
Abstract:

1. Introduction
A continuous increase in the complexity, efficiency,

and reliability of modern industrial systems necessitates a
continuous development in the control and fault diagnosis
theory and practice (Blanke , 2003; Chen and Patton,
1999; Isermann, 2006; Korbicz , 2004; Kościelny,
2001; Rodrigues , 2007). These requirements extend
beyond the normally accepted safety-critical systems of
nuclear reactors, chemical plants or aircrafts, to new
systems such as autonomous vehicles or fast rail systems.
An early detection and maintenance of faults can help
avoid system shutdown, breakdowns and even
catastrophes involving human fatalities and material
damage.

The core of the fault detection and isolation system is
the so-called model-based approach. In the general case,
this concept can be implemented using various kinds of
models: analytical, knowledge-based and data-based ones
(Köppen-Seliger and Frank, 1999), which are used to model
a diagnosed system working in normal-operation or faulty
conditions. Conventional model-based fault detection
techniques make use of analytical or quantitative models
(Korbicz , 2004), mostly in the framework of observers
or Kalman filters (Chen and Patton, 1999; Witczak, 2007;
Zolghadri , 1996). The dynamic behaviour of the
system is described by differential equations or transfer
functions together with the respective parameter values.

The paper deals with the problems of robust fault
detection using analytical methods (observers and unknown
input observers) and soft computing techniques (neural
networks, neuro-fuzzy networks and genetic programming).
The model-based approach to Fault Detection and Isolation
(FDI) is considered. In particular, observers for non-linear
Lipschitz systems and extended unknown input observers are
discussed. In the case of soft computing techniques, the
main objective is to show how to employ the bounded-error
approach to determine the uncertainty of the GMDH and
neuro-fuzzy networks. It is shown that based on soft
computing models uncertainty defined as a confidence range
for the model output, adaptive thresholds can be defined.
The final part of the paper presents two illustrative examples
that confirm the effectiveness of the unknown input
observers and the neuro-fuzzy networks approaches.
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Unfortunately, the analytical model-based approach is
usually restricted to simpler systems described by linear
models. When there are no mathematical models of the
diagnosed system or the complexity of the dynamic model
increases and the task of modeling is hard, an analytical
model cannot be applied in the fault diagnosis system nor
give satisfactory results. Currently many efforts are made
to use knowledge-based or qualitative or data-based
models (Patton and Korbicz, 1999; Korbicz, 2006a). They
represent system behaviour in terms of heuristic or
qualitative knowledge (Frank, 1990; Korbicz, 2004). The
relationship between inputs and outputs may be described
by a rule base or by a set of parameters that have to be
determined during an identification stage based on the
learning data set. In this case data-based models, such as
neural networks (Korbicz , 1999), fuzzy sets (Frank
and Köppen-Seliger, 1997; Kowal, 2005), the evolutionary
algorithms (Chen and Patton, 1999; Obuchowicz, 2003;
Witczak , 2002) or their combination (Patton ,
2005; Korbicz , 2001), can be considered.

Irrespective of the modelling method used (analytical
or soft computing), there is always the problem of model
uncertainty, i.e., the model-reality mismatch. Thus, the
better the model used to represent system behaviour, the
better the chance of improving the reliability and
performance in diagnosing faults. Indeed, disturbances as
well as model uncertainty are inevitable in industrial
systems (Patton , 2006), and hence there exists a
pressure creating the need for robustness in fault diagnosis
systems. This robustness requirement is usually achieved at
the fault detection stage, i.e., the problem is to develop
residual generators which should be insensitive (as far as
possible) to model uncertainty and real disturbances
acting on a system while remaining sensitive to faults. In
one way or another, all the above-mentioned approaches
can realise this requirement for linear systems.

Taking into account the above conditions, a large
amount of knowledge on designing robust fault diagnosis
systems has been accumulated through the literature since
the beginning of the 1980s. For a comprehensive survey
regarding such techniques, the reader is referred to the
excellent monographs (Chen and Patton, 1999; Gertler,
1998; Korbicz , 2004; 2002; Patton , 2000). The
most common approach to robust fault diagnosis is to use
robust observers. This is mainly because of the fact that the
theory of robust observers is relatively well developed in
the control engineering literature.

The main objective of this survey paper is to present
recent developments in modern fault diagnosis with non-
linear observers, neural networks, neuro-fuzzy networks
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and genetic programming. In particular, the paper is
organised as follows: Section 2 outlines the problem of
observer-based robust fault diagnosis and presents two
different observer structures that can be employed for non-
linear systems. The genetic programming approach in
modelling of diagnosed systems in Section 3 is presented.
Section 4 presents alternative neural network-based
approaches that can be used to settle the fault diagnosis
problem when the mathematical state-space model is not
available. The neuro-fuzzy structure optimization problem
in Section 5 is considered. The subsequent Section 6
presents application of observer approach for fault
detection of an induction motor and neuro-fuzzy approach
in the diagnosis of an intelligent actuator.

2. Analytical models in fault detection
systems
The analytical redundancy of measurement line exists

when an additional value of process variable is obtained
using mathematical model that connects the calculated
variables with other measured signals. Analytical
redundancy is used for fault detection where the analytical
model of diagnosed system is most important part. In
general analytical models applied to fault detection can be
divided in following groups (Chen and Pattan, 1999;
Gertler, 1998; Korbicz , 2004):

physical models (equations of movement, balance
equations, etc.),
input-output type linear models (continuous or
discrete transmittances),
state linear and non-linear equations.
Among these models a special role belongs to state

space equations that are applied for designing of state
observers (Korbicz and Bidyuk, 1993).

