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Abstract:
The wor� discusses the construc�on of a measurement
system for determining the rela�onship between EMG
signals and hand grip movements. The rela�onship is
necessary for the synthesis of control of the hand biop-
rosthesis. The measurement system is based on commer-
cial Myo armband with EMG signals sensors and sensory
glove with bend and pressure sensors. There are presen-
ted possibili�es� advantages and disadvantages of such
approach.

Keywords: EMG signals� electromyography� pa�ern re-
cogni�on� hand bioprosthesis control

1. ��trod�c�o�
The progress of medicine is inseparably linked

with the development of technology, especially in such
�ields as mechatronics, computer science and robo-
tics. A good example is advanced hand bioprostheses
whose control is based on recognizing the patient’s in-
tent of guiding the prosthesis by registering biosignals
fromhis limbstump, and recognizing thepatterns con-
tained in them. The result of such recognition is the
decision controlling the movement of the bioprosthe-
sis. The idea of such a control is illustrated in Figure 2,
included together with the description in Chapter 2.

The basis for the synthesis of the recognition sy-
stem is the knowledge of the relationship between the
measured biosignals and the patient’s intention re-
garding the movement of the prosthesis. Such a re-
lationship can be determined (with a good approx-
imation) on the basis of the examination of a he-
althy person, by recording biosignals generated in the
muscles of the forearmduring the performance of spe-
ci�ic manipulative-grasping movements (movements
from speci�ic classes). The desired relationship can
then be expressed by labeling the recorded biosignals
with the classes of performed grips (types of �inger
movements) and its parameters (movement speed,
strength and points of contact of the object with the
hand).

The labeling can be performed automatically by
the measuring system based on information on the
type of motion provided by the vision system or sen-
sory glove or by the operator participating in the expe-
riment [12, 13]. The paper presents the latter appro-
ach.

The quality of bioprosthesis control is characteri-
zed essentially by two parameters:

- the size of repertoire of manipulative-grasping mo-
vements, and

- the reliability of recognition of intentions of these
movements’ realization.
Due to the disturbances accompanying the process

of biosignal registration, which reduce the informa-
tion contained in biosignals, the recognition error is
usually greater than zero. Additionally, this error in-
creases naturally with the number of prosthesis mo-
vements.

Hence, when determining the relationship bet-
ween the biosignals and the intent of prosthesis mo-
vement (also later, while controlling), the key issue is
the quality of biosignal registrationwhich depends di-
rectly on the measuring system and the registration
procedure applied.

The paper presents the course and the results of
measurement experiments conducted with the com-
mercial measuring band called the Myo (equipped
with electromyographic sensors [6, 7, 15] and accele-
rometer), and the sensory glove developed by the aut-
hors (equipped with bend and pressure sensors, Fig.
5). As the quality criterion of the obtained measure-
ment data, the level of reliability of the recorded sig-
nals class recognition has been accepted (or alterna-
tively the recognition error). To verify the quality of
the acquired data, the tests to recognize the recorded
signals were carried out. These tests togetherwith the
applied algorithms of extraction and classi�ication of
features are described in Chapter 4.

The quality of the recorded signals was compa-
red with the Biosignal Measurement System develo-
ped in theMobile Robots & BioControl Laboratory, Fa-
culty of Electronics,WroclawUniversity of Science and
Technology [14]. The comparisonwasmade on the ba-
sis of the signal recognition results.

Fig. 1. The set of gestures proposed by the Myo
armband’s manufacturer [1]

In contrast to similar studies using the Myo arm-
band [3, 5, 8], the authors introduce a new element,
i.e. the registration of hand and object interaction ba-
sed on the use of pressure sensors to identify the mo-
ment of contact with the object being grabbed, as well
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as the measurement of the existing pressure forces
(end of the motion). Also, the repertoire of 11 grip-
ping movements chosen for the study de�initely ex-
ceeds the modest set of movement classes proposed
by themanufacturer of themeasuringband (Fig. 1) [1].
The adopted repertoire of movements is described in
Chapter 4.

