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Abstract:
Wedescribe simple to buildmechanomyography sensors,
with one or two channels, based on electret micropho-
nes. We evaluate their applica�on as a source of infor-
ma�on about the operator�s hand s��ness, which can be
used for changing a robot�s gripper s��ness during tele-
opera�on. We explain a data ac�uisi�on procedure for
further employment of a machine-learning. Finally, we
present the results of three experiments and various ma-
chine learning algorithms. �upport vector classi�ca�on,
random forests, and neural-network architectures (fully-
connected ar��cial neural networks, recurrent, convolu-
�onal� were compared in two experiments. In �rst and
second, two probes were used with a single par�cipant,
with probes displaced during learning and tes�ng to eva-
luate the in�uence of probe placement on classi�ca�on.
In the third experiment, a datasetwas collected using two
probes and seven par�cipants. �s a result of the single-
probe tests, we achieved a (binary� classi�ca�on accu-
racy of ���. �uring the mul�-probe tests, large cross-
par�cipant di�erences in classi�ca�on accuracy were no-
ted, even when normali�ing per-par�cipant.

Keywords: ���, acous�c myography, teleopera�on,
mechanomyography

�� ��trod�c�o�
In this paper, we evaluate how simple mecha-

nomyography probes can be used for hand stiffness
classi�ication.We are particularly interested in the use
of such microphone-based probes to complement our
teleoperation system for robotic gripper teleoperation
based on wearable sensor/haptic glove and a vision
system. The teleoperation environment provides uni-
que challenges for teleoperation devices: the need for
real-time data acquisition and processing, ease of use
even during stressful situations, robustness and low
cost.

Robots may be teleoperated in an environment
where the operator has limited perception capability
and therefore has to proceed cautiously. In such si-
tuations, a person would change the stiffness of his
hand to limit contact forces during unexpected colli-
sions or when interacting with unknown objects [10].
In this paper, we present a design and results of rese-
arch using amechanomyography probe for estimating
the operator’s hand stiffness.

Various grippers can change own’s stiffness using
a designated mechanical structure [5] or through
sensor-based controlmechanism(impedance control)

[16]. The control mechanism could automatically se-
lect such value, but in an unknown environment (such
as rescue or exploratory robotics), where teleopera-
tion is the dominating mode of the control, such va-
lue should be somehowconnected to the actions of the
operator.

However, the cognitive load of the operator over-
whelmed by the number of controls of the teleope-
ration interface can negatively in�luence his effective-
ness [13]. Instead of ”classic teleoperation,” immer-
sive teleoperation (where the operator’s body beha-
vior controls various parameters of the teleoperated
robot) can lessen the cognitive load and be more ”in-
tuitive.” Myosignals could be, in such a scenario, used
for setting the stiffness parameters of the gripper.

Myosignals have been already used to change the
stiffness of multi-�inger grippers, to improve their ro-
bustness to crashes [3]. Also, such signals were used
to change the impedance of an industrial manipula-
tor in teleoperationmode [4]. They were also used for
prosthetics control. Such prosthetics could have one
ormore degrees of freedom through using one ormul-
tiple myosignal probes [19]. Myosignals could trigger
prede�ined motions [19] or, after calibration, be used
to control themovement of each joint or closureof grip
[17]. Wołczowski et al. lead a multi-year effort on cre-
ating a biosignal acquisition for the control of a multi-
functional hand prosthesis, based on probes capable
of both MMG and EMGmeasurement [32].

Various types of myosignals could be used, but
electromyography is the most widely used, due to
a long history and very advanced probing schemes
achieved. It depends on measuring very small volta-
ges; therefore, changes in sensor placement and skin
impedance can lead to large differences in amplitude,
shape, and signal delay [22]. Mechanomyography,
whichdependsonmeasuringmechanical vibrations of
muscles is less dependant on such issues [36].

While less prevalent than electromyography, there
were several applications of mechanomyography pro-
bes for medical and rehabilitation uses [8]. As there
are several challenges regarding how mechanomyo-
graphic signals could be acquired, there is no one stan-
dard method for signal acquisition and analysis. A re-
view of mechanomyography sensor development is
presented in [15, 20]. Signals were read using accele-
rometers, piezometers or microphones, or combinati-
ons of such. Similarly, a signal analysis could be done
using multiple methods; in time or frequency dom-
ains.

Our goal was to design an inexpensive but usable
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muscles is less dependant on such issues [36].

While less prevalent than electromyography, there
were several applications of mechanomyography pro-
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are several challenges regarding how mechanomyo-
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dard method for signal acquisition and analysis. A re-
view of mechanomyography sensor development is
presented in [15, 20]. Signals were read using accele-
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ons of such. Similarly, a signal analysis could be done
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Our goal was to design an inexpensive but usable
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setup, based on electret microphone connected to a
standard PC for classifying hand stiffness based on the
mechanomyographic signal.

