIEW and
partially ROS. This mixed system for UGV is connected
with the gradual migration of Raptors Rover software
from LabVIEW to ROS, currently, the LabVIEW pro-
vides a more reliable solution. Regarding our prob-
lems with the multi-master configuration and unsta-
ble connection between all masters, we decided to
create a module in LabVIEW which is responsible for
exchanging information between robots and stations.
For this reason the communication module should be
combined with different environments and meet the
following requirements:
– provide the location of the robots (GPS position

and orientation),
– provide information about exchanged messages,
–send messages to other robots and stations.

In our solution, communication between the ro-
bots and the managing application uses the ROS
system. Information exchanged directly between
LabVIEW and ROS is obtained through the TCP/IP
protocol and the WebSocket technology. A separate
master runs on each robot. The diagram in Fig. 8
shows the flow of the received data, which are used in
the coordination and location modules.

Fig. 8. Information exchange between stations and
robots

Robots provide the following information to
appropriate stations: GPS position and orientation,
stream from the vision system, common messaging
when the task was done in autonomous mode (e.g.,
drone reached waypoint in an autonomous way) etc.
Each station is responsible for controlling the robot
and communicating with the Mission Planner. They
deliver the GPS position in standard NavSatFix mes-
sage from the sensor_msg library. The land robot
sends the odometry message from the nav_msgs li-
brary that was used to calculate current orientation,
but for the flying robot it was its own message struc-
ture that is:

float64 heading
It was not possible to collect the GPS position for

an underwater robot during its operation, therefore,
it was limited to send the position of the mannequin
found underwater after the robot surfaces.

The Mission Planner receives a common message
from stations and robots, and sends it to the others.

73

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles 73

For the purpose of information exchange, a custom
message structure has been created:

string sender_name
string receiver_name
float64 latitude
float64 longitude
int32 valve_number
string status
The message contains information about the

sender and recipient of the message, the sender ro-
bot’s coordinates at the time of sending, the number
of damaged valves and a status. The status field was
used to send information about the currently per-
formed activities by the robot, e.g. finding a leaking
pipe, starting to deliver the first-aid-kit, or waiting for
its delivery. Messages can be sent directly from robots
to the Mission Planner in an autonomous task execu-
tion by an appropriate robot controller. Nevertheless,
the robots mainly worked in manual mode, they could
send specific messages (e.g., about current activities),
which were generated by the robot’s controller (as
suggestion for the operator) and confirmed by hu-
man. The coordinator can sent a common message to
the others to provide information and realize cooper-
ation between robots.

4.2. Mission Coordination Module
The module is responsible for managing the

course of the mission. It provides information about
the mission in the form of a static list of tasks to do.
This plan is prepared in advance. It means that an
operator can easily follow the mission’s orders and
recorded data can be related to time, but cannot
alter the task during the mission. Next, in a sepa-
rate application, the gathered data are converted
to KML/KMZ files, because logs in this format are
required. The architecture of the module is shown
in Fig. 9. At the beginning, the module imports and
stores a list of all the tasks and OPIs (Object Point
of Interest) to be found. Data about unfinished tasks
and last occurred reports are kept separately when

the status is changed. The robot can be in one of the
following states for each task: setup, ready, start,
done, canceled. The first three statuses require ex-
planation. Setup means that the robot is preparing
to start a task, for instance when its configuration is
changing. Ready means that the robot is prepared to
start its mission. In this state it is usually for a short
time, however, it can take much more time, e.g. when
the UGV needs the first-aid-kit and it is waiting for
its delivery by the UAV. It was one of the tasks that
required coordination of cooperation.