The basic idea underlying observer-based (or filter-
based, in the stochastic case) approaches to fault
detection is to obtain the estimates of certain measured
and/or unmeasured signals. Then, in the most usual case,
the estimates of the measured signals are compared with
their originals, i.e., the difference between the original
signal and its estimate is used to form a residual signal

. To tackle this problem, many different
observers (or filters) can be employed, e.g., Luenberger
observers, Kalman filters, etc.

The admiration for observer-based fault detection
schemes is caused by the still increasing popularity of
state-space models as well as the wide usage of observers
in modern control theory and applications. Due to such
conditions, the theory of observers (or filters) seems be
well developed (especially for linear systems). This has
made a good background for the development of observer-
based FDI schemes.

Irrespective of the linear or non-linear FDI technique
being employed (Witczak, 2003), FDI performance will be
usually impaired by the lack of robustness to model
uncertainty. As can be observed in the literature (Chen and
Patton, 1999; Gertler, 1998; Korbicz et al., 2004; Patton et
al., 2000), the most common approach to robust fault
diagnosis is to use robust observers. In particular, the so-
called unknown input model uncertainty is mostly
preferred. The observer resulting from such an approach is

et al.

called the Unknown Input Observer (UIO). Although the
origins of UIOs can be traced back to the early 1970s (cf.
the seminal work of Wang (1975)), the problem of
designing such observers is still of paramount importance
both from the theoretical and practical viewpoints (Hui
and Żak, 2005). The main objective of the subsequent part
of this section is to present two unknown input observer
design strategies that can be employed for the Lipschitz
(Korbicz , 2007; Witczak and Korbicz, 2006; Witczak

, 2006b) and a general class of non-linear systems
(Witczak , 2002; 2006), respectively.

Let us consider Lipschitz systems that can be described
as follows:

(1)

(2)

where stands for the state vector, is the
output, is the input, and g ( ) and h( ) are non-
linear functions. Additionally, g ( ) satisfies

(3)

and > 0 stands for the Lipschitz constant.

Let us consider an observer for the system (1)-(2)
described by the following equation:

(4)

where denotes the state estimate and stands for the
gain matrix.

The subsequent part of this section shows theorem that
presents convergence conditions of (4). Following Thau
(1973), let us assume that the pair is observable. Let

, be a solution of the following Lyapunov
equation:

(5)

where is a stable matrix, i.e., , and .
Moreover, let and stand for the minimum and
maximum singular values of its argument, respectively.

(Witczak and Korbicz, 2006)

(6)

t

Unfortunately, the condition (6) may merely serve as a
method of checking the convergence, but the gain matrix

has to be determined beforehand. This means that the
design procedure boils down to selecting various gain
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Let us consider
the observer (4) for the systems described by (1)-(2). If the
Lipschitz constant (cf. (3)) satisfies

hen the observer (4) is asymptotically convergent.

2.1. Observers for non-linear Lipschitz systems

Theorem 1.
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matrices , solving the Lyapunov equation (5), and then
checking the convergence condition (6). There is no doubt
that this is an ineffective and inconvenient approach.

To tackle such a challenging problem, an effective
design procedure was proposed in (Witczak and Korbicz,
2006), which can be written as follows:

Obtain for (1)-(2).

Solve a set of linear matrix inequalities:

(7)

(8)

(9)

Obtain the gain matrix .

In the next part of this section a straightforward
approach for extending the techniques proposed in the
preceding sections to discrete-time Lipschitz systems with
unknown inputs is presented. The system can be described
as follows

(10)

(11)

where is the unknown input, and is a known
unknown input distribution matrix. In order to use the
techniques described above for state estimation of the
system (10)(11), it is necessary to introduce some
modifications concerning the unknown input. Let us
assume that

(12)

(see (Chen and Patton, 1999, p. 72, Lemma 3.1). If the
condition (12) is satisfied, then it is possible to calculate

, where stands for the pseudo-
inverse of its argument. By multiplying (11) by H and then
inserting (10), it can be shown that

(13)

where

Thus, the unknown input observer for (10)-(11) is given as
follows:

(14)

A simple comparison of (1) and (13) leads to the
conclusion that the observer (14) can be designed with the

Step 1:

Step 2:

Step 3:

above-mentioned three-step procedure, taking into
account the fact that:

(15)

and assuming that the pair is observable.

Let us consider a non-linear discrete-time system
described by

(16)
(17)

where is the unknown input, and is the known
matrix. Using the similar approach as in Section 2.1, it can
be shown (Witczak , 2006) that the structure of the
so-called Extended Unknown Input Observer (EUIO) is

(18)

where

(19)

As a consequence, the algorithm used for state
estimation of (16)(17) can be given as follows:

(20)

(21)

(22)

(23)

(24)

where

(25)

Employing the Lyapunov approach to convergence
analysis of the EUIO it can be proved that the domain of
attraction significantly depends on the covariance
matrices and of the process and measurement

noise, respectively. Unfortunately, an analytical
derivation of the and matrices seems to be an
extremely difficult problem. However, it is possible to set
the above matrices as with and
large enough. On the other hand, it is well-known that the
convergence rate of such an Extended Kalman Filter (EKF)-
like approach can be increased by an appropriate selection
of the covariance matrices and , i.e., the more
accurate (near ”true“ values) the covariance matrices, the
better the convergence rate. This means that in the
deterministic case ( = 0 and = 0) both matrices

2.2. Extended unknown input observers
and genetic programming

,

,
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should be zero. Unfortunately, such an approach usually
leads to the divergence of the observer as well as to other
computational problems. To tackle these difficulties, a
compromise between the convergence and the
convergence rate should by established.

