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Abstract:
�his paper addresses the problem of posi�on-force cont-
rol for robotmanipulators under geometric endpoint con-
straints de�ned as round obstacles. �onsidera�ons are
based on h�brid posi�on-force control and use modi�ed
Arimoto algorithm with the principle of ”orthogonalisa-
�on”. �o achieve so-called �oint space orthogonalisa�on�
wheremo�on signals are orthogonal to force vectors and
the direc�on selec�on is performed in the �oint space�
pro�ec�on matri� is u�li�ed. �he convergence of trac�ing
and force errors is proved.
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�� ��trod�c�o�
Over the years, the use of robots has been increa-

sing, especially in industry. Many of the simple tasks
may need only trajectory control. In such a case the
robot end-effector is moved only along a desired time
trajectory and position control is suf�icient to achieve
a goal. However, in order to perform many more com-
plex tasks, such as assembly of parts, manipulation of
tools, washing a window and the other, the robot end-
effector must come into physical interactions with its
environment. Successful execution of those tasks re-
quires the approach considering the force of the con-
tact and different control strategies.

Tasks that require force control may vary and in-
clude the situation where applying a controlled force
is needed for a manufacturing process (e.g. deburring
and grinding), or pushing an external object using a
controlled force is needed, or dealing with geometric
uncertainty (e.g. in assembly) [5]. In the case of tasks
assuming the possibility of contact of the manipulator
with the environment, three phases can be distinguis-
hed [20,21]:
1) approaching phase – free movement,
2) transition phase – free movement with expected

contact,
3) contact phase – exerting a given force.

The �irst phase involves approaching the object
and represents the motion in a collision-free space.
Therefore, positional control algorithms can be used
for its implementation. The second phase is the transi-
tion from free movement to contact with the environ-
ment. This phase may be impacted by surroundings,
therefore the control here is the most complex. For-
ces that may occur during a collision are usually not

fully known. In the control process, it is necessary to
manage position and force simultaneously. If the con-
tact does not occur, the control system tries to reach
the desired position or speed. However, in the case
of contact, the set trajectory must be modi�ied accor-
dingly. The complication in the control process may
be the fact that in the result of the contact, an unex-
pected manipulator’s behaviour may occur. In such a
case, the manipulator may fall into vibrations or os-
cillations [21]. The last phase of control requires con-
stant contactwith the surroundings. Depending on the
task, it may be necessary to exert a forcewith a certain
valuewith a simultaneous change in thepositionof the
manipulator.

Consideringmanipulator’s interactionwith the en-
vironment, the ability to model the environment, in
which the robot operates, plays an important role. The
type of environment and the degree of its familiarity
largely determine the choice of the control algorithm.
An approach in which the environment is well-known
is shown, among others atwork [4] and [10], while de-
aling with limited knowledge about the environment
is presented in [6, 7, 11, 17] and [16]. In this paper we
assume that environment is well known.

For performing a class of tasks entailing the ma-
nipulator’s contact with the environment, force and
compliance control are fundamental strategies [9, 18,
22]. In this article we will present a basic strategy for
dealingwith geometric constraints imposed by the ro-
bot environment – hybrid position-force control.

For the �irst time the idea and scheme of hybrid
motion-force control was proposed by Craig and Rai-
bert [3] and based on decoupling of motion control
and force control: motion – in directions without con-
strains, exerted force – in constrained directions. The
problemwas the kinematic instability of proposed hy-
brid position-force control scheme, which was con-
nected with position control part. Fisher and Mujtaba
[8] showed that kinematic instability is a result of
an incomplete and inappropriate formulation of the
problem, and proposed correct formulation of hybrid
position-force control. Over the years, many various
schemeshavebeenproposed for such control systems.
An insightful description of them can be found in [15]
and a new review of notable interest is in [14].

Hybrid position-force control scheme is based on
capability to provide both motion and force control
which do not interact with each other. It is neces-
sary to select directions where motion can be execu-
ted (position control) and other directions, where is
the possibility to exert forces on a contact surface. De-
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coupling of motion and force control is fundamental
and can be achieved in various ways depending on e.g.
chosen space. Schemes introduced in [3, 8] are based
on selection matrix used for decoupling between mo-
tion and force through an appropriate selection of di-
rections in the Cartesian space. Another approach can
be found in [1, 2], where projection matrix is used to
achieve so-called joint space orthogonalisation. Hence
motion signals are orthogonal to force vectors and the
selection is performed in the joint space.

The result of comparison between classic hybrid
control and modi�ied Arimoto algorithm for a �lat ob-
stacle, were presented by authors before in [12]. In
this article we present a modi�ied hybrid position-
force control algorithm based on joint space ortho-
gonalisation, to achieve the following goal: position-
force control for manipulator with round obstacles.
Considerations involve mathematical proof of the po-
sition and force errors convergence. Results of simu-
lation experiments are also presented.