2. ����g�i��� ������� �i�� F�������
As it has been mentioned, registered bio-signals,

after recognition of the patterns contained in them,
can be used to control the machine, for example, a
biomanipulator or bio-prosthesis of the hand. The
scheme of the recognition process is shown in Figure
2. It includes the following stages:

signal acquisition – The process of collecting the
raw measurement data and saving them in digi-
tal form.
The information obtained at this stage may be
redundant and contain interference. In a multi-
channel measuring system, an improper location
of measuring electrodes may lead to repetition of
some information in different signals. In turn, the
most common sources of interference are, among
others, own noise of measuring electronic devi-
ces and overlapping external noise from power
devices. These disturbances can be substantially
reduced by constructing appropriately the mea-
suring circuits (differential measurement, mea-
suring ampli�ier directly by the electrodes, etc.).
Another source of noise at the stage of deter-
mining the biosignals-the intention of prosthesis
movement relationship, is the poor repeatability
of movements performed (for each class). This
source of interference can be signi�icantly redu-
ced by applying the appropriate registration pro-
cedure.

extraction – The measurement data processing
stage. The registered signal is subjected to the
process of feature extraction.
By means of appropriate extraction algorithms,
the features characterizing the interesting (for
the recognition process) information contained
in the signal are determined. Extraction algo-
rithms can operate in the time domain (determi-
ning such parameters as: rms, mav, number of
passes through zero, etc.) [2], in the frequency
domain (Fourier Transform, STFT, etc.) [9, 10] or
time and frequency domain (for example: Wave-
let Transform [4]). You can also combine features
obtained by different methods. After combining
the features of signals from all measuring chan-
nels (for a single measurement), a feature vec-
tor is created that uniquely characterizes a given
class of signals.

selection – Stage of selecting a set of features best
describing a given movement.

At this stage, redundant data as well as data rela-
ted to interference are deleted. This is done by ex-
perimentally removing super�luous features from
thevector of features or bymanipulating the com-
ponents of the vector to minimize intra-class dis-
persion and at the same timemaximize the inter-
class dispersion. Examples of algorithms are: SBS,
SFS [12].

classi�ication – The last step of the classic recogni-
tion scheme.
At this stage, the feature vector representing the
recognized signal is assigned to the bestmatching
class. Examples of algorithms are e.g. neural net-
works NN [16], decision tree [11], or applied in
the work K nearest neighbors (KNN) [17].

control command – The step of translating the clas-
si�ication result into a control signal.
The recognized signal class can be treated as a
signal initiating a speci�ic movement of the prost-
hesis.

feedback – An additional step in the classic recogni-
tion process.
It provides information about the course of the
signal generation process. In the case under con-
sideration, it is a sensory signal from the measu-
ring glove informing about hand posture changes
(bend sensors) and pressure forces of individual
hand elements (resistive sensors).

Bio-signal recognition is a �lexible process in terms
of the type of different data. It is possible to use all bi-
ological signals mentioned at the outset after bringing
them to the digital representation in the form of a vec-
tor of features of �inite size. [2]
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some information in different signals. In turn, the
most common sources of interference are, among
others, own noise of measuring electronic devi-
ces and overlapping external noise from power
devices. These disturbances can be substantially
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suring circuits (differential measurement, mea-
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of movements performed (for each class). This
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ced by applying the appropriate registration pro-
cedure.
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ning such parameters as: rms, mav, number of
passes through zero, etc.) [2], in the frequency
domain (Fourier Transform, STFT, etc.) [9, 10] or
time and frequency domain (for example: Wave-
let Transform [4]). You can also combine features
obtained by different methods. After combining
the features of signals from all measuring chan-
nels (for a single measurement), a feature vec-
tor is created that uniquely characterizes a given
class of signals.

selection – Stage of selecting a set of features best
describing a given movement.