We assumed that when the UGV finished all out-
doors tasks, it sends a common message to the UAV
with information about its GPS position and demands
for the first-aid-kit to be delivered. For this moment,
the status of UGV is setup, because the next task
cannot be started without the kit. The UAV receives
a message, finishes the current task and comes back
to the station for the kit. For now, the status is setup,
because the drone is preparing for the delivery task.
When the kit is mounted the status is ready to begin.
Next, the status (start) occurs when the drone begins
to fly to deliver the kit to the UGV. When it finished
its task, the UGV takes the first-aid-kit and changes its
status from ready to start. The search for the victim
begins. The task is done when the kit is delivered to
the victim.

In general, the Mission Planner can be located any-
where, assuming ethernet (cable or WiFi) connection
with robot controllers. In the presented situation it
was used in the UGV control station and t was directly
connected with its controller. Both are using LabVIEW
as software environment and the position of the UGV
is privileged (the UGV can send common message to
the UAV and AUV, while the communication module
provides messages from other robots). Nevertheless,
the universal structure allows system extension for
other robot controllers. The Mission coordination
module is responsible for collecting data from each
common message, task status changes, as well as
each robot’s GPS position and found OPI. The human
coordinator analyzes the common messages from
the robots and manually reports the progress of the
mission. When the task required searching damages
or victims the coordinator reports twice. One time to
update mission progress and the other to confirm the
found OPI.

User interface used by coordinator is shown in
Fig. 10.
– ‘Subtask to do’ (a) – displays a list of all tasks to be

performed along with their current status,
– ‘All subtask Status’ (b) – displays the status of all

tasks,
– ‘Subtask registered event’ (c) – displays

information about registered events: UTC time,
operating mode, robot name and coordinates,
content, status and additional information about
the task,

– ‘OPIs found’ (d) – a table with a list of found
items, contains information: time of finding the
item, name of the robot, necessary information
about the item and the name of the file with its
picture,Fig. 9. Mission coordination module architecture

74

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles74

– ‘Task Reporting’ (e) – a form for reporting
completed tasks with a selection list containing
the names of unfinished tasks,

– ‘Sending and displaying a common message’ (f)
– received common messages sent by robots are
displayed in the table. The operator analyzes them
and reports (manually) in (e). The form allows you
to select the sender and recipient of the message.
This is necessary because it is not known in which
base station the management software is located,
but default is UGV.

4.3. Map Module
The idea of creating an offline map module for the
robot’s location is related to another competition, the
University Rover Challenge, during which there is no
access to the Internet. For the purposes of the ERL
competition, this application has been expanded to
include the display of the positions of several robots
and the distance between the two selected machines.
The architecture of the Map module to present the
robot’s location is shown in Fig. 11.

Fig. 11. Map module architecture

Data storage of robot data contains information
about the current GPS position and the orientation of
each robot which are required to display the appro-
priate position on a map. The map is loaded into the
memory as a .jpg file with a scale that allows the user
to set two markers and enter the distance between
them. For correct functioning of the application, a map
created in the UTM (Universal Transverse Mercator)
should be uploaded to one zone. Furthermore, before
running the software, the user is responsible for its
appropriate configuration. That is an indication path
to its map and logs, set source of data only to UGV (e.g.
odometry and orientation or GPS), reference GPS co-
ordination point and Earth projection parameters if
different than default setting which is WGS84.

Subsequently, the first action taken after starting
the application should be scaling the map. For a non-
scale map, the operator indicates any two points on
the map and enters their GPS coordinates. Based on
the distance determined, the length of one pixel is de-
termined. User must enter coordinates and indicate
the location of the reference point. The location of
the robot on the map is determined by the distance
in meters between the reference point and the robot’s
position, which is then scaled and calculated in pixels.
The accuracy of displaying items on the map depends
primarily on the accuracy of the map’s ratio and the
correct reference point display.

The next important point is the ability to enter GPS
coordinates in the following formats: DMS (degrees,
minutes, seconds), DM (degrees, decimal minutes), D
(decimal degrees). It is very useful because during the
ERL competition, the GPS was given in DMS format
but during URC it was DM. Additionally, points can be
added by pointing on the map, loading the file with
coordinates or giving the distance of the point from
the robot in meters in the east and north direction.
Points can be deleted from the list. The list of coor-
dinates is responsible for displaying the robot’s dis-
tance from the entered points.