Mechanomyography has several features that
make it an interesting alternative to electromyo-
graphy. Mainly, the simplicity of setup where probes
do not need to be as precisely placed as in elec-
tromyography (while still position and relative sensor
orientation can have an impact as described in [18]),
as well as, robustness to changes in air or skin moi-
sture or occurrence of strong radio / EM signal [9].
This is because of the nature of low-frequency audio
signals which are sensed in mechanomyography [36].

The design described in this paper is strongly in-
�luenced by the results of Silva et al. from PRISM labo-
ratory, from their long-term project on using mecha-
nomyography for prosthetics control [29]. The team
created a two-sensor (accelerometer, microphone)
per probe set in which accelerometer was used to es-
timate and possibly eliminate the in�luence of motion
on the sensor readouts. Motion artifacts are impor-
tant factors for mechanomyography, with a more sig-
ni�icant effect on accelerometer basedMMG. Posatskiy
and Chau presented such a comparative study of mi-
crophones and accelerometers and also found that for
both types of sensors non-vanishing motion artifact
harmonics were present [26]. Especially for telemani-
pulation, where the operatormoves his limbs, such in-
�luence is important, and in this paper, we investigate
the effect of dynamicmotions on hand-stiffness classi-
�ication accuracy.

The apparent ease of setup makes it convenient to
use for a teleoperation system, as operators installing
the probes would not need prolonged training. Also in
hectic situations as the ones occurring in rescue situ-
ations, possible probe displacement should not result
in misclassi�ications.

In Section 2 we present the design of two types
mechanomyographic probes.Wedescribe their design
goals and properties as well as fabrication details. In
subsection 2.2 we describe how the data acquired and
processed.

In Section3weevaluate themachine learning algo-
rithms for classifying hand stiffness based on the data
acquired using the probes described in Section 2. Par-
ticularly, we present details of three experiments two
of which evaluated the use of plastic and silicone pro-
bes and classi�ier robustness to sensor placement. In
third, we evaluated multi-subject stiffness classi�ica-
tion using two-probe set.

In Section 4 we present how the classi�ication pi-
peline can be integrated into a Robot Operating Sy-
stem network, particularly for the teleoperation using
operator’s arm and handmovement. We �inish the pa-
per with summary and conclusions.

2. Da�a �c��isi�on �sing Mechanomyo�
graphic Probe

2.1. The Design of Mechanomyographic Probe
For the acquisition of a mechanomyographic sig-

nal (MMG)wemanufactured three sets of probes, each

(a) � �ra� �e�ign of
mechanomyographic probe

(b) Photograph of
mechanomyographic probe

Fig. 1.Mechanomyographic probe

consisting of microphones in a harness. We used a ca-
pacitive, electret microphone, which did not require
phantom power. Microphones Marnsnaska DZ0289
have (declared) 2.2 kOhm impedance and sensitivity
of -52 dB with bandwidth 30 Hz - 15 kHz. The lo-
wer value is declared by the manufacturer, and comes
from measuring the microphone in hearing range, ot-
her works reported lower actual values [23]. Wata-
kabe evaluated the properties of a condenser microp-
hone (Panasonic/ Matsushita WM-034B) when atta-
ched to a cylinder with an air chamber, �inding that
with the correct combination of length and diameter
of the cylinder, the cut-off frequency could be redu-
ced to 2- 4 Hz, for diameters of the cylinder over 10
mm [31].

Due to use of electret microphone, it could be di-
rectly connected to a PC’s audio card (in our case, built
in motherboard audio card, Asus Z97-K). Tomaximize
the simplicity of the setup we did not use additional
ampli�iers or preampli�iers. A dedicated Python appli-
cation with GUI recorded the audio signal (see Fig. 3).

The �irst version of themechanomyographic probe
uses 3D FDM printed harness (Fig. 1a) (PLA mate-
rial), in the second one the harness is made from rub-
ber silicone (DRagonSkin, shore 30A), with an addi-
tional plastic harness for mounting the rubber part.
The mold for rubber silicone was also made using the
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silicone rubber
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(a) Silicone-rubber based
mechanomyographic probe

(b) Photograph of
silicone-based
mechanomyographic probe

Fig. 2. Silicone-rubber based mechanomyographic probe

Fig. 3. A graphical user interface for recording
mechanomyography data

FDM process, and its design is available on the pro-
ject’s website.