Using (23), the state estimation error (for fault-free
mode) can be given as

(26)

and

(27)

where is an unknown diagonal
matrix. Thus, using (27), the equation (26) becomes

(28)

It is clear from (27) that represents the linearisation
error. First, let us define

(29)

(Witczak , 2006)

(30)

It is clear from (30) that the bound of can be
maximised by suitable settings of the instrumental
matrices and . This can be realised as follows (Witczak

, 2006):

(31)

(32)

with and are large and small enough,
respectively. On the other hand the instrumental matrices
can be set as follows:

(33)

(34)

where and are nonlinear functions of the output
error (the squares are used to ensure the positive
definiteness of and ). Thus, the problem reduces to
identifying the above functions. To tackle this problem,
Genetic Programming (GP) (Obuchowicz, 2003; Koza,
1992) can be employed. The unknown functions and

can be expressed as a tree. Thus, in the case of
and , the terminal sets are and ,

respectively. In both cases, the function set can be defined

Theorem 2. et al. If

where 0 < < 1, then the proposed extended unknown input
observer is locally asymptotically convergent.

et al.

as , where is a nonlinear univaria-
te function and, consequently the number of populations is

. Since the terminal and function sets are given, the
GP approach can be easily adapted for the identification
purpose of and . First, let us define the performance
index including a necessary ingredient of the and
selection process.

Since the instrumental matrices should be chosen in
order to maximize the convergence rate, we have

(35)

where

On the other hand, owing to FDI requirements, it is
clear that the output error should be closed to zero in the
fault free mode. In this case, one can define another
performance index:

(36)

where

(37)

Therefore, in order to couple (35) and (36), the
following identification criterion is employed:

(38)

Since the identification criterion is established, it is
straightforward to use the GP algorithm.

The numerical example considered here is a fifth-order
two-phase nonlinear model of an induction motor
(Boutayeb and Aubry, 1999). Moreover, the following three
cases concerning the selection of and were
considered:

Classical approach (constant values), i.e.,
= 0.1, = 0.1.

Selection supported by an analytical consideration:

GP-based approach.In order to obtain the matrices
and using the GP-based approach (Case 3) (Witczak

and Korbicz, 2004), a set of = 300 input-output
measurements was generated. The simulation results (for
all the cases) are shown in Fig. 1 (Witczak , 2002).
It can be seen, that the proposed approach is superior to
the classical technique of selecting the instrumental
matrices and .

.trace

Case 1:

Case 2:

Case 3:

et al.
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Fig. 1. State estimation error norm for Case 1 (dash-dotted line),

Case 2 (dotted line) and Case 3 (solid line)

3. Genetic programming in modelling
Although there are many techniques for constructing

non-analytical models, in one way or another, they finally
boil down to several global optimization problems, like
searching for an optimal model structure, the allocation of
model parameters etc. They are nonlinear, multi-modal,
usually multi-objective, so that conventional “local”
optimization methods are insufficient to solve them. In
recent years, direct search techniques, which are problem-
independent, have been widely used in optimization.
Unlike calculus-based methods (gradient descent, etc.),
direct search algorithms do not require the use of
derivatives. Gradient-descent methods work well when the
objective surface is relatively smooth, with few local
minima. However, real-world data are often multimodal
and contaminated by noise which can further distort the
objective surface.

Evolutionary Algorithms (EAs) are a broad class of
stochastic optimization algorithms inspired by some
biological processes which allow populations of organisms
to adapt to their surrounding environment (Goldberg,
1989; Michalewicz, 1996; Obuchowicz, 2003). Genetic
Programming (GP) (Koza, 1992; Obuchowicz, 2003) is an
extension of EAs. The main difference between these two
approaches is that in GP the evolving individuals are parse
trees rather that fixed-length binary strings (Kowalczuk
and Białaszewski, 2006).

The set of possible candidate models from which the
system model will be obtained constitutes an important
preliminary task in any system identification procedure
(Nelles, 2001; Walter and Pronzato, 1997; Janczak, 2005).
Knowing that the diagnosed system exhibits nonlinear
characteristics, a choice of the nonlinear model set must be
made. In this section, an NARX (

) model was selected as the
foundation for identification methodology. Let a Multi-
Input and Multi-Output (MIMO) NARX model has the
following form:

3.1. Input-output representation of the system
via GP

Nonlinear AutoRegresive
with eXogenous variable

(39)

Thus the system output is given by

(40)

where consists of a structural deterministic error, caused
by the model-reality mismatch, and the measurement
noise . The problem is to determine an unknown function

= and to estimate the corresponding
parameters vector .

One possible solution to this problem is the genetic
programming approach. A tree is the main ingredient
underlying the GP algorithm. In order to adapt GP to
system identification it is necessary to represent the model
(39) as a tree, or a set of trees. Indeed, as is shown in Fig.
2, the Multi-Input and Single-Output (MISO) NARX model
can be easily put in the form of a tree, and hence to build
the MIMO model (39) it is necessary to use m trees. In such
a tree, two sets can be distinguished, namely, the terminal

and function sets. The language of the trees in GP is
formed by the user-defined function set and the terminal

set, which form the nodes of the trees.

The functions should be chosen so that they are
useful in solving the problem, i.e., any knowledge
concerning the system under consideration should be
included in the function set. This function set is very
important and should be universal enough to be capable of
representing a wide range of nonlinear systems. The
terminals are usually variables or constants. In (Esparcia-
Alcazar, 1998), a tree representation is extended by the so-
called . A node gain is a numerical parameter
associated with the node, which multiplies its output
value.

T F
F

T

a priori

node gains

Fig. 2. Exemplary GP tree representing the model
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One of the best known criteria which can be employed
to select the model structure and to estimate its
parameters is the Akaike Information Criterion (AIC)
(Walter and Pronzato, 1997), where the following quality
index is minimized:

(41)

where

(42)

and are the obtained using the
identification data set of nT pairs of input/output
measurements. The GP algorithm was successfully applied
to identify the input-output model of the evaporation
station at the Lublin Sugar Factor S.A. (Poland)
(DAMADICS, 2002). Figure 3 illustrates the obtained results
(Witczak , 2002).