Fig. 10. Mission coordination User Panel

75

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles 75

The appearance of the user interface is present-
ed in Fig. 12. On the left side of the panel there are
configuration options, the upper table provides data
with the distance between the current tracking robot
and each GPS point. The presented panel displays ba-
sic information about the position and orientation of
tracking the robot and its distance to another chosen
one. This panel is used most frequently during the
mission. On the map the robots are all visible but only
the one tracked is highlighted .

5. Application for Coordinating Single Robot
at URC Competition

The first edition of the URC competition was
launched in 2006, for teams of international students.
Each team designed and built their own version of the
Mars rover which competed in 4 missions. In three of
them, the operator was responsible for memorizing
a lot of tasks during the mission. One of them was Ex-
treme Retrieval and Delivery during which the robot
had to deliver items between locations indicated by
GPS coordinates. Scoring points for a task could be
achieved separately by picking up or dropping the
item, successful delivery, and finding indicated ele-
ments. The tasks may seem very simple for humans
but for robots they were quite difficult (assuming tel-
eoperation and delays). For example, picking up an
item may take a few minutes. The other mission was
called Science and was divided into two parts. In the
first one the robot was exploring the terrain, gather-
ing and testing samples, and looking for rocks indicat-
ed by the judges.

The application for the URC competition is an ad-
aptation of the same software, although it is limited
to mission planning, management and a single robot
tracking. The application could be used for any robot

sending GPS coordinates and heading direction in-
formation via ROS. The application section responsi-
ble for the mission’s plan could work offline without
physical connection to the robot. In this version the
user interface was simplified and some new function-
alities required at URC were added:
– displaying the information about delays in the

mission plan
– the remaining mission time
– possibility to change tasks order during the

mission
– ability to read and save the mission plan form to

a file
– ability to edit plan during the mission
– KML/KMZ report generation based on recorded

data
The mission report can be presented based on

data from autonomy tests and Science Task.

5.1. Software Architecture
The application is still based on LabVIEW envi-

ronment connected with ROS. Communication takes
place in the same way as at the ERL competition. User
interface and architecture was simplified and some
external modules integrated. In this version we can
distinguish four main parts: communication, map,
mission management and report generation module.
The software architecture is based on events and is
shown in Fig. 13.

Firstly, communication with the robot is required
to provide all needed data to proper action of software.
GPS coordinates and robot orientation are received
by standard ROS nodes (NavSatFix from library sen-
sor_msg and Odometry from nav_msgs). The module
map has the same functions as the module described
in chapter 4.3. It was extended only by the possibility
to import the map configuration from a file. The mis-

Fig. 12. User Panel of the Map module

76

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles76

sion management was changed significantly and lim-
ited to one robot, and the report module is completely
new. More information about the last two modules
will be provided in the next chapters.

Due to the simplified startup configuration: the
scale and position on map, OPI or mission configura-
tion are imported from a file. It is important wherever
the robot operator has very limited time for system
setups, such a situation appears for example during
competitions when the operator has just several min-
utes for system setup. The possibility of importing
a text file with a predefined mission plan reduces the
number of mistakes.

Fig. 13. Software architecture

In the user interface some significant chang-
es have been made compared to the ERL software,
all configuration windows were merged together.
The map was placed on the left side of the window,
a clock counting remaining mission time with a mis-
sion delays indicator was added above the map, as
presented in Fig. 14.

Fig. 14. Application front-end

5.2. Mission Management Module
The main requirement for this module is to help the

operator to follow the mission plan. It provides informa-
tion about the mission progress and occurring delays.
Each task can be edited or shifted during the mission
depending on the current situation or possibility. All ac-
tions taken are registered in order to prepare a report.