In section 2 we present some preliminary infor-
mation aboutmanipulator dynamics under constraint.
Next, in section 3 the control problem statement is gi-
ven. Section 4 is devoted to the study of joint-space
orthogonalisation. Afterwards, in section 5, the cont-
rol law is stated and proved. Results of simulations are
presented in section 6. Section 7 contains a brief sum-
mary and conclusions.

2. Robot Dynamics Under Constraint
Suppose that the model of manipulator is fully

known and the manipulator endpoint is in physical
contactwith rigid surfacedescribed asholonomic con-
straint

Φ(p) = 0. (1)
where p = (x, y, z)T denotes the Cartesian (task)
coordinates. Then the robot dynamics is described in
terms of joint coordinates q = (q1, ..., qn) in the follo-
wing form

M(q)q̈ + C(q, q̇)q̇ +D(q) = u+ JT
ϕnf, (2)

where the left hand side of expression describes dyn-
amics of the manipulator with following elements
- q, q̇, q̈ ∈ Rn – vector of joint positions, velocities and
accelerations,

- M(q) – symmetrical, positive de�inite inertiamatrix,
- C(q, q̇) – matrix of Coriolis and centripetal forces,
- D(q) – vector of gravitational forces.
The right hand sideof (2) includes control vectoru and
expression JT

ϕnf which represents the contact force
exerted at joints where Jϕn is normalized vector Jϕ
de�ined as follows

Jϕn =
Jϕ

∥ Jϕ ∥

and
Jϕ =

∂Φ

∂p
· ∂p
∂q

= A(p)Ja(q),

where Ja is Jacobi matrix.

3. Control Problem Statement
As it was mentioned in introduction, in this paper

weaddress the following control problem: �ixed-based
manipulator with fully known dynamics should track
desired trajectory pd(t) on the surface of the round ob-
staclewith simultaneously exerting desired force fd in
the direction orthogonal to the obstacle super�icies.

We will make the following assumptions:
- an obstacle is fully-known and completely rigid – gi-
ven as holonomic constraint and de�ined in Carte-
sian coordinates,

- the manipulator’s end-effector is in physical contact
with the obstacle,

- desired trajectory pd(t) isC2 class and is de�ined on
the surface of the obstacle in Cartesian space.
To realize such a task, it is necessary to de�ine a

control law which has a hybrid structure: directions
of position and position-force control are orthogonal.

�. �oint�s�ace �rt�o�onalisa�on
Let’s assume that both desired trajectory qd(t) and

force fd(t), are given in joint space. Moreover, assume
that the velocity signal q̇(t), position signal q(t) and
momentum signal F (t) given as

F (t) =

∫ t

0

f(τ)dτ, (3)

can bemeasured and used in real-time. Then let us in-
troduce so-called �nominal reference� signal de�ined
by expression

q̇r = Q(q)(q̇d − Λeq) + βJϕn(q)eF , (4)

where
- eq = q− qd denotes position error in joint coordina-
tes,

- Λ > 0 and β ≥ 0 are constants,
- eF = F − Fd denotes momentum signal error and
Fd =

∫ t

0
fd(τ)dτ ,

- Q(q) ∈ Rn×n is projection matrix de�ined by

Q(q) = In − JT
ϕn(q)Jϕn(q). (5)

Matrix Q(q), de�ined by (5), projects vectors in joint
space onto the plane tangent to the surface Φ(p(q)) =
0 at point q. Holonomic constraintΦ(p(q)) = 0 is ful�il-
led as long as the manipulator endpoint is in physical
contact with the surface. It holds that

Jϕn(q)q̇ = 0, (6)

and also ensures that the following equations are also
satis�ied

Q(q)q̇ = q̇, Q(q)JT
ϕn(q) = 0. (7)

The difference between current velocity q̇ and no-
minal reference q̇r is called sliding variable s

s = q̇ − q̇r. (8)
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tools, washing a window and the other, the robot end-
effector must come into physical interactions with its
environment. Successful execution of those tasks re-
quires the approach considering the force of the con-
tact and different control strategies.

Tasks that require force control may vary and in-
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coupling of motion and force control is fundamental
and can be achieved in various ways depending on e.g.
chosen space. Schemes introduced in [3, 8] are based
on selection matrix used for decoupling between mo-
tion and force through an appropriate selection of di-
rections in the Cartesian space. Another approach can
be found in [1, 2], where projection matrix is used to
achieve so-called joint space orthogonalisation. Hence
motion signals are orthogonal to force vectors and the
selection is performed in the joint space.

The result of comparison between classic hybrid
control and modi�ied Arimoto algorithm for a �lat ob-
stacle, were presented by authors before in [12]. In
this article we present a modi�ied hybrid position-
force control algorithm based on joint space ortho-
gonalisation, to achieve the following goal: position-
force control for manipulator with round obstacles.
Considerations involve mathematical proof of the po-
sition and force errors convergence. Results of simu-
lation experiments are also presented.

In section 2 we present some preliminary infor-
mation aboutmanipulator dynamics under constraint.
Next, in section 3 the control problem statement is gi-
ven. Section 4 is devoted to the study of joint-space
orthogonalisation. Afterwards, in section 5, the cont-
rol law is stated and proved. Results of simulations are
presented in section 6. Section 7 contains a brief sum-
mary and conclusions.