We designed the probe to have a cylinder shaped
air column between the microphone membrane and
the skin. In the case of the plastic probe, the air column
is closed by the seal formed by the skin while in case
of the silicone-rubber probe, we closed the air column
with additional silicone membrane on the bottom of
the device. Such a closed air column is needed to re-

gister low frequencies of theMMG signal and to enable
free movement of the microphone’s membrane.

The air column has a diameter of 13 mm and a
height of 2 mm, which is a combination with good
signal-to-noise ratio [28]. The motivation behind de-
signing twoprobeswas to evaluatewhether simplistic,
easy to make plastic probe could deliver adequate re-
sults. The main issue with the plastic probe is the lack
of dampening as because of the relative softness of the
silicone forms a low pass �ilter, attenuating high fre-
quencies while the closed air column provides near-
optimal signal ampli�ication parameters [27].

The probes do not include an additional accelero-
meter as in [27]. Authors motivated the addition of
such a device to �ilter the in�luence of the limb mo-
vement on the signal but did not provide an algorithm
to do so. Such setup would require an additional real-
time board which could record two streams of data in
parallel which would greatly complicate the setup.

Both probes are mounted using elastic harnesses
and placed over a selected muscle group. No further
preparation is needed.

Additionally, we designed a simple two-probe set,
with two probes of the second version attached to the
cloth, 13 cm apart (Fig. 4). Using the PLA material to
print the harness, the material can be easily melted to
weld to the cloth (linen). A rubber harness was atta-
ched between the two probes. The two-probe harness
was designed to enable easy setup for the operator,
as he/she only needs to slide the harness onto the fo-
rearm. However, due to a constant distance between
the probes, there is the risk that the probes cannot be
placed accurately over a particular muscle group. Co-
operation of this setup with multiple users is investi-
gated in one of the experiments.

Even with two probes, they can still be connected
to a (stereo) audio input either by soldering the GND
lines together and soldering the positive rails to se-
lected parts of a stereo audio jack or by using a Y-type
microphone adapter that combines the two microp-
hone inputs into two channels. Even with this setup,
no additional circuitry is used.
2.2. �a�a ����i�i��� a�� ����a�a���

The audio signal received by the probe’s microp-
hone is analyzed online using a dedicated Python pro-
gram with PyAudio, pyWavelets and Scipy libraries
(program available on the project repository [35]).

In standard setting the audio data is acquired with
16kHz frequency (16384 samplesper second).Weuse
either Discrete Fourier Transform or Wavelet Packet
Decomposition to form feature vectors for classi�ica-
tion. As the interesting signal is in the range between
5 - 50Hz [20] and to reduce the computational costwe
can downsample the signal. The signal is twice downs-
ampled using the decimate SciPy function [2] which
consists of low-pass �iltering with FI� �ilter with Ham-
ming window, and decimating (i.e., keeping every 8th
sample) to selected frequency (256 samples per se-
cond).

On computer with i7-4790 processor, the compu-
tation time for decimating 1s one-channel recording
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Fig. 4. A two-probe set using the silicone probes

registered with 16kHz frequency is around 750µs. In
case of usingmagnitudes of Fourier coef�icients calcu-
lating the coef�icients for the original signal is faster
than downsampling and calculating the coef�icients
from thedownsampled signal ( 157µs±1µs vs 798µs±
4).

However, in case of using features from Wave-
let Packet Decomposition, without downsampling a
deeper level of decomposition would be needed (
12th instead of 6th) to acquire desired resolution of
frequency sampling. For a 1s recording, decimation
and wavelet packet decomposition on 6th level takes
around 1.8ms± 5.35µs, compared to 12th level wave-
let packet decomposition 76.3ms± 811µs.

An example of downsampled (decimated) signal
for a relaxed and stiffened hand is shown in Fig. 5a and
Fig. 5b.

For the experiments described below, a signal win-
dow consists of varying lengths of signals, acquired
from 0.25 to 1s.

�. ��a��a��� �� �a��i�� ��a��i�g ��g��i����
��� ��a��i��i�g �a�� �������
The assumeduse of the system is for teleoperation.

What is important in practice, during the interaction
with the teleoperation system, an operator will typi-
cally grasp virtual (non-existing) objects with some
light feedback provided by a haptic feedback subsy-
stem. Therefore, we can assume that the operator ne-
ver produces a signi�icant force in the arm that would
not be happening in the same time as a contra force –
there will not be a signi�icant force output on the envi-

(a) An example of mechanomyographic signal for a relaxed
hand

(b) An example of mechanomyographic signal for s��ened
hand

Fig. 5. Examples of mechanomyographic signal

ronment by the operator’s hands. In that case, a single
mechanomyographic probe may be enough, while in
case of a hand coming into contact with the environ-