Collecting data is crucial for further analysis and
creating a final report. Each log contains UTC (Univer-
sal Time Coordinated) time, GPS position and heading
of the robot during action. Moreover, the logs con-
nected with taken actions provide information about
the task: description, status, type of robot work, user
comments, priority, and photo title when required.
Without the software, users had to save each pho-
to separately. The stored data provides information
about the mission’s start time, the configuration of
each task and the status of the robot.

Firstly, the configuration of the mission is re-
quired. The mission configuration window is shown
in Fig. 15. This configuration panel allows the user
to import or export mission settings. It is very use-
ful, because it allows planning to be started much
earlier. The plan is limited to the sequence of spe-
cific tasks, required deadlines and the global task
that should be done during the whole mission (e.g.
searching for some objects). In terms of creating
new tasks, the operator has to fill out a form con-
sisting of: the task description and duration, type of
job (autonomous, semi-autonomous, manual), pri-
ority (7 levels), attribution to one of the categories
created by users and information whether taking
a photo is required.

Fig. 15. Configuration list

The mission configuration is displayed above the
form in a table which contains all collected informa-
tion about created tasks and the last reported status.
The next benefit is the possibility to change the order
of tasks or delete them. Changing the configuration of
each task is possible through the same form through
which have added them. The option of filtering tasks
in a table is available by selecting: task status, type of
job, priority, required OPI, or user category.

Moreover, reporting the completion of a task
should be as simple as possible, because the operator
has many things to control. Our software limited this

77

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles 77

operation to selecting the tasks from a list and enter-
ing additional information only if it’s required. The
reporting form is shown in Fig. 16.

Fig. 16. Form for reporting the tasks completion

Choosing a specific task is followed by filling out
a form with the type of job and the next predicted
status based on current information. In the appli-
cation we distinguish the following states: ready
to start, start, in progress, done and canceled. The
user is able to change the robot’s mode or status if
it is required. For tasks requiring taking a photo, an
additional textbox appears asking to fill out its title
or generate a default name. Mostly, the operator se-
lects only the task and confirms it. In addition task
lists are connected through filters. That means that
only tasks visible in a table can be chosen. Last 50
reports of tasks are visible in one of the page tab in
a table with the same headers as in the configura-
tion table. Reports are sorted from the most recent
to the oldest.

Finally, the module takes into consideration the
current time and time when the last report of each
task occurred in order to evaluate if the plan is re-
alized. The application highlights the delays corre-
sponding to task start time and end time. This feature
is shown in Fig. 17.

Fig. 17. Table with planned and real start times

Delay calculations are skipped for the global task
which can be completed at any moment of the mission.
For other tasks their deadlines are the basis for this
calculation, the expected start time of a specific task
is the sum of deadlines of all of the preceding. During
the mission, the order of the task could be changed, in
such a situation software automatically recalculates
mission time. The delays corresponding to start time
in the plan are counted when a specific task has not
been switched to “in progress” or “done” status before
the assumed time. The duration of the task is counted
from “in progress” status to “done” status.

5.3. Report Generating Module
The report generating module is responsible

for preparing a report of the mission course which
should be readable for the end user. It involves a few
information to display: the GPS locations of POI and
the robot, photos of interesting items in chosen place,
actions taken during the mission at a specific mo-
ment, and their status. In this chapter we will show
the most important feature of this module which is
the possibility to display the whole mission as an an-
imation which provides clear information about ac-
tions taken in time.

In order to provide a suitable report, the mod-
ule converts logged mission data to KML (Keyhole
Markup Language) or KMZ (KML file after compres-
sion to ZIP file) format. Logged mission data is saved
as a .txt file which contains information about UTC
time of the events, GPS position and orientation of
robot, description, status, type of job and additional
information of each task, file name of photos in POI or
searched items. The KML format allows to display de-
tailed geographical data in an international standard
Open Geospatial Consortium (OGC). The details for
creating the report could be found in [18]. The KML
format could be used with Google Earth and World
Wind [19].