2. Robot Dynamics Under Constraint
Suppose that the model of manipulator is fully

known and the manipulator endpoint is in physical
contactwith rigid surfacedescribed asholonomic con-
straint

Φ(p) = 0. (1)
where p = (x, y, z)T denotes the Cartesian (task)
coordinates. Then the robot dynamics is described in
terms of joint coordinates q = (q1, ..., qn) in the follo-
wing form

M(q)q̈ + C(q, q̇)q̇ +D(q) = u+ JT
ϕnf, (2)

where the left hand side of expression describes dyn-
amics of the manipulator with following elements
- q, q̇, q̈ ∈ Rn – vector of joint positions, velocities and
accelerations,

- M(q) – symmetrical, positive de�inite inertiamatrix,
- C(q, q̇) – matrix of Coriolis and centripetal forces,
- D(q) – vector of gravitational forces.
The right hand sideof (2) includes control vectoru and
expression JT

ϕnf which represents the contact force
exerted at joints where Jϕn is normalized vector Jϕ
de�ined as follows

Jϕn =
Jϕ

∥ Jϕ ∥

and
Jϕ =

∂Φ

∂p
· ∂p
∂q

= A(p)Ja(q),

where Ja is Jacobi matrix.

3. Control Problem Statement
As it was mentioned in introduction, in this paper

weaddress the following control problem: �ixed-based
manipulator with fully known dynamics should track
desired trajectory pd(t) on the surface of the round ob-
staclewith simultaneously exerting desired force fd in
the direction orthogonal to the obstacle super�icies.

We will make the following assumptions:
- an obstacle is fully-known and completely rigid – gi-
ven as holonomic constraint and de�ined in Carte-
sian coordinates,

- the manipulator’s end-effector is in physical contact
with the obstacle,

- desired trajectory pd(t) isC2 class and is de�ined on
the surface of the obstacle in Cartesian space.
To realize such a task, it is necessary to de�ine a

control law which has a hybrid structure: directions
of position and position-force control are orthogonal.

�. �oint�s�ace �rt�o�onalisa�on
Let’s assume that both desired trajectory qd(t) and

force fd(t), are given in joint space. Moreover, assume
that the velocity signal q̇(t), position signal q(t) and
momentum signal F (t) given as

F (t) =

∫ t

0

f(τ)dτ, (3)

can bemeasured and used in real-time. Then let us in-
troduce so-called �nominal reference� signal de�ined
by expression

q̇r = Q(q)(q̇d − Λeq) + βJϕn(q)eF , (4)

where
- eq = q− qd denotes position error in joint coordina-
tes,

- Λ > 0 and β ≥ 0 are constants,
- eF = F − Fd denotes momentum signal error and
Fd =

∫ t

0
fd(τ)dτ ,

- Q(q) ∈ Rn×n is projection matrix de�ined by

Q(q) = In − JT
ϕn(q)Jϕn(q). (5)

Matrix Q(q), de�ined by (5), projects vectors in joint
space onto the plane tangent to the surface Φ(p(q)) =
0 at point q. Holonomic constraintΦ(p(q)) = 0 is ful�il-
led as long as the manipulator endpoint is in physical
contact with the surface. It holds that

Jϕn(q)q̇ = 0, (6)

and also ensures that the following equations are also
satis�ied

Q(q)q̇ = q̇, Q(q)JT
ϕn(q) = 0. (7)

The difference between current velocity q̇ and no-
minal reference q̇r is called sliding variable s

s = q̇ − q̇r. (8)

63



62

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  13,      N°  2      2019

Articles62

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Since nominal reference trajectory is given by equa-
tion (4) and also (7) is satis�ied, the following decom-
position of the sliding variable (8) can be made

s = q̇ − q̇r = Q(q)(ėq + Λeq)− βJT
Φ (q)eF

= s0 + s1,
(9)

where ėq = q̇ − q̇d – velocity error in joint space, s0 =
Q(q)(ėq+Λeq), and s1 = βJT

Φ (q)eF .We conclude from
(7) that signal s0 is orthogonal to the signal s1

sT0 s1 = −(ėq + Λeq)
TQϕβJ

T
ϕneF

= −β(ėq + Λeq)
T QϕJ

T
ϕn︸ ︷︷ ︸

=0

eF = 0. (10)

Hence, nominal reference signal (4) is also compo-
sed of two parts which are orthogonal to each other.
According to [1] and [2] this design concept is called
”joint-space orthogonalisation”.