The solution of the diagnosed system modeling
presented in the previous subsection possesses a dis-
advantage. Usually, the parameters of the obtained GP
model have no physical interpretations. Here a nonlinear
state observer designing methodology based on the
classical approach and a GP technique and proposed by
Witczak and co-workers (2002) is presented. Consider the
nonlinear discrete system

(43)

where is the input, is the output, is the state,
and vk represent the process and measurement noise, and

are nonlinear functions.

The problem is to estimate the state of the system
(43), where a set of measured inputs and outputs and the
model of the system are given. The classical methods using

Fig. 3. System (solid line) and model (dashed line) output for the

identification (left) and validation (right) data sets

et al.

3.2. Choice of the gain matrix for the robust
nonlinear observer

different kinds of approximation are often applied (Korbicz
and Bidyuk, 1993), and can be given as follows:

(44)

(45)

where denotes the output error, is an a priori
state estimate, is a state estimate and is the gain
matrix.

The gain matrix of the observer (44)-(45) can be
searched for by various methods (e.g., the Kalman filter,
the Luenberger observer, etc.) which, in a large majority,
consist of constant elements and are not robust to model
uncertainties. In (Witczak , 1999), the gain matrix is
composed of certain functions, i.e., each entry of the gain
matrix is a function which depends on the output
error and the system input. Therefore, it can be written as
follows:

(46)

Thus the main goal is to obtain an appropriate form of
based on a set of measured outputs and inputs and

the mathematical model of the system. Even if the
mathematical model is uncertain and/or the initial state is
far from its expected value, it seems possible to obtain

to ensure the best fitness to the real system. For
that purpose, a GP technique is exploited, where the gain
matrix is obtained off-line from a randomly created
population by means of an evolutionary process.

Let us consider the following class of nonlinear
discrete-time systems:

(47)

(48)

Assume that the function has the form

(49)

Thus, the state-space model of the system (47) can be
expressed as

(50)

(51)

Without loss of generality, it is possible to assume that

(52)

The problem reduces to identifying the nonlinear
functions , and the matrix .
Assuming , it can be shown (Witczak

, 2002) that the model (50) is globally asymptotically

a priori

et al.

a priori

et al.

3.3. GP approach to the state-space represen-
tation of the system
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stable. This implies that should have the following
structure:

(53)

where is a hyperbolic tangent function, and is a
function to be determined.

In order to identify and the
matrix C, the GP algorithm is applied. The fitness function
is defined by (41)-(42).

The GP algorithm was successfully applied to build a
model of the apparatus at the Lublin Sugar Factor S.A.
(Poland) (DAMADICS, 2002). Figure 4 illustrates obtained
results (Witczak , 2002).

For the model-based approach (Korbicz , 2004;
2002; Patton , 2000), the neural network replaces the
analytical model that describes the process under the
normal operating conditions (Frank and Köppen-Seliger,
1997; Korbicz, 2006; Patan , 2005; Patton ,
2005). First, the network has to be trained to settle this
task. Learning data can be collected directly from the
process, if possible, or from a simulation model that should
be as realistic as possible. The latter possibility is of special

Fig. 4. System (solid line) and model (dashed line) output for the

identification (left) and validation (right) data sets

et al.

et al.
et al.

et al. et al.

4. Neural networks in fault detection

interest for data acquisition in different faulty situations.
This is especially important for the task of testing the
residual generator because such data are not generally
available from the real process. The training process can be
carried out off-line or on-line (it depends on the
availability of data) (Gupta , 2003; Osowski, 2006;
Tadeusiewicz, 1993).

The possibility to train a network on-line is very
attractive, especially in the case of adapting a neural
model to mutable environment or time-varying systems.
After finishing the training, a neural network is ready for
on-line residual generation. In order to be able to capture
the dynamic behaviour of the system, the neural network
should have dynamic properties (Gupta , 2003;
Norgard , 2000; Patan, 2007), e.g., it should be
a recurrent network.

Residual evaluation is a decision-making process that
transforms quantitative knowledge into qualitative Yes or
No statements. It can also be perceived as a classification
problem. The task is to match each pattern of the symptom
vector with one of the pre-assigned classes of faults and
the fault-free case. This process may be highly facilitated
with intelligent decision making. To perform residual
evaluation, neural networks can be applied, e.g., feed-
forward networks or self-organizing maps (Haykin, 1999;
Korbicz , 1994).

As was mentioned in Section 2, when non-linear state
space models are available, fault diagnosis can be realised
by using the concept of an unknown input observer.
Unfortunately, when the direction of faults is similar to
that of an unknown input, then the unknown input
decoupling procedure may considerably impair fault
sensitivity. If the above-mentioned approach fails, then
describing model uncertainty in a different way seems to
be a good remedy. One of the possible approaches is to use
statistical techniques (Atkinson and Donev, 1992; Walter
and Pronzato, 1997) (for an example regarding different
approaches, the reader is referred to (Delebecque ,
2003)) to obtain parameter uncertainty of the model and,
consequently, model output uncertainty. Such parameter
uncertainty is defined as the parameter confidence region
containing a set of admissible parameters that are
consistent with the measured data. Thus it is evident that
parameter uncertainty depends on measurement
uncertainty, i.e., noise, disturbances, etc.

The knowledge about parameter uncertainty makes it
possible to design the so-called adaptive threshold (Frank
et al., 1999). The adaptive threshold, contrary to the fixed
one, bounds the residual at a level that is dependent on
model uncertainty, and hence it provides a more reliable
fault detection.