The generated report consists of one KMZ file and
three KML files. KMZ file is required because it con-
tains necessary photos and KML file provides GPS po-
sition and time when the photo was taken. The KML
files are responsible for displaying: only waypoints,
robot GPS navigation data with time and changing the
status of task on time during mission.

In the beginning, we will describe two KML files
(waypoint, navigation data) which provide the result
presented in the Fig. 18.

Fig. 18. Mission report with target points and robot
path

For displaying the red marker on maps in way-
point KML file we have used the following template
script (target points):
<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.2”>
<Document>
<Folder>
 <name>Waypoints</name>
 <Style id=”WP”>
 <IconStyle><color>ff0000ff</color></IconStyle>
 </Style>
 <Folder>
 <name>UAV-1</name>
 <Placemark>
 <name>1</name>

78

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles78

 <styleUrl>#WP</styleUrl>
 <Point>
 <coordinates>-
118.175659,33.923909,0</coordinates>
 </Point>
 </Placemark>
 </Folder>
</Folder>
</Document>
</kml>

In order to display more waypoints the script
should be extend only by:
 <Placemark>
 <name>1</name>
 <styleUrl>#WP</styleUrl>
 <Point>
 <coordinates>-
118.175659,33.923909,0</coordinates>
 </Point>
 </Placemark>

The script for displaying a robot’s path was almost
the same. One significant difference is in <Placemark>
which doesn’t have a name but contains timestamp
and heading. The <Placemark> structure is as follows:
 <Placemark>
 <description>Heading: 0.00</description>
 <styleUrl>#V1</styleUrl>
 <TimeStamp>
 <when>2018-05-31T17:45:02Z</when>
 </TimeStamp>
 <heading>0.00</heading>
 <Point>
 <coordinates>-
118.175659,33.923909,0</coordinates>
 </Point>
 </Placemark>

Displaying a green marker is realized by define
style id in <Folder>:
 <Style id=”V1”>
 <IconStyle><color>9900FF04</color></IconStyle>
 <LabelStyle><color>FF00FF04</color></LabelStyle>
 </Style>

The next KML file is responsible for displaying mis-
sion progress and the final status. The file contains,
for each reported change of task’s status, the proper
<Placemark> which includes information about its
name, task description, timestamp and position when
report occurred. These points are visible in the Fig.
19 e.g. the name of point “4s” means that task no. 4
has started in that place. <Placemark>s are grouped
by task id in separate folders and their structure is as
follows:
 <Placemark>
 <name>1d</name>
 <description>
 Mode:manual
 Task: gathering sample
 </description>
 <TimeStamp>

 <when> 2018-05-31T17:50:49Z</when>
 </TimeStamp>
 <Point>
 <coordinates>-
110.79298,38.3983,0</coordinates>
 </Point>
 </Placemark>

One advantage of this file is providing a table
(Fig. 19) which sums up all the tasks and displays the
last status of each task after the mission is located in
the description field in <Placemark> without times-
tamp, which is located in the start position of robot.
The description provides the legend of meaning for
each letter used to describe a point name.

Fig. 19. Task status in mission “Science Task”

For this feature we have to add the following script:
<table border=”1”>
 <tr style=”background-color: rgb(204, 255, 102);”>
 <td>Id task</td>
 <td>mode</td>
 <td>Last status</td>
 <td>Task</td>
 <td>Add info</td>
 </tr>
 <tr>
 <td>1</td>
 <td>manual</td>
 <td style=»background-color: red;»>failure</td>
 <td>gathering sample</td>
 <td></td>
 </tr>
 <tr>
 <td>2</td>
 <td>manual</td>
 <td style=»background-color: lime;»>done</td>
 <td> pile of rock to find</td>

 <td></td>
 </tr>
 //and the following rows
</table>

The last report file is a KMZ file and its aim is to
create proper <Placemark> with photos. On the map
the small pictures are visible but after opening them

79

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles 79

the user can see a bigger photo with description. Final
result are shown in Fig. 20.