At this stage, redundant data as well as data rela-
ted to interference are deleted. This is done by ex-
perimentally removing super�luous features from
thevector of features or bymanipulating the com-
ponents of the vector to minimize intra-class dis-
persion and at the same timemaximize the inter-
class dispersion. Examples of algorithms are: SBS,
SFS [12].

classi�ication – The last step of the classic recogni-
tion scheme.
At this stage, the feature vector representing the
recognized signal is assigned to the bestmatching
class. Examples of algorithms are e.g. neural net-
works NN [16], decision tree [11], or applied in
the work K nearest neighbors (KNN) [17].

control command – The step of translating the clas-
si�ication result into a control signal.
The recognized signal class can be treated as a
signal initiating a speci�ic movement of the prost-
hesis.

feedback – An additional step in the classic recogni-
tion process.
It provides information about the course of the
signal generation process. In the case under con-
sideration, it is a sensory signal from the measu-
ring glove informing about hand posture changes
(bend sensors) and pressure forces of individual
hand elements (resistive sensors).

Bio-signal recognition is a �lexible process in terms
of the type of different data. It is possible to use all bi-
ological signals mentioned at the outset after bringing
them to the digital representation in the form of a vec-
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3. Measurement Stand
Musclemovements are accompaniedby changes in

the electrical potential appearing on themembrane of
their cells (myocytes / muscle �ibers). These changes
propagate into the surrounding tissues reaching the
skin surface. On the surface of the skin, changes in po-
tentials from various cells, various muscles currently
active, create a superposition that can be recorded as
a surface EMG signal. Therefore, EMG signals recorded
on the skin of the forearm, above the muscles moving
�ingers of the hand, represent these movements.

For obvious reasons, the highest percentages in
the EMG signalmeasured have potentials from the clo-
sest muscle. Therefore, due to the ef�iciency of recog-
nizing the movement class, the individual measure-
ment points should be located successively over the
muscles we are interested in. This arrangement is fa-
cilitated by the construction of the Myo armband by
Thalmic Labs.

The proposedmeasuring stand consists of theMyo
measuring armband (Fig. 4) and the measuring glove
(Fig. 5). The band, due to its construction, allows the
signal to be measured only in eight places evenly dis-
tributed on the ring surrounding the forearm. On the
other hand, the sensory glove registers such parame-
ters as the pressure force on individual areas of the an-
terior of the hand and �lexion of the �ingers. �iagram
3 shows the entire measurement system. The master
device is in this case the central unit connecting all pe-
ripheral devices.

The measuring band connects to the computer via
the �luetooth 4.0 protocol. Unmodi�ied, raw data is
sent at 1Mb / s. The limitation in this case is themicro
controller located directly on the band that samples at
200 Hz. [1]

On the other hand, the sensor glove uses a 64-
channel Advantech PCI-1747u measuring card that
samples at a frequency of up to 250 kHz. In order to
ensure a uniformmeasuring data frame, the frequency
has been limited to 200 Hz.

3.1. Measurement Band
The used Myo measuring band (Figure 4) is a tool

that is widely used in many areas. Starting from the
simple control of computer applications, ending with
the control of complex prosthetic systems.

The distribution of electrodes mounted on the
band ensures repeatability of measurement conditi-
ons. Assuming that the band is always put on the same
height of the forearm, the position of the electrodes
in the subsequent tests does not differ signi�icantly.
Plates with sensors are connected by �lexible joints
which expand evenly with the extension of the band.
The whole is a stable construction.

Apart from the positive impact on repeatability
of measurements between subsequent tests, the con-
struction signi�icantly limits the measuring area to
only a small area of the forearm. Covering additional
muscle with EMG sensors requires the fusion of more
bands working in parallel. Unfortunately there is no
possibility of re-using rejected channels in the case of

Flex sensors

Bending sensors

Sensor glove

The Myo

Sensor armband

PCI-1747u Bluetooth

PC

Interfaces

Fig. 3. Diagram of the measurement system

omission of individual channels in the process of fea-
ture selection.

Fig. 4. The Myo armband

3.2. Sensor Glove
The applied sensor glove (Fig. 6) is an alternative

and at the same time an extended version for the com-
mercial Motion Capture Data Glove solution. It was
built as part of the didactic project at theWroclawUni-
versity of Science and Technology.