Contrary to the typical industrial applications of neural
networks that are presented in the literature (Karpenko

, 2003; Korbicz , 2004; Mrugalski and Korbicz,
2006). Witczak (2006a) defined the task of designing
a neural network in such a way as to obtain a model with a
possibly small uncertainty. Indeed, the approaches pre-
sented in the literature try to obtain a model that is best
suited to a particular data set. This may result in a model

et al.

et al.
et al.

et al.

et al.

et
al. et al.

et al.

4.1. Robust model-based approach
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with a relatively large uncertainty. A degraded perfor-
mance of fault diagnosis constitutes a direct consequence
of using such models.

To tackle this challenging problem for non-linear
dynamic systems, the GMDH (Group Method of Data
Handling) approach (Ivakhnenko and Mueller, 1995;
Korbicz and Mrugalski, 2007) can be effectively adapted
(Witczak , 2006a). A complete design procedure
concerning the application of GMDH neural networks to
robust fault detection is proposed. Starting from a set of
input-output measurements of the system, it is shown how
to estimate the parameters and the corresponding
uncertainty of a neuron using the so-called bounded-error
approach (Milanese , 1996; Walter and Pronzato,
1997). As a result, they obtained a tool that is able to
generate an adaptive threshold. The methodology
developed for parameter and uncertainty estimation of a
neuron makes it possible to formulate an algorithm that
allows obtaining a neural network with a relatively small
modelling uncertainty. All the hard computations
regarding the design of the GMDH neural network are
performed off-line, and hence the problem regarding the
time-consuming calculations is not of paramount
importance.

As has been mentioned, the reliability of such fault
diagnosis schemes is strongly dependent on model
uncertainty, i.e., the mismatch between a neural network
and the system being considered. Thus, it is natural to
minimise model uncertainty as far as possible. This can be
realised with the application of Optimum Experimental
Design (OED) theory (Atkinson and Donev, 1992; Uciński,
2005; Walter and Pronzato, 1997). Recently, Witczak
(2006b) developed a D-optimum experimental design
strategy that can be used for training single-output neural
networks.

A successful
application of the ANNs to the system identification and
fault diagnosis tasks (Korbicz , 2001) depends on a
proper selection of the neural network architecture. In the
case of the classical ANNs such as Multi-Layer Perceptron
(MLP), the problem reduces to the selection of the number
of layers and the number of neurons in a particular layer. If
the obtained network does not satisfy prespecified
requirements, then a new network structure is selected and
parameter estimation is repeated once again. The
determination of the appropriate structure and parameters
of the model in the presented way is a complex task.
Furthermore, an arbitrary selection of the ANN structure
can be a source of model uncertainty. Thus, it seems
desirable to have a tool which can be employed for
automatic selection of the ANN structure, based only on
the measured data. To overcome this problem, GMDH
neural networks (Ivakhnenko and Mueller, 1995; Mrugalski,
2004; Mrugalski and Korbicz, 2005) have been proposed.
The synthesis process of the GMDH model is based on
iterative processing of a sequence of operations. This
process leads to the evolution of the resulting model
structure in such a way as to obtain the best quality
approximation of the identified system. Thus, the task of
designing a neural network is defined in such a way so as to
obtain a model with a small uncertainty.

et al.

et al.

et al.

Robust GMDH neural networks.

The idea of the GMDH approach relies on replacing the
complex neural model by the set of hierarchically
connected neurons. The behaviour of each neuron should
reflect the behaviour of the system being considered. It
follows from the rule of the GMDH algorithm that the
parameters of each neuron are estimated in such a way that
their output signals are the best approximation of the real
system output. In this situation, the neuron should have
the ability to represent the dynamics. One way out of this
problem is to use dynamic neurons (Korbicz and Kuś, 1999;
Patan and Parisini, 2005). Dynamics in these neurons are
realised by introducing a linear dynamic system an IIR
filter. The process of GMDH network synthesis leads to the
evolution of the resulting model structure in such a way as
to obtain the best quality approximation of the real system
(Mrugalski, 2004; Witczak , 2006a).

To obtain the final structure of the network, all unnece-
ssary neurons are removed, leaving only those which are
relevant to the computation of the model output. The
procedure of removing the unnecessary neurons is the last
stage of the synthesis of the GMDH neural network.

.
Even though the application of the GMDH approach to
model structure selection can improve the quality of the
model, the resulting structure is not the same as that of the
system. It can be shown (Mrugalski, 2004) that the
application of the classical evaluation criteria such as the
Akaike Information Criterion (AIC) and the Final Prediction
Error (FPE) (Ivakhnenko and Mueller, 1995; Mueller and
Lemke, 2000) can lead to the selection of inappropriate
neurons and, consequently, to unnecessary structural
errors.

Apart from the model structure selection stage, inaccu-
racy in parameter estimates also contributes to modelling
uncertainty. Indeed, while applying the least-square
method to parameter estimation of neurons, a set of
restrictive assumptions has to be satisfied (Witczak ,
2006a). An effective remedy to such a challenging problem
is to use the so-called Bounded Error Approach (BEA)
(Milanese , 1996; Witczak , 2006a). Let us
consider the following system:

(54)

where stands the regressor vector, denotes the
parameter vector, and represents the difference
between the original system and the model.

The problem is to obtain the parameter estimate vector
, as well as the associated parameter uncertainty required

to design robust fault detection system. The knowledge
regarding the set of admissible parameter values allows
obtaining the confidence region of the model output which
satisfies

(55)

where and are the minimum and maximum
admissible values of the model output that are consistent
with the input-output measurements of the system.

et al.

et al.

et al. et al.

Confidence estimation of GMDH neural networks
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It is assumed that consists of a structural
deterministic error caused by the model-reality mismatch,
and the stochastic error caused by the measurement noise
is bounded as follows:

(56)

where the bounds and can be estimated
(Witczak , 2006a).