Fig. 20. Photo visualization in Google Earth

To generate a KMZ file with photos, they have to
be placed in ”zd” directory in the same directory tree
as KML file. The structure of the file is shown below:
<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.2”>
<Document>
<Folder>
 <name>Object recognition Information</name>
 <Folder>
 <name>UGV-1</name>
 <Placemark>
 <description>
 <![CDATA[<img style=”max-width:500px;” src=”zd/
pile.jpg”>]]>
pile of
 rock</br>
 </description>
 <TimeStamp>
 <when>2018-05-31T17:47:59Z</when>
 </TimeStamp>
 <Point>
 <coordinates>-
110.792930,38.398331,0</coordinates>
 </Point>
 <Style>
 <Icon><href>zd/pile.jpg</href></Icon>
 </Style>
 </Placemark>
</Folder>
</Folder>
</Document>
</kml>

6. Conclusions
This paper presents the Mission Planner – our ap-

plication to support a mission coordinator, a person
preparing the structure of the robotic mission, keep-
ing an eye on mission progress, time and objectives,
and finally preparing report. Our approach is based
on LabVIEW technology, connected via ROS-bridge
with ROS system. This choice was strongly based on
expertise we had in LabVIEW used to control our
first mobile robot – Raptors Rover. Then, this graph-
ical software is very helpful to simultaneously build
a core application and user interface, which was very
important to quickly prepare a useful and supportive

environment. Mission Planner is composed of several
modules and was used for planning and management
tasks for multi domain robotic mission. The applica-
tion has graphical user interfaces to display the mis-
sion’s progress and broadcast its status to all robots
and control stations connected. Commands are sent
via text messages, therefore, robots in a team do not
need to use LabVIEW.

The application was tested on two robotic com-
petitions ERL Emergency and URC. Huge differenc-
es between competitions, forced us to customize the
software but with LabVIEW again it appeared to be
quite fast. Good documentation and a lot of toolboxes
was beneficial.

The application created on ERL allowed to coordi-
nate three different robots, working in different envi-
ronments which were controlled by various software.
In that time we managed to quickly create a system
architecture template and carry out successful tests.
We have used a simple solution of sending predefined
text messages to inform other operators about the
mission’s progress or problems. Using a list of such
messages further supported the mission controller
in reporting the status of the running task. Therefore,
in stressful situations the operator is able to report
faster on a task and the risk of mistakes is decreased.
Tasks are usually very complex (most teams are not
able to finish all of them), which means that reporting
should be simplified as much as possible, and auton-
omous tasks should be recorded automatically by the
robot. The latter functionality is very limited in our
system and it is still the operator’s responsibility to
confirm the robot’s and task’s status. Also the intro-
duction of new robots is too impractical now, because
it requires changes in program code and adding new
lines of communication to other ROS Masters. While
for several robots this is not a problem, for a larger
number of them this procedure will be boring and too
long.

In the second version (for URC) we have suc-
cessfully implemented some improvements, which
eliminated or reduced disadvantages mentioned be-
fore. Software was limited to the management and
control of the mission with one robot, according to
contest rules. Simplifying the user interface reduces
the time required to complete a single report to only
a few seconds. A report of the whole mission without
images can be generated within a few minutes after
its completion. A report with photos is generated
longer, because filenames are verified with names
in reports. This problem can be resolved by adding
a camera view to the software and when a task report
is created, the selected camera view is automatically
saved as an image. The timer and the delay indicator
are important elements showing the remaining time
to complete the mission and failure to comply with
previously agreed plan. This supported the operator
in controlling the plan and re-organizing tasks or-
der. Additionally, having the list of tasks to do, during
the complicated mission, the operator will not forget
about important tasks.