5. Main Result – Control Law
For themanipulator de�ined by equation (2)modi-

�ied version of Arimoto control algorithm [1] has been
chosen as the control law, which is de�ined by

u =M(q)q̈r + C(q, q̇)q̇r +D(q)

−Kd(ėq + Λeq)− JT
Φ (q)(fd − γeF ),

(11)

where Kd = KT
d > 0, γ > 0 – regulation para-

meters of the controllers. Nominal reference signal
q̇r is de�ined like before as (4). Comparing to origi-
nal control law proposed by Arimoto, additional term
−Kd(ėq + Λeq)was added to improve algorithm con-
vergence. And furthermore, different proof of the po-
sition and force errors convergence is presented.
5.�. �roo� o� t�e �osi�on an� �or�e �rrors Con�er�en�e

Substituting control law (11) into system (2) we
obtain the closed-loop system dynamics

Mq̈ + Cq̇ +D =JT
ϕnf +Mq̈r + Cq̇r +D −Kds

− JT
ϕn (fd − γeF ) .

The above expression may be written as

M(q̈− q̈r)+C(q̇− q̇r)+Kds = JT
ϕn(ėF +γeF ) (12)

and next, using the de�inition of sliding variable (8),
we can present (12) in the following form

Mṡ+ Cs+Kds = JT
ϕn(ėF + γeF ). (13)

For the closed-loop system (13) we propose follo-
wing Lyapunov-like function

V (s, eF ) =
1

2
sTM(q)s+

1

2
βe2F ,

which is non-negatively de�ined.We compute time de-
rivative of V along solutions of the closed-loop system
(13)

V̇ = sTM(q)ṡ+
1

2
sT Ṁ(q)s+ βeF ėF , (14)

what can be rewritten as
V̇ = sT (−Cs−Kds+ JT

ϕn(ėF + γeF ))

+
1

2
sT Ṁ(q)s+ βeF ėF

= −sTKds+ sTJT
ϕn(ėF + γeF ) + βeF ėF

= −sTKds+ (sT0 + sT1 )J
T
ϕn(ėF + γeF )

+ βeF ėF

= −sTKds+ sT0 J
T
ϕn(ėF + γeF )

+ sT1 J
T
ϕn(ėF + γeF ) + βeF ėF

= −sTKds+ (ėq + Λeq)
TQT

ϕJ
T
ϕn(ėF + γeF )

− βeFJϕnJ
T
ϕn(ėF + γeF ) + βeF ėF .

(15)

From the conditions (7), it is known thatQϕ = QT
ϕ and

QϕJ
T
ϕn = 0. Therefore, the second expression in deri-

vative (15) is equal zero. Moreover, since JϕnJT
ϕn = 1,

it follows that
V̇ = −sTKds− βeF (ėF + γeF ) + βeF ėF

= −sTKds− βγe2F .
(16)

We conclude from the properties of quadratic forms
that the following inequality is satis�ied�

sTKds ≥ λmin(Kd)s
T s, λmin(Kd) > 0. (17)

After multiplying both sides of the equation (17)
by (−1) and substituting into derivative of Lapunov
function V (16) we get

V̇ ≤ −λmin(Kd)s
T s− βγe2F

= −λmin(Kd)(s
T
0 + sT1 )(s0 + s1)− βγe2F

= −λmin(Kd)(s
T
0 s0 + sT0 s1 + sT1 s0 + sT1 s1)

− βγe2F .

(18)

Since it is shown in (10) that signals s0 and s1 are ort-
hogonal, consequently we can rewrite equation (18)
as follows

V̇ ≤ −λmin(Kd) ∥ s0 ∥2 −λmin(Kd) ∥ s1 ∥2

− βγe2F ≤ 0
(19)

Finally, we get that stable equilibrium of the sy-
stem (13) is (s0, s1, eF ) = (0, 0, 0), which implies fol-
lowing properties

s0 = ėq + Λeq → 0 =⇒ eq → 0 (20)

along with convergence to zero. This ends the proof.

�. �i�ula�ons
The simulations have been done using the MAT-

LAB package and the SIMULINK toolbox. As an object
of simulations we have taken RTR manipulator, pre-
sented in �ig.1.

Links of the RTR manipulator have been modeled
as homogenous sticks with length equal to l2 = 0.9m,
l3 = 1m, and masses m2 = 20kg, m3 = 20kg. Dyna-
mics of manipulator is given by the equation (2) with
elements equal to
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According to [1] and [2] this design concept is called
”joint-space orthogonalisation”.

5. Main Result – Control Law
For themanipulator de�ined by equation (2)modi-

�ied version of Arimoto control algorithm [1] has been
chosen as the control law, which is de�ined by

u =M(q)q̈r + C(q, q̇)q̇r +D(q)

−Kd(ėq + Λeq)− JT
Φ (q)(fd − γeF ),

(11)

where Kd = KT
d > 0, γ > 0 – regulation para-

meters of the controllers. Nominal reference signal
q̇r is de�ined like before as (4). Comparing to origi-
nal control law proposed by Arimoto, additional term
−Kd(ėq + Λeq)was added to improve algorithm con-
vergence. And furthermore, different proof of the po-
sition and force errors convergence is presented.
5.�. �roo� o� t�e �osi�on an� �or�e �rrors Con�er�en�e

Substituting control law (11) into system (2) we
obtain the closed-loop system dynamics

Mq̈ + Cq̇ +D =JT
ϕnf +Mq̈r + Cq̇r +D −Kds

− JT
ϕn (fd − γeF ) .