The elaborated solution consists of 24 indepen-
dently operating sensors, including:
- 18 pressure sensors located on the anterior of the
hand palm, successively on the �ingertips, the proxi-
mal �inger segments and the metacarpal. These sen-
sors were built in a technology using a polymer
�ilm with variable resistance under the in�luence of
pressure and bending forces. They give information
about the pressure on individual parts of the hand;

- 6 standard 2.2 inch bend sensors. One sensor for
each �inger and one additional thumb sensor to ex-
amine the bending of its base (Fig. 6). They were
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Fig. 5. Sensor glove – posterior

Fig. 6. Sensor glove – anterior

made in the ink technology and inform about the
posture of the �ingers.
The glove communicateswith the system via ame-

asuring card with an AC converter.
3.3. Force Sensor

Table 1 shows the voltage values which were mea-
sured on selected pressure sensors for �ive weight va-
lues [g]: 0, 50, 100, 500 and 1000. The test was carried
out at 5 [V] supply voltage.

Tab. 1. �oltage c�aracteris�cs of selecte� force sensors
�on t�e �nger�ps�
Position Voltage value [V] at sensor

load [g]
0 50 100 500 1000

Thumb 0.2 1.4 2.6 3.9 4.3
Index 0.5 1 1.5 2.6 3
Middle 0.6 2 2.8 4.1 4.5
Ring 0.4 1.4 2.2 3.5 4
Pinky 0.7 1 1.7 3 3.6

Asexpected,with the increaseof thepressure force
on the sensor, its resistance decreases. It leads to a re-
duction in voltage drop.

An example signal recorded on a force sensor is
presented in Figure 7. In accordance with the sensors

Fig. 7. �oltage c�aracteris�cs of t�e force sensor

characteristic (Tab. 1 and Fig. 7) in the initial phase of
movement, when there was no contact with any ob-
ject from the environment, the voltage valuemeasured
on the sensor is contained in the range of 0 [V] to 0.5
[V]. In the second of movement occurs a contact and
the voltage increases sharply to around 2 [V]. Then it
gently falls and grows again, stabilizing in the range
between 1.5[V ] and 1.75[V ].

The data coming from the pressure sensors not
only inform about the existence of the contactwith the
obstacle, but also about the force exerted on the object
during the grip itself. For example, it can be read from
the graph that the sensor has a force of about 0.981
Newton in accordance with the formula:

F = ma (1)
Where m is the mass value read from Diagram 7

for voltage equal to the instantaneous voltage in 3
4 se-

conds and amounts to 2[V ], a is the value of gravitati-
onal acceleration and is assumed to be 9.81[ms2 ].

F =
1

10
× 9.81 = 0.981[N ] (2)

Fig. 8. Example signal of force sensor

3.4. Bend Sensor
The properties of standard bend sensors are pre-

sented in Table 2. According to the presented data, al-
ong with the progressive bending of the sensor from
00 to 900, its resistance increases and the voltage de-
creases.
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Fig. 5. Sensor glove – posterior

Fig. 6. Sensor glove – anterior
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The averaged values for all three positions are pre-
sented inDiagram9. Analyzing the data contained the-
rein, it can be stated that in the examined range the
voltage characteristics of the sensor are linear.

Tab. 2. �oltage c�aracteris�cs of bend sensors

Position Voltage value [V] at the sensor
bends [0]
0 45 90

Thumb 3 2.5 2
Index 2.6 2.1 1.8
Middle 3.3 2.9 2.6
Ring 2.4 1.9 1.5
Pinky 3.1 2.5 2

Fig. 9. �oltage c�aracteris�cs of t�e bend sensor

The data contained in Diagram 10 shows the elec-
trical signal from the bend sensor. As in the previous
case, the registration took 2 seconds. Comparing the
data with the voltage characteristic (Figure 2) of the
sensor, it can be stated that in the initial phase of mo-
vement the �inger with the sensor was bent by 450.
Then in 1

2 seconds it was straightened and bent again
in the of the �irst second of movement.