80

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles80

7. Future work
The experience gained during the competitions,

and verification of our application, led us to further
development of a distributed mission planning sys-
tem. Here are the most important requirements we
have identified and will use in the next version of the
application.

The current approach forces the operator to have
an additional computer (Win OS) for our application,
it increases the cost and amount of appliances oper-
ated by the user. This is an important disadvantage
especially when robots have to be controlled by only
one person. Therefore, the next app will be based on
web technologies and ROS. Running a local server
will allow us to use the application from any device
equipped with a browser, without the need to install
additional software on the client’s side. ROS would
be responsible for receiving and delivering the nec-
essary data to robots. For further research and soft-
ware development, we will continue with the sim-
ulation platforms Gazebo or V-rep [4] and turtlebot
robots.

The application should work stably after losing
connection with any device (station or robot). Time
synchronization will be introduced, which will allow
to update the mission plan for all robots and stations
without any time delays or shifts. To exchange infor-
mation between devices located close to each other, it
is worth to consider alternative ways of communica-
tion, which were described in [14].

We consider the solutions with a separate plan-
ning layer, a higher level will be responsible for the
implementation of the assumed goals, while a sepa-
rate lower level for planning the trajectory of robot
motion [2,3].

Moreover, robots connected to the system would
provide information about the equipment and modes
of implementation of particular tasks. The system
configuration should be minimized, therefore, based
on robot equipment and the configuration of the mis-
sion, the system could assign robots automatically
to individual tasks so that the plan can be optimally
implemented. Each task should have a specific cost
of execution depending on the selected robot. Due
to the dynamic changes in cost, it may be a good idea
to use the LRT Switchback algorithm [2]. Reporting
a malfunction or loss of communication should result
in a dynamic reconfiguration of the plan. In some sit-
uations, it turns out that binary logic is not enough
and it is necessary to specify additional states such
as contradiction or unknown. To this end, it is worth
using 4QL [1].

Another important possibility is displaying the ro-
bot’s location on the terrain map in real time together
with Lidar (or other sensors) readings – such infor-
mation can be helpful when entering or exiting build-
ing or traveling in narrow spaces.

As important as planning and coordination is re-
porting about mission results – especially in search
and rescue or inspection mission. Therefore we want
to provide the ability to generate a report not only in
KML/KMZ (requiring the GPS position), but in some
others user friendly formats especially for indoor

missions. The above mentioned ideas of using simu-
lators and sensor readings (in order to locate on the
indoor map) will be of crucial importance.

Acknowledgements
This work was partially supported by the Ministry
of Science and Higher Education under grant No.
MNiSW/2017/78/DIR/NN2.

AUTHORS
Grzegorz Granosik* – Lodz University of Technol-
ogy, Institute of Automatic Control, Stefanowskiego
18/22, Lodz, 90-924, e-mail: granosik@p.lodz.pl,
www: www.robotyka.p.lodz.pl.

Agnieszka Węgierska – Lodz University of Technol-
ogy, Institute of Automatic Control, Stefanowskiego
18/22, Lodz, 90-924, e-mail: agnieszka.wegierska@p.
lodz.pl, www: www.robotyka.p.lodz.pl.

Kacper Andrzejczak – Lodz University of Technol-
ogy, Institute of Automatic Control, Stefanowskiego
18/22, Lodz, 90-924, e-mail: kacper.andrzejczak@p.
lodz.pl, www: www.robotyka.p.lodz.pl.

Mateusz Kujawiński – Lodz University of Technol-
ogy, Institute of Automatic Control, Stefanowskiego
18/22, Lodz, 90-924, e-mail: mateusz.kujawinski@p.
lodz.pl, www: www.robotyka.p.lodz.pl.