The above expression may be written as

M(q̈− q̈r)+C(q̇− q̇r)+Kds = JT
ϕn(ėF +γeF ) (12)

and next, using the de�inition of sliding variable (8),
we can present (12) in the following form

Mṡ+ Cs+Kds = JT
ϕn(ėF + γeF ). (13)

For the closed-loop system (13) we propose follo-
wing Lyapunov-like function

V (s, eF ) =
1

2
sTM(q)s+

1

2
βe2F ,

which is non-negatively de�ined.We compute time de-
rivative of V along solutions of the closed-loop system
(13)

V̇ = sTM(q)ṡ+
1

2
sT Ṁ(q)s+ βeF ėF , (14)

what can be rewritten as
V̇ = sT (−Cs−Kds+ JT

ϕn(ėF + γeF ))

+
1

2
sT Ṁ(q)s+ βeF ėF

= −sTKds+ sTJT
ϕn(ėF + γeF ) + βeF ėF

= −sTKds+ (sT0 + sT1 )J
T
ϕn(ėF + γeF )

+ βeF ėF

= −sTKds+ sT0 J
T
ϕn(ėF + γeF )

+ sT1 J
T
ϕn(ėF + γeF ) + βeF ėF

= −sTKds+ (ėq + Λeq)
TQT

ϕJ
T
ϕn(ėF + γeF )

− βeFJϕnJ
T
ϕn(ėF + γeF ) + βeF ėF .

(15)

From the conditions (7), it is known thatQϕ = QT
ϕ and

QϕJ
T
ϕn = 0. Therefore, the second expression in deri-

vative (15) is equal zero. Moreover, since JϕnJT
ϕn = 1,

it follows that
V̇ = −sTKds− βeF (ėF + γeF ) + βeF ėF

= −sTKds− βγe2F .
(16)

We conclude from the properties of quadratic forms
that the following inequality is satis�ied�

sTKds ≥ λmin(Kd)s
T s, λmin(Kd) > 0. (17)

After multiplying both sides of the equation (17)
by (−1) and substituting into derivative of Lapunov
function V (16) we get

V̇ ≤ −λmin(Kd)s
T s− βγe2F

= −λmin(Kd)(s
T
0 + sT1 )(s0 + s1)− βγe2F

= −λmin(Kd)(s
T
0 s0 + sT0 s1 + sT1 s0 + sT1 s1)

− βγe2F .

(18)

Since it is shown in (10) that signals s0 and s1 are ort-
hogonal, consequently we can rewrite equation (18)
as follows

V̇ ≤ −λmin(Kd) ∥ s0 ∥2 −λmin(Kd) ∥ s1 ∥2

− βγe2F ≤ 0
(19)

Finally, we get that stable equilibrium of the sy-
stem (13) is (s0, s1, eF ) = (0, 0, 0), which implies fol-
lowing properties

s0 = ėq + Λeq → 0 =⇒ eq → 0 (20)

along with convergence to zero. This ends the proof.

�. �i�ula�ons
The simulations have been done using the MAT-

LAB package and the SIMULINK toolbox. As an object
of simulations we have taken RTR manipulator, pre-
sented in �ig.1.

Links of the RTR manipulator have been modeled
as homogenous sticks with length equal to l2 = 0.9m,
l3 = 1m, and masses m2 = 20kg, m3 = 20kg. Dyna-
mics of manipulator is given by the equation (2) with
elements equal to
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Fig. 1. Scheme of modelled RTR manipulator

- M – symmetric positive de�inite inertia matrix

M(q) =




M11 0 0
0 M22 M23

0 M23 M33


 , (21)

M11 = 1
3m2l

2
2 +m3(l

2
2 +

1
3 l

2
3 cos2 q3 + l2l3 cos q3),

M22 = m2 +m3,

M23 = 1
2m3l2l3 cos q3,

M33 = 1
3m3l

2
3,

- C – matrix of centripetal and Coriolis forces

C(q, q̇) =




C11 0 C13

0 0 C23

C31 0 0


 , (22)

C11 = q̇3(− 1
2m3l2l3 sin q3 − 1

3m3l
2
3 sin q3 cos q3),

C13 = −q̇1(
1
2m3l2l3 sin q3 + 1

3m3l
2
3 sin q3 cos q3),

C23 = − 1
2 q̇3m3l2l3 sin q3,

C31 = q̇1(
1
2m3l2l3 sin q3 + 1

3m3l
2
3 sin q3 cos q3),

- D – vector of gravity

D(q) =




0
(m2 +m3)g
1
2gm3l3 cos q3


 . (23)

The effector’s position in Cartesian coordinates is

p =




x
y
z


 =




cos q1(l3 cos q3 + l2)
sin q1(l3 cos q3 + l2)

l3 sin q3 + q2


 ,

and �acobi matrix is de�ined as follows

J(q) =




J11 0 J13
J21 0 J23
0 1 J33


 , (24)

J11 = − sin q1(l3 cos q3 + l2),
J13 = − cos q1 sin q3l3,
J21 = cos q1(l3 cos q3 + l2),
J23 = − sin q1 sin q3l3,
J33 = cos q3l3.