Fig. 10. Example signal of bend sensor

4. Tests
The carried out research aimed at illustrating the

possibilities of the measuring stand in terms of the in-
terpretation of electromyographic data from the Myo

(a) (b)

(c) (d)

Fig. 11. Example classes of movements

measuring band for the purpose of recognizing the in-
tention of making amovement. The authors’ intention
is also to maximize the number of correct identi�iers
(input data→movement class) and aspiration to com-
pletely eliminate false matches for three different al-
gorithms: standard deviation, wavelet form, energy of
signal. The ��� algorithm was used as the classi�ier
with parameter of neighbors number equal to 3. Ac-
cording to the studies, it is the optimal parameter va-
lue for the problem of classifying the time features of
electromyographic signals [12].
4.1. The Run of the Experiments

The selected set of movement classes consists of
11 different grasps. This set has been presented in the
paper on an innovative measurement system develo-
ped at the Wroclaw University of Science and Techno-
logy [14]. It consists ofmovements duringwhich ever-
yday objects are captured: a pen (Fig. 11a), a screw,
a potentiometer, a glass without handle (Fig. 11b), a
glass with handle (Fig. 11c), a kettle, an ATM card (Fig.
11d), amobile phonewith rotarymovement, a compu-
ter mouse, a mobile phone without rotary movement,
a suitcase.

The process of data acquisition took place in two
stages. First, proper movement was performed for 2
seconds. Then, again for 2 seconds, a rest period took
place during which the user had time to put away the
object and return to the starting position. The measu-
ring application has been equippedwith two progress
bars that �ill in alternately and informabout the remai-
ning time.

For eachof the11 classes, 200measurementswere
taken. Then, for each move, a 100-element subset was
selected for teaching the classi�ier. The rest of the me-
asurements were used to assess the quality of classi�i-
cations. As a result of subsequent tests, tables of truths
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and a percentage of recognition of the testedmeasure-
ments are presented.

The succeeding lines of the truth table contain
information about single, examined classes of mo-
vements. For each of them, the numbers in the follo-
wing columns describe the percentage recognition of
a givenmovement as another class. The numbers lying
on the diagonal are the values of the correct recogni-
tion of the next move by the classi�ier. All other values
greater than0 indicate an erroneous assignment of the
classed measurement.
4.2. Results
Stan�ar� �evia�on (S�)

The standard deviation algorithm belongs to the
group of classical, time algorithms of character ex-
traction.

Xsd =

√√√√ 1

N

N∑
i=1

(xi − x0)2 (3)

The calculations were carried out for the standard de-
viation and the ��� classi�ier.

Tab. 3. Truth table for �tan�ar� �ev�a�on

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
1. 92 2 1 1 3 0 1 0 0 0 0
2. 0 89 2 0 7 0 2 0 0 0 0
3. 2 3 92 0 2 0 1 0 0 0 0
4. 0 0 1 99 0 0 0 0 0 0 0
5. 2 8 5 1 83 0 1 0 0 0 0
6. 1 0 0 0 0 99 0 0 0 0 0
7. 6 0 0 0 1 0 91 0 2 0 0
8. 0 0 0 0 0 0 0 93 0 7 0
9. 0 0 1 0 1 0 0 0 98 0 0
10. 0 0 3 0 0 0 0 5 0 91 1
11. 0 1 0 0 0 0 0 0 1 0 98

Table 3 shows the results of the classi�ication for a
set of 11 grabs. The selected row 5 contains elements
from columns 1 to 11. The values contained in them
indicate successively the number of classi�ications 10
for classes from 1 to 11. In the example shown, class
5 was recognized 83 times correctly and 17 times in-
correctly: 3 times as class 1, 7 times as class 2, twice
as class 3 and once as class 7.

The sum of values on the diagonal of the truth ta-
ble in relation to the total amount of classed measure-
ments gives the percentage value of the classi�ication
of the movements studied.

Xsk : 93% (4)

Wavelet form (WL)
Wavelet form algorithm from the group of time al-

gorithms. The value of the feature determined by this
method is calculated as the sum of absolute values
from the differences of the subsequent amplitudes of
the signal.

XW =

N∑
k=2

|∆xk| (5)

∆xk = xk − xk−1 (6)

The calculations were carried out for the wavelet
form and the ��� classi�ier.