*Corresponding author

REFERENCES

[1] Ł. Białek, A. Szałas, A. Borkowski, M. Gnatowski,
M. M. Borkowska, B. Dunin-Kęplicz, and J. Szklar-
ski, “Coordinating multiple rescue robots”, Prace
Naukowe Politechniki Warszawskiej. Elektronika,
vol. 194, 2014, 185–194.

[2] M. Przybylski, “Hierarchiczne planowanie akcji
robota usługowego w środowisku dynamicz-
nym”, Prace Naukowe Politechniki Warszawskiej.
Elektronika, vol. 194, 2014, 471–480.

[3] K. M. Mówiński and E. Roszkowska, “Sterowanie
hybrydowe ruchem robotów mobilnych w sys-
temach wielorobotycznych”, Prace Naukowe
Politechniki Warszawskiej. Elektronika, vol. 195,
2016, 255–264.

[4] “K. Dorer, Applications of multi-agent systems in
logistics”, gki.informatik.unifreiburg.de/teach-
ing/ws0809 /map/mas_lect10_dorer.pdf. Ac-
cessed on: 12.08.2019.

[5] “Ardupilot, Mission Planner Home”, ardupi-
lot.org/ planner/index.html. Accessed on:
12.08.2019.

mailto:granosik@p.lodz.pl
http://www.robotyka.p.lodz.pl
mailto:granosik@p.lodz.pl
mailto:granosik@p.lodz.pl
http://www.robotyka.p.lodz.pl
mailto:granosik@p.lodz.pl
mailto:granosik@p.lodz.pl
http://www.robotyka.p.lodz.pl
mailto:granosik@p.lodz.pl
mailto:granosik@p.lodz.pl
http://www.robotyka.p.lodz.pl

81

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Articles 81

[6] “European robotics league”, eu-robotics.net/ ro-
botics_league/erlemergency/about/index.html.
Accessed on: 12.08.2019.

[7] “ICARUS research project”, www.fp7-icarus.eu/.
Accessed on: 12.08.2019.

[8] S. Govindaraj, P. Letier, K. Chintamani, J. Gancet,
M. N. Jimenez, M. Á. Esbrı,́ P. Musialik, J. Bed-
kowski, I. Badiola, R. Gonçalves, A. Coelho,
D. Serrano, M. Tosa, T. Pfister, and J. M. Sanchez,
“Command and Control Systems for Search and
Rescue Robots”, Search and Rescue Robotics
– From Theory to Practice, 2017, 10.5772/in-
techopen.69495.

[9] M. Garzón, J. Valente, J. J. Roldán, D. Gar-
zón-Ramos, J. de León, A. Barrientos, and J. del
Cerro, “Using ROS in Multi-robot Systems: Expe-
riences and Lessons Learned from Real-World
Field Tests”. In: A. Koubaa, ed., Robot Operating
System (ROS). Studies in Computational Intelli-
gence, Springer, Cham, 2017, 10.1007/978-3-
319-54927-9_14.

[10] L. Iocchi, D. Nardi, and M. Salerno, “Reactivity
and Deliberation: A Survey on Multi-Robot Sys-
tems”. In: M. Hannebauer, J. Wendler, and E. Pa-
gello, eds., Balancing Reactivity and Social Delib-
eration in Multi-Agent Systems, BRSDMAS 2000.
Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2001, 9–32, 10.1007/3-540-
44568-4_2.

[11] “OMRON, LD Series – Self navigating Autono-
mous Intelligent Vehicle”, automation.omron.
com/en/us/ products/family/LD. Accessed on:
12.08.2019.

[12] “MiR, Mobile Industrial Robots”, www.mo-
bile-industrial-robots.com/en. Accessed on:
12.08.2019.

[13] “Google Developers, Keyhole Markup Language”,
developers.google.com/kml. Accessed on:
12.08.2019.

[14] “NASA, WorldWind”, worldwind.arc.nasa.gov.
Accessed on: 12.08.2019.

	_GoBack