6.1. Desired Trajectory
For manipulator desired trajectory has been de�i-

ned as below

pd(t) =




xd(t)
yd(t)
zd(t)


 =




0.4 cos t
0.4 sin t
t
10 + 10


 , (25)

being a helical line located on the surface of a comple-
tely rigid obstacle. The holonomic constraint is there-
fore de�ined in the following form

Φ(p) = x2 + y2 − 0.42 = 0. (26)

Desired trajectory (25) has to be located on obsta-
cle surface, which is given in Cartesian coordinates.
For this reason it is necessary to transform it to joint
space. Using Newton algorithm [19], trajectory can be
represented as solution of following equation (for ini-
tial condition k(qd(0))− pd(0) = 0) :

q̇d = J−1(qd)[ṗd − γ(k(qd)− pd)], (27)

where:
- qd, q̇d – desired position and velocity in joint space,
- pd, ṗd – desired position and velocity in Cartesian
space,

- γ > 0 – convergence coef�icient� assumed γ = 7,
- k(qd) – end-effector position expressed as a function
of qd.

6.�. Force �i���a�o�
To control contact between manipulator and sur-

face it is necessary to get information about contact
force. Contact force can bemeasured (if there is an ac-
tual manipulator equipped with appropriate sensors
[21]) or calculated based on Lagrange multipliers and
de�inition of holonomic constraint [13].

The Lagrange multipliers λ can be calculated by
double differentiation, in time domain, the holonomic
constraints equation (1)

ϕ̈(q) = J̇ q̇ + Jq̈ = 0. (28)

After substituting q̈ fromdynamics equationof thema-
nipulator (2), the equation (28) takes form

ϕ̈(q) = JξM
−1JTλ+J̇ q̇−JM−1(Cq̇+D−u) = W (ϕ).

Equation (28) does not guarantee thatϕ(q) = 0will be
always ful�illed. To assure it, even if manipulator is in
some distance from surface of holonomic constraint,
a numerical damping terms [13] are added to the sy-
stem in the form of the following equation

W (ϕ) = ϕ̈(q) + 2αϕ̇(q) + β2ϕ(q),

where α and β coef�icients should guarantee asymp-
totic stability.

After the above steps, the holonomic Lagrange
multipliers ful�il

JM−1JTλ = W (ϕ)− J̇ q̇ + JM−1(Cq̇ +D − u).

65



64

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  13,      N°  2      2019

Articles64

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

6.3. Results for the Manipulator on the Constraint
According to the assumption, that holonomic con-

straint ful�ils Φ = 0, the initial conditions were cho-
sen as x(0) = 0.4, y(0) = 0, z(0) = 7, to guaran-
tee thatmanipulator end-effector is in contactwith the
surface. While desired force was chosen as fd = 10N.

In �ig. 2(a) tracking of the desired trajectory in 3D-
space by the manipulator has been presented. Since
the end-effector is supposed to be on the obstacle, the
real trajectory coincides with the set in coordinates x
and y. Whereas initial condition z(0) was chosen to
show that the manipulator’s end-effector approaches
the desired trajectory. Figures 2(c)–2(e) show posi-
tion errors (in Cartesian space) in time domain as fol-
lows ex = x− xd, ey = y − yd and ez = z − zd. While
on the �ig. 2(b) there is a force error in time domain
ef = f − fd.

6.4. Results for the Manipulator off the Constraint
In section 6.3 results for the manipulator which

were constantly on constraint were presented. Howe-
ver, as it was mentioned in the introduction, many
tasks require three phase of control, and only last one
is exerting a given force (being in contact with an ob-
stacle). For this reason two-stage control is unavoida-
ble, and both, position and position-force control are
required. The �irst stage is position control to appro-
ach the end-effector to an obstacle. The second, when
the manipulator is on the constraint, position-force
control (exerting force on an obstacle) is required.

For the �irst part – position control in the free
space, nominal reference signal was given as

q̇r = q̇d − Λeq, (29)
and control law was

u = M(q)q̈r + C(q, q̇)q̇r +D(q)−Kds, (30)

where s is sliding variable de�ined as s = q̇ − q̇r =
ėq + Λeq .

When the manipulator was on constraint (end-
effector was in contact with an obstacle) the control
was switched to the form presented in section 6.3. It
is important to notice, that in case of no contact with
obstacles, in dynamic model (2) part JT

ϕnf is equal 0
(there is no contact force).

The manipulator is a dynamic system. Therefore
rapid switching between algorithms may destabilize
the system. Moreover, it is not possible to avoid colli-
sion. For this reason, in algorithms simulation, the fol-
lowing solutions were utilized
- position control is used for approaching to the ob-
stacle, as long as distance between the end-effector
and surface is greater thanmaxdist,

- whenmanipulator is close to constraint surface (dis-
tance between the end-effector and the surface is
smaller than maxdist), then the control takes the
form (11). However, because there is no contact
with the obstacle, the force is not included in thema-
nipulator dynamics. Moreover, desired force is not

constant over time, but depends on actual value

fd = max(P · f, 0), (31)

where P ∈ (0, 1) is a proportionality factor. This so-
lution allows gradual reduction of the actual force,
so that when reaching the obstacle the force value
is 0 (the manipulator slows down to avoid sudden
collision with the environment).