The idea underlying the bounded-error approach is to
obtain a feasible parameter set (Milanese et al., 1996)
that is consistent with the input-output measurements
used for parameter estimation. The resulting is described
by a polytope defined by a set of vertices . Thus, the
problem of determining the model output uncertainty can
be solved as follows:

(57)

where

(58)

As has been mentioned, the neurons in the -th (l > 1)
layer are fed with the outputs of the neurons from the
( - 1)-th layer. In order to modify the above-presented
approach for the uncertain regressor case, let us denote an
unknown “true” value of the regressor by a difference
between the measured value of the regressor rk and the
error in the regressor :

(59)

where it is assumed that the error is bounded as

(60)

Using (54) and substituting (59) into (60), one can
define the space containing the parameter estimates:

(61)

which makes it possible to adapt the above-described
technique to the error-in-regressor case (Witczak ,
2006a).

The proposed modification of the BEA makes it possible
to estimate the parameter vectors of the neurons from the
-th, > 1 layers. Finally, it can be shown that the model
output uncertainty has the following form:

(62)

In order to adapt the presented approach to parameter
estimation of non-linear neurons with an activation
function , it is necessary to transform the relation

(63)

using and hence

et al

l

l

et al.

l l

(64)

Knowing the model structure and possessing the
knowledge regarding its uncertainty, it is possible to
design a robust fault detection scheme with an adaptive
threshold (Fig. 5).

The model output uncertainty interval, calculated with
the application of the GMDH model, should contain the real
system response in the fault-free mode. Therefore, the
system output should satisfy

(65)

This means that robust fault detection boils down to
checking if the output of the system satisfies (65). Thus,
when (65) is violated, then a fault symptom occurs.

The procedure of Neuro-Fuzzy (NF) network design
consists of the structure selection stage and the parameter
estimation stage (Korbicz and Kowal, 2001; Rutkowska,
2002; Rutkowski, 2005; Piegat, 2003). The pessimistic
scenario assumes the construction of the neuro-fuzzy
network only on the basis of the available measurements.
The main problem is to obtain the required accuracy and
transparency of the rule base in such a situation. A lot of
different methods have already been developed both for
structure selection and parameter estimation of the neuro-
fuzzy network, but there is a demand for better, more
effective algorithms, and active research is still conducted
in this area.

Takagi-Sugeno neuro-fuzzy networks can be viewed as
multi-model systems which consist of some rules, and each
rule defines a single model as the consequent of the rule
(Babuška, 1998; Kowal and Korbicz, 2002a; 2002b; 2003;
Uppal , 2006). The global neuro-fuzzy system is a set
of Nr partial models, where Nr determines the number of
fuzzy rules. The output of the global system is calculated as
a mixture of partial model outputs. The rule fulfillment is
determined by fuzzy sets. In order to ensure the desired
accuracy of the neuro-fuzzy system, the membership
functions of fuzzy sets must be placed properly in the input
space, the number of rules must be appropriate and the
parameters of partial models must be chosen to minimize
the defined error.

Fig. 5. Illustration of the concept of the adaptive threshold

5. Neuro-fuzzy networks in fault detection

et al.
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Two main strategies for placing fuzzy sets in the input
space can be distinguished: the first one proposes to
minimize the output error of the global model (Leith and
Leithead, 1999), and the other one is based on partial
models that model the local behavior of the system (Abonyi

, 2002). A typical property of the first approach is to
arrange fuzzy sets in the input space in such a way that all
partial models are active in the whole domain of input
variables. In this case, the accuracy of the global model is
guaranteed by the proper mixture of partial model outputs.
The alternative approach does not examine the global
accuracy of the model but concentrates on partial models,
which should tune in to the local behavior of the system.
The problem of rule base declaration reduces to the
determination of the number of rules required for a precise
description of the problem to be solved.

The simplest method used to determine the number of
rules is based on generating a uniformly distributed grid of
rules in the input space. The usage of such an approach is
limited only to simple systems with a small number of
inputs. The approach does not work well for more
complicated systems because it generates a combinatorial
explosion of rules, which make this method useless. Fuzzy
clustering algorithms are another technique which is often
used for fuzzy rule generation (Babuška, 1998; Chen ,
1998; Kowal , 2002; Mendes , 2002). The idea of
this approach is to find natural groups of data in order to
apply to each group one fuzzy rule. It seems to be natural
to use fuzzy clustering algorithms in the case of neuro-
fuzzy networks. The task of fuzzy clustering is usually
reduced to finding the local minimum of the nonlinear cost
function, defined by the following expression:

(66)

where the matrix U contains the membership degrees of
data points from the matrix to the defined clusters

is a matrix which defines the
centers of the clusters, is a metric used to determine the
distance between the data points and the cluster centers:

(67)

and the parameter takes values from 1 to oo and
determines the degree of fuzziness of the clusters. The cost
function (66) can be viewed as a total variance of the data

with respect to the cluster centers . The matrix
which occurs in the expression (67) is used to tune the
shape and orientation of the clusters in the space.

The fuzzy clustering algorithm which uses such a norm
to calculate the distance between data points and cluster
centers is called (FCM). However, the number
of the found clusters strongly depends on the values of
coefficients, which must be defined by the designer at the
beginning of the procedure, so the application of the
algorithm is difficult. Two clustering algorithms were
applied to built the model of the valve which is a part of the
industrial installation of the Lublin Sugar Factory
(DAMADICS, 2002). The learning procedure of the Takagi-

et al.

et al.
et al. et al.

Fuzzy C-Mean

Sugeno neuro-fuzzy network was divided into two
phases. In the first step, clustering methods were used to
optimize the network structure and prepare the initial
values of the parameters. In the second step, the gradient
descent method was used to tune all parameters. Two
clustering algorithm were used in the first step: the
mountain method and the fuzzy C-mean algorithm (Kowal

, 2002; Mendes , 2002). Sample results are shown
in Fig. 6.