Tab. 4. Truth table for wavelet length

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
1. 93 1 1 1 4 0 0 0 0 0 0
2. 1 91 0 0 5 0 2 0 0 0 1
3. 5 0 91 0 3 0 0 0 0 1 0
4. 0 0 0 99 0 1 0 0 0 0 0
5. 0 6 5 0 89 0 0 0 0 0 0
6. 0 0 0 0 0 99 1 0 0 0 0
7. 0 0 2 1 5 0 91 0 1 0 0
8. 0 0 0 0 0 0 0 93 0 7 0
9. 0 0 1 0 1 0 2 0 96 0 0
10. 0 0 0 0 0 0 0 1 0 98 1
11. 0 0 0 2 0 0 1 0 0 0 97

XW : 94% (7)
From table 4, you can read the class that was most

often incorrectly recognized. Class 5 has been mista-
�enly identi�ied 11 times.
Energy (En)

Another classic algorithm of character extraction
is the algorithm for calculating Energy of a signal.

XEn =

N∑
k=1

|xk|2 (8)

The calculationswere carried out for the Energy of
signal and the ��� classi�ier.

Tab. 5. Truth table for energy

1. 86 2 2 1 6 0 3 0 0 0 0
2. 2 80 4 0 13 0 1 0 0 0 0
3. 7 7 81 0 1 0 2 2 0 0 0
4. 4 0 0 89 0 2 2 0 0 3 0
5. 2 14 6 0 78 0 0 0 0 0 0
6. 2 0 0 0 0 98 0 0 0 0 0
7. 8 0 3 0 3 0 83 0 3 0 0
8. 0 0 0 0 0 0 0 89 0 11 0
9. 0 0 2 0 2 0 2 1 93 0 0
10. 1 1 6 5 2 0 0 10 0 74 1
11. 1 2 0 0 0 0 1 1 0 2 93

XEn : 84% (9)
Again analyzing truth table 5, the class that is most

often wrongly recognized can be easily found. In this
case, it is class 10 with 26%of the samples incorrectly
recognized.
4.3. The Comparison of Measurement Systems

In the next step of the research, the results of ex-
periments were compiled and the measurement data
obtained with the Myo armband and a professional
measuring system [14] developed at theWrocławUni-
versity of Technology and Science were compared. In
both cases, the tests (both data acquisition as well as
digital processing)were proceededwith the sameme-
asurementmethodology. In the case of ameasurement
system from the Wroclaw University of Technology
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The averaged values for all three positions are pre-
sented inDiagram9. Analyzing the data contained the-
rein, it can be stated that in the examined range the
voltage characteristics of the sensor are linear.

Tab. 2. �oltage c�aracteris�cs of bend sensors

Position Voltage value [V] at the sensor
bends [0]
0 45 90

Thumb 3 2.5 2
Index 2.6 2.1 1.8
Middle 3.3 2.9 2.6
Ring 2.4 1.9 1.5
Pinky 3.1 2.5 2

Fig. 9. �oltage c�aracteris�cs of t�e bend sensor

The data contained in Diagram 10 shows the elec-
trical signal from the bend sensor. As in the previous
case, the registration took 2 seconds. Comparing the
data with the voltage characteristic (Figure 2) of the
sensor, it can be stated that in the initial phase of mo-
vement the �inger with the sensor was bent by 450.
Then in 1

2 seconds it was straightened and bent again
in the of the �irst second of movement.

Fig. 10. Example signal of bend sensor

4. Tests
The carried out research aimed at illustrating the

possibilities of the measuring stand in terms of the in-
terpretation of electromyographic data from the Myo

(a) (b)

(c) (d)

Fig. 11. Example classes of movements

measuring band for the purpose of recognizing the in-
tention of making amovement. The authors’ intention
is also to maximize the number of correct identi�iers
(input data→movement class) and aspiration to com-
pletely eliminate false matches for three different al-
gorithms: standard deviation, wavelet form, energy of
signal. The ��� algorithm was used as the classi�ier
with parameter of neighbors number equal to 3. Ac-
cording to the studies, it is the optimal parameter va-
lue for the problem of classifying the time features of
electromyographic signals [12].
4.1. The Run of the Experiments

The selected set of movement classes consists of
11 different grasps. This set has been presented in the
paper on an innovative measurement system develo-
ped at the Wroclaw University of Science and Techno-
logy [14]. It consists ofmovements duringwhich ever-
yday objects are captured: a pen (Fig. 11a), a screw,
a potentiometer, a glass without handle (Fig. 11b), a
glass with handle (Fig. 11c), a kettle, an ATM card (Fig.
11d), amobile phonewith rotarymovement, a compu-
ter mouse, a mobile phone without rotary movement,
a suitcase.