- at the moment of contact with the obstacle, the
occurring force will be taken into account in the dy-
namics equation of the manipulator, desired force is
adjusted to the expected constant value fd.
According to the assumption, that end-effector is

off constraint, the initial conditions were chosen as
x(0) = 0.1, y(0) = 0.1, z(0) = 2. The results of
tracking trajectory are presented in �ig. 3(a),(b) (3D
and 2D). Figures 3(c)–3(e) present position tracking
errors.

Distancemaxdistwas chosen as 0.05, while thema-
nipulator’s effector is on a constraint if its distance
from the constraints is less than or equal to 0.00001. In
order to de�ine the desired force, formula (31) is used
while proportionally coef�icient P = 0.5.

Fig. 4(a) shows the value of the desired force over
time, which is 0, when the manipulator is far from the
obstacle, and then the force changes accordingly (pro-
portionally to current force value) and �inallywhen the
manipulator is close to the surface falls to 0. At themo-
ment when the manipulator is in contact with the ob-
stacle, the value of desired force is set to the expected
value fd = 10. The switching moments of the algo-
rithm are shown in �ig. 4(a) and �ig. 4(c). The �irst ver-
tical line indicates the time inwhich themanipulator is
close to the obstacle (at a distance less than or equal to
maxdist from theobstacle). The secondvertical line in-
dicates themoment when themanipulator comes into
contact with the obstacle. Then the control algorithm
is executed in the sameway as for the situation descri-
bed in sec. 6.3. This solution was adopted for compu-
tational reasons.

7. Conclusion
As mentioned in the introduction, one of the main

strategies for position-force control is hybrid control
based on decoupling position and force control. Con-
sequently, the selection of directions of free motion
(position control) and other directions, where there
is a possibility to exert forces on a contact surface, is
required. The choice of the control algorithm is deter-
mined by an obstacle shape. In this paper we assume
that manipulator has to track trajectory given as a he-
lical line located on the surface of a completely rigid
round obstacle. For this kind of tasks it is necessary to
choose directions of control in the joint space. There-
fore we applied principle of orthogonalisation to pro-
vide decoupling of control in joint space. Based on the
principle of orthogonalisation presented by Arimoto
[1�, we proposedmodi�ied position-control algorithm.
Convergence of its tracking and force errors is proved.
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sen as x(0) = 0.4, y(0) = 0, z(0) = 7, to guaran-
tee thatmanipulator end-effector is in contactwith the
surface. While desired force was chosen as fd = 10N.

In �ig. 2(a) tracking of the desired trajectory in 3D-
space by the manipulator has been presented. Since
the end-effector is supposed to be on the obstacle, the
real trajectory coincides with the set in coordinates x
and y. Whereas initial condition z(0) was chosen to
show that the manipulator’s end-effector approaches
the desired trajectory. Figures 2(c)–2(e) show posi-
tion errors (in Cartesian space) in time domain as fol-
lows ex = x− xd, ey = y − yd and ez = z − zd. While
on the �ig. 2(b) there is a force error in time domain
ef = f − fd.

6.4. Results for the Manipulator off the Constraint
In section 6.3 results for the manipulator which

were constantly on constraint were presented. Howe-
ver, as it was mentioned in the introduction, many
tasks require three phase of control, and only last one
is exerting a given force (being in contact with an ob-
stacle). For this reason two-stage control is unavoida-
ble, and both, position and position-force control are
required. The �irst stage is position control to appro-
ach the end-effector to an obstacle. The second, when
the manipulator is on the constraint, position-force
control (exerting force on an obstacle) is required.

For the �irst part – position control in the free
space, nominal reference signal was given as

q̇r = q̇d − Λeq, (29)
and control law was

u = M(q)q̈r + C(q, q̇)q̇r +D(q)−Kds, (30)

where s is sliding variable de�ined as s = q̇ − q̇r =
ėq + Λeq .

When the manipulator was on constraint (end-
effector was in contact with an obstacle) the control
was switched to the form presented in section 6.3. It
is important to notice, that in case of no contact with
obstacles, in dynamic model (2) part JT

ϕnf is equal 0
(there is no contact force).

The manipulator is a dynamic system. Therefore
rapid switching between algorithms may destabilize
the system. Moreover, it is not possible to avoid colli-
sion. For this reason, in algorithms simulation, the fol-
lowing solutions were utilized
- position control is used for approaching to the ob-
stacle, as long as distance between the end-effector
and surface is greater thanmaxdist,

- whenmanipulator is close to constraint surface (dis-
tance between the end-effector and the surface is
smaller than maxdist), then the control takes the
form (11). However, because there is no contact
with the obstacle, the force is not included in thema-
nipulator dynamics. Moreover, desired force is not

constant over time, but depends on actual value

fd = max(P · f, 0), (31)

where P ∈ (0, 1) is a proportionality factor. This so-
lution allows gradual reduction of the actual force,
so that when reaching the obstacle the force value
is 0 (the manipulator slows down to avoid sudden
collision with the environment).