The application of neuro-fuzzy networks in diagnostic
areas (Calado , 2006) creates a demand for suitable
design procedures which would take into account the
specificity of the fault diagnosis task. An important
problem from the diagnostic point of view is residual
confidence interval minimization because it makes it
possible to detect a fault appropriately early. It has to be
stressed that the value of the confidence interval for
residuals depends directly on the uncertainty of the model
which is used to generate the residuals. If the confidence
interval is not consistent with model uncertainty, the fault
detection system can trigger off a lot of false alarms. It is
obvious in such a situation that model uncertainty has to
be considered in fault detection threshold calculations
(Chen and Patton, 1999; Mrugalski, 2003; Witczak, 2003).
It is also important to minimize model uncertainty in order
to obtain a reliable fault detection system that would be
able to detect a fault fast and at an early stage, so special
procedures for neuro-fuzzy model design must be
developed.

To overcome the problem, an alternative approach in
the form of the Bounded Error Approach (BEA) method can
be applied to tune the parameters of the Takagi-Sugeno
neuro-fuzzy network and to calculate the admissible set of
parameters and the confidence interval for the network
output. The method requires only the information about
the range of the disturbances which corrupt measure-
ments. The application of the BEA algorithm for computing
the confidence interval of the Takagi-Sugeno fuzzy model
output requires to establish some assumptions in order to
view the model in the form of an LP system (Kowal, 2005;
Kowal and Korbicz, 2005a). The main assumption based on

et al. et al.

et al.

Fig. 6. Performance of the TSK neuro-fuzzy model for the valve V (SSE / N.°

of samples = 6.774)
51

5.1. Robust neuro-fuzzy networks
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the fact that the parameters of the membership functions
of the fuzzy sets are known. Appropriate selection of the
values of these parameters has an essential influence on
the uncertainty of the whole fuzzy model. Wrong values of
these parameters can significantly increase model
uncertainty, thus the model can be unsuitable for
diagnostic tasks.

In the proposed approach the clustering algorithm is
used to determine the ellipsoid clusters in the input-
output space in order to generate for each found cluster
one local linear submodel and to determine the parameters
of the fuzzy partitions by cluster projection (Babuška,
1998). Another approach is based on the detection of
approximately linear dependencies in the data space using
a modified BEA (Kowal, 2005; Kowal and Korbicz, 2005a;
2005b). The algorithm consists in the generation of a
single rule for each found linear dependency and allows the
parameters of fuzzy partitions.

In order to present the BEA approach for estimating the
parameters of the determining dynamic Takagi-Sugeno
(T-S) network, let us consider the following T-S neuro-fuzzy
model:

(68)

where is the output of the rule and

(69)

The model described by the equation (68) can be
viewed in the form of an LP system:

(70)

if the parameters of the fuzzy sets are treated like constant
values. Here denotes the inputvector containing the
delayed inputs of the local models and the delayed
output of the local models, i.e.:

The output error is given by the following formulae:

(71)

where is the error and is the output of the system. The
error is bounded by means of the following inequalities:

(72)

.

thus the admissible set of parameters for data points is
given by the following expression:

(73)

Each point inside the set P defines the vector of model
parameters and all sets of parameters determine the group
of models consistent with the measurements and bounds.
This means that, instead of one model, a set of models with
different parameters is given and the output signal is
represented in the form of an interval which contains all
possible model responses. Real applications usually require
a single output value, thus one set of parameters must be
chosen. The most common approach chooses the
geometrical center of the area P as the set of parameters
that is used to calculate the output of the model. This
sample procedure is shown in Fig. 7. If the maximum and
minimum values of the parameters are known,

(74)

(75)

the estimates of the parameters can be computed using
the following formula:

(76)

The minimum and maximum values for the following
parameters are determined using the linear programming
technique (Milanese , 1996). The feasible set of
parameters is used also to compute the confidence interval
for the output of the system:

(77)

where

(78)

(79)

Fig. 7. Sample set of parameters

et al.
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The confidence interval can be directly applied to
calculate the adaptive threshold for the residual signal:

(80)

Finally, the adaptive threshold is described by the
following inequalities:

(81)

Unfortunately, the computations required to determine
all vertices W of the convex polyhedron P are so time and
memory consuming that it is hard to employ the classical
BEA algorithm for complicated models. In this case the
methods that approximate the actual set P by the area
which has a simplified shape should be employed (Milanese

, 1996). One of the proposed solution is the Outer
Bounding Ellipsoid method which has been applied to fault
detection in a DC engine (Kowal, 2005; Kowal and Korbicz,
2006).

The main objective of this section is to presents two
examples which ilustrate the effectiveness of the
approaches described in the proceding sections. In
particular, the first example is devoted to robust fault
diagnosis of an induction motor with the extended
unknown input observer. The second one concerns the fault
detection of an intelligent actuator with the Takagi-
Sugeno network.

The numerical example considered here is a fifth-order
two-phase non-linear model of an induction motor, which
has already been the subject of a large number of various
control design applications (Boutayeb and Aubry, 1999).
The complete discrete-time model in a stator-fixed
reference frame is

(82)

(83)

(84)

(85)

(86)

(87)

where
represents the currents, the rotor fluxes, and the angular
speed, respectively, while is the stator
voltage control vector, is the number of the pairs of poles,
and is the load torque. The rotor time constant and the
remaining parameters are defined as

(88)

et al.

6. Illustrative examples

6.1. Observer-based fault detection of an induc-
tion motor

where and are stator and rotor per phase
resistances and inductances, respectively, and is the
rotor moment inertia.