The process of data acquisition took place in two
stages. First, proper movement was performed for 2
seconds. Then, again for 2 seconds, a rest period took
place during which the user had time to put away the
object and return to the starting position. The measu-
ring application has been equippedwith two progress
bars that �ill in alternately and informabout the remai-
ning time.

For eachof the11 classes, 200measurementswere
taken. Then, for each move, a 100-element subset was
selected for teaching the classi�ier. The rest of the me-
asurements were used to assess the quality of classi�i-
cations. As a result of subsequent tests, tables of truths
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and a percentage of recognition of the testedmeasure-
ments are presented.

The succeeding lines of the truth table contain
information about single, examined classes of mo-
vements. For each of them, the numbers in the follo-
wing columns describe the percentage recognition of
a givenmovement as another class. The numbers lying
on the diagonal are the values of the correct recogni-
tion of the next move by the classi�ier. All other values
greater than0 indicate an erroneous assignment of the
classed measurement.
4.2. Results
Stan�ar� �evia�on (S�)

The standard deviation algorithm belongs to the
group of classical, time algorithms of character ex-
traction.

Xsd =

√√√√ 1

N

N∑
i=1

(xi − x0)2 (3)

The calculations were carried out for the standard de-
viation and the ��� classi�ier.

Tab. 3. Truth table for �tan�ar� �ev�a�on

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
1. 92 2 1 1 3 0 1 0 0 0 0
2. 0 89 2 0 7 0 2 0 0 0 0
3. 2 3 92 0 2 0 1 0 0 0 0
4. 0 0 1 99 0 0 0 0 0 0 0
5. 2 8 5 1 83 0 1 0 0 0 0
6. 1 0 0 0 0 99 0 0 0 0 0
7. 6 0 0 0 1 0 91 0 2 0 0
8. 0 0 0 0 0 0 0 93 0 7 0
9. 0 0 1 0 1 0 0 0 98 0 0
10. 0 0 3 0 0 0 0 5 0 91 1
11. 0 1 0 0 0 0 0 0 1 0 98

Table 3 shows the results of the classi�ication for a
set of 11 grabs. The selected row 5 contains elements
from columns 1 to 11. The values contained in them
indicate successively the number of classi�ications 10
for classes from 1 to 11. In the example shown, class
5 was recognized 83 times correctly and 17 times in-
correctly: 3 times as class 1, 7 times as class 2, twice
as class 3 and once as class 7.

The sum of values on the diagonal of the truth ta-
ble in relation to the total amount of classed measure-
ments gives the percentage value of the classi�ication
of the movements studied.

Xsk : 93% (4)

Wavelet form (WL)
Wavelet form algorithm from the group of time al-

gorithms. The value of the feature determined by this
method is calculated as the sum of absolute values
from the differences of the subsequent amplitudes of
the signal.

XW =

N∑
k=2

|∆xk| (5)

∆xk = xk − xk−1 (6)

The calculations were carried out for the wavelet
form and the ��� classi�ier.

Tab. 4. Truth table for wavelet length

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
1. 93 1 1 1 4 0 0 0 0 0 0
2. 1 91 0 0 5 0 2 0 0 0 1
3. 5 0 91 0 3 0 0 0 0 1 0
4. 0 0 0 99 0 1 0 0 0 0 0
5. 0 6 5 0 89 0 0 0 0 0 0
6. 0 0 0 0 0 99 1 0 0 0 0
7. 0 0 2 1 5 0 91 0 1 0 0
8. 0 0 0 0 0 0 0 93 0 7 0
9. 0 0 1 0 1 0 2 0 96 0 0
10. 0 0 0 0 0 0 0 1 0 98 1
11. 0 0 0 2 0 0 1 0 0 0 97

XW : 94% (7)
From table 4, you can read the class that was most

often incorrectly recognized. Class 5 has been mista-
�enly identi�ied 11 times.
Energy (En)

Another classic algorithm of character extraction
is the algorithm for calculating Energy of a signal.