- at the moment of contact with the obstacle, the
occurring force will be taken into account in the dy-
namics equation of the manipulator, desired force is
adjusted to the expected constant value fd.
According to the assumption, that end-effector is

off constraint, the initial conditions were chosen as
x(0) = 0.1, y(0) = 0.1, z(0) = 2. The results of
tracking trajectory are presented in �ig. 3(a),(b) (3D
and 2D). Figures 3(c)–3(e) present position tracking
errors.

Distancemaxdistwas chosen as 0.05, while thema-
nipulator’s effector is on a constraint if its distance
from the constraints is less than or equal to 0.00001. In
order to de�ine the desired force, formula (31) is used
while proportionally coef�icient P = 0.5.

Fig. 4(a) shows the value of the desired force over
time, which is 0, when the manipulator is far from the
obstacle, and then the force changes accordingly (pro-
portionally to current force value) and �inallywhen the
manipulator is close to the surface falls to 0. At themo-
ment when the manipulator is in contact with the ob-
stacle, the value of desired force is set to the expected
value fd = 10. The switching moments of the algo-
rithm are shown in �ig. 4(a) and �ig. 4(c). The �irst ver-
tical line indicates the time inwhich themanipulator is
close to the obstacle (at a distance less than or equal to
maxdist from theobstacle). The secondvertical line in-
dicates themoment when themanipulator comes into
contact with the obstacle. Then the control algorithm
is executed in the sameway as for the situation descri-
bed in sec. 6.3. This solution was adopted for compu-
tational reasons.

7. Conclusion
As mentioned in the introduction, one of the main

strategies for position-force control is hybrid control
based on decoupling position and force control. Con-
sequently, the selection of directions of free motion
(position control) and other directions, where there
is a possibility to exert forces on a contact surface, is
required. The choice of the control algorithm is deter-
mined by an obstacle shape. In this paper we assume
that manipulator has to track trajectory given as a he-
lical line located on the surface of a completely rigid
round obstacle. For this kind of tasks it is necessary to
choose directions of control in the joint space. There-
fore we applied principle of orthogonalisation to pro-
vide decoupling of control in joint space. Based on the
principle of orthogonalisation presented by Arimoto
[1�, we proposedmodi�ied position-control algorithm.
Convergence of its tracking and force errors is proved.
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(a) (b)

(c) (d) (e)

Fig. 2.Modified Arimoto algorithm: (a) trajectory tracking, (b) force tracking error ef , (c) �o�i�on tracking error ex,
(d) �o�i�on tracking error ey , (e) �o�i�on tracking error ez

Correctness of the algorithm is supported by the
results of simulations. Simulation test requires infor-
mation about actual forces. Hence, we used the appro-
ach proposed by Mills and Goldenberg [13] providing
force simulation in end-effector on the basis of the La-
grangemultipliers. Thedrawbackof thismethod is un-
derlying assumption of total stiffness of themanipula-
tor and obstacles.

The presented position-force control algorithm
works correctly and canbeused for geometrically con-
strained fully-knownmanipulatorwith rigid obstacles
during trajectory tracking. It is dedicated to the situ-
ation, when manipulator is in constant contact with
the obstacle. In the other situation it is necessary to
switch between position control and presented algo-
rithm, according to the movement phase. Assumption
of full knowledge about the dynamics is not required.
For the parametric uncertainty, when certain number
ofmodel parameters is unknown, presented approach
can be easily transformed to adaptive case by using
classical adaptive algorithm in position part. However,
assumption of fully-known rigid obstacles is still ne-
cessary.

Future work focuses on the extension of the algo-
rithm to the path following tasks formanipulators and
on more detailed considerations about collisions.
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(a) (b)

(c) (d) (e)

Fig. 3.�o�i�e� �ri�oto a�gorit�� �it� a��roac�ing ��a�e� (a) tra�ector� tracking, (�) tra�ector� tracking � �ro�ec�on on
�� ��ane, (c) �o�i�on tracking error ex, (�) �o�i�on tracking error ey , (e) �o�i�on tracking error ez

(a) (b) (c)

Fig. 4.�o�i�e� �ri�oto a�gorit�� �it� a��roac�ing ��a�e� (a) �e�ire� force in t�e �r�t ��� of t�e �o�on, (�) force
tracking error ef , (c) force tracking error ef in t�e �r�t ��� of t�e �o�on
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�� ��ane, (c) �o�i�on tracking error ex, (�) �o�i�on tracking error ey , (e) �o�i�on tracking error ez
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Fig. 4.�o�i�e� �ri�oto a�gorit�� �it� a��roac�ing ��a�e� (a) �e�ire� force in t�e �r�t ��� of t�e �o�on, (�) force
tracking error ef , (c) force tracking error ef in t�e �r�t ��� of t�e �o�on
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