The numerical values of the above parameters are as
follows: , , ,

, , , a n d
. The input signals are

(89)

The initial conditions for the system and the
observer are , and

,

(90)

Let us assume that the unknown input distribution
matrix is

(91)

and the corresponding unknown input is simulated by

(92)

Thus, the system (16)(17) is described using (82)-(87)
and 88. The following fault scenarios were considered
(Witczak, 2007):

Abrupt fault of the sensor:

(93)

Abrupt fault of the actuator:

(94)

Thus, the system is now described by

(95)

(96)

with (82)-(87), 88, , and

(96)

From Figs. 8 and 9, it can be observed that the residual
signal is sensitive to the faults under consideration, which
confirms its reliability and abilities of unknown input
decoupling.

Case 1:

Case 2:

Articles18

VOLUME 1,     N 1° April 2007Journal of Automation, Mobile Robotics & Intelligent Systems



This, together with unknown input decoupling, implies
that the process of fault detection becomes a relatively
easy task.

Fig. 8. Residuals for a sensor fault

Fig. 9. Residuals for an actuator fault

Fig. 10. Scheme of the intelligent actuator

6.2. Neuro-fuzzy-based fault detection of an
intelligent actuator

The scheme of the actuator with an intelligent
positioner is given in Fig. 10. Such actuator has been
investigated by international research group guring the
realization of the so-called DAMADICS (2002) project. In
the Fig. 10 the following notations are used: , and
arecut-off valves, ACQ is a data acquisition unit, CPU is a
positioner central processing unit, E/P is an electro-
pneumatic transducer, and DT, PT and FT denoted is place-
ment, pressure and volume flow tranducers, respectively.
For remote on-line diagnostics, the following measured
variables are accessible: the flow rate of juice after the
control valve (F), the actuator's rod displacement (X), the
input set- point (CV), juice temperature at the input of the
control valve (T1), and juice pressures at the input and
outlet of the control valve, respectively (P1 and P2).

Applying the method for structure generation of NF
models (Kowal, 2005; Kowal and Korbicz, 2005b) and the
results presented in Sub-section 5.1, two NF models can be
defined. The obtained structures are described in Table 1.

V1 V2 V3
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Table 1. Neuro-fuzzy models

Fig. 12. Residual and adaptive threshold (big fault)

The parametres of fuzzy sets were estimated from the
results obtained during structure generation and the
parameters of the consequents were estimated using the
OBE algorithm.

The first step of the experimental study was to present
the modelling abilities of the obtained NF models and,
additionaly, their system output uncertainty. Figure 11
presents the modelling abilities of the obtained model
along with corresponding system output bounds. At the
time Tf = 250 the big fault (the valve was blocked) occured.

From Fig. 12, which shows the residual and its bounds
given by the adaptive threshold, follows that this fault is
detected very fast, with a small delay, approximately 5
units.

The developed fault detection scheme with NF models
using the available data containing 44 faulty scenarios
generated by the actuar simulator (DAMADICS, 2002) was
tested as well.

Fig. 11. Model and system output with system output bounds (big
fault)

The faults were divided into two main groups: abrupt
and incipient faults. Then abrupt faults were divided into
three groups: small, medium and big faults.

The fault detection results obtained for all scenarios are
shown in Table 2, where the following notations are
introduced: Y indicates the fault detected using the
designed NF models, N indicates the fault that was not
detected by the designed NF models.

From Table 2 it follows that most faults can be detected,
however, there are a few faults that cannot. The reason for
such a situation was that the system output bounds
obtained by the OBE algorithm were too large and hence
sensitivity to faults was not high enough. This means that
it is necessary to employ a more accurate technique than
the OBE algorithm.

From the point of view of engineering, it is clear that
providing fast and reliable fault detection and isolation is
an integral part of control design, particularly as far as the
control of complex industrial systems is considered.
Unfortunately, most of such systems exhibit non-linear
behaviour, which makes it impossible to use the well-
developed techniques for linear systems. If it is assumed
that the system is linear, which is not true in general, and
even if robust techniques for linear systems are used (e.g.,
unknown input observers), it is clear that such an approx-
imation may lead to unreliable fault detection and,
consequently, an early indication of faults which are
developing is rather impossible. Such a situation increases
the probability of the occurrence of faults, which can be
extremely serious in terms of economic losses, environ-
mental impact, or even human mortality. Indeed, robust
techniques are able to tolerate a certain degree of model
uncertainty. In other words, they are not robust to
everything, i.e., are robust to an arbitrary degree of model
uncertainty. This real world development pressure creates
the need for new techniques which are able to tackle fault
diagnosis of non-linear systems. In spite of the fact that
the problem has been attacked from various angles by
many authors and a number of relevant results have already
been reported in the literature, there is no general
framework which can be simply and conveniently applied
to maintain fault diagnosis for non-linear systems.

Taking into account the above discussion, the main
objective of this paper was to consider a robust model-
based fault detection system applying analytical and soft
computing models. Special attention was paid to the
uncertainty of such models and their usefulness in fault
diagnosis. In particular, uncertainties of GMDH neural
networks and Takagi-Sugeno NF networks were considered.
The proposed approach was based on the bounded-error
approach, which is superior to the celebrated least-square
method in many practical applications. It was shown that
the defined confidence interval for the system output of
the GMDH and TakagiSugeno networks can be used to
develop an adaptive threshold that permits robust fault
detection. In the last part, an experimental study
performed with the non-linear model of an induction motor
and the DAMADICS benchmark problem showed the
effectiveness of such robust fault detection based on the

7. Conclusion
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extended unknown input observer and the uncertainty of
neuro-fuzzy models.

– Deputy Rector for Scientific Research and
International Cooperation and professor at the Insti-
tute of Control and Computation Engineering, University
of Zielona Góra, Poland, e-mail: J.Korbicz@issi.uz.zgora.pl.

Table 2. Fault detection results (S-small, M-medium, B-big, I-incipient)
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