XEn =

N∑
k=1

|xk|2 (8)

The calculationswere carried out for the Energy of
signal and the ��� classi�ier.

Tab. 5. Truth table for energy

1. 86 2 2 1 6 0 3 0 0 0 0
2. 2 80 4 0 13 0 1 0 0 0 0
3. 7 7 81 0 1 0 2 2 0 0 0
4. 4 0 0 89 0 2 2 0 0 3 0
5. 2 14 6 0 78 0 0 0 0 0 0
6. 2 0 0 0 0 98 0 0 0 0 0
7. 8 0 3 0 3 0 83 0 3 0 0
8. 0 0 0 0 0 0 0 89 0 11 0
9. 0 0 2 0 2 0 2 1 93 0 0
10. 1 1 6 5 2 0 0 10 0 74 1
11. 1 2 0 0 0 0 1 1 0 2 93

XEn : 84% (9)
Again analyzing truth table 5, the class that is most

often wrongly recognized can be easily found. In this
case, it is class 10 with 26%of the samples incorrectly
recognized.
4.3. The Comparison of Measurement Systems

In the next step of the research, the results of ex-
periments were compiled and the measurement data
obtained with the Myo armband and a professional
measuring system [14] developed at theWrocławUni-
versity of Technology and Science were compared. In
both cases, the tests (both data acquisition as well as
digital processing)were proceededwith the sameme-
asurementmethodology. In the case of ameasurement
system from the Wroclaw University of Technology
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and Science, data acquisition took place on 16 chan-
nels, 8 of them were electromyographic signals and
the remaining 8 mechanomyogra�ic signals. The re-
sults of the experimentswere presented in Table 6 and
in Figure 12.

Tab. 6. ����rate ��assi��a�ons for the Myo and Lab 06
systems

The algorithm used to ex-
tract features
SD WL En

The Myo 93% 94% 84%
Lab 06 EMG 82% 86% 74%
Lab 06 MMG 67% 76% 64%
Lab 06 EMG +
MMG

89% 93% 77%

The average value of correct classi�ications was in
each case the highest for the system using the Myo.

Fig. 12. Comparison of the Myo and Lab 06 systems

5. Conclusions
The paper presents the concept of the system con-

struction for the simultaneousmeasurement of the bi-
oelectric signal and pressure force on the prosthesis’s
�ingers during motion. When the system was compa-
red to a professional measuring system, the parame-
ters of a commercialmeasuring band appear to be suf-
�icient in terms of the quality of the received signal. In
addition, the commercial system also allows the regis-
tration of the signal from the mounted accelerometer
and gyroscope which extends the existing capabilities
of traditional measurement systems [14].

The use of a measuring glove with bend and pres-
sure sensors gives additional information about the
hand posture (bend sensors) during motion as well
as interaction with the surrounding world (touch sen-
sors). Thanks to this information, it is possible to accu-
rately describe the condition of the hand and forearm
at any time during themovement. Additionally, thanks
to bend and pressure signals, it is possible to control
the prosthesis in such a way that the interaction with
the surrounding world is as non-invasive and realis-
tic as possible so that the manipulated objects and the

prosthesis themselves will not be damaged due to the
movement.

The presented concept of the measurement sy-
stem gives new possibilities due to the study of algo-
rithms for the recognition of biological signals. In con-
trast to the current classical approach, the input vec-
tor contains signals from four different sources. Star-
ting from the electrical signal ending with a mechani-
cal signal, which gives the ability to recognize intenti-
ons based on different sources of signal, and thus car-
rying different information.

The results of experiments in Chapter 4 show that
the quality of recorded signals is satisfactory. The use
of simple algorithms for extraction of features, opera-
ting on the temporal properties of signals, is suf�icient
to achieve high recognition values. These results can
be the starting point for further research on the al-
gorithms for recognizing biological patterns. The next
stage of work should be the expansion of the control-
ler by a part of the event controller reacting to contact
with an obstacle from the environment.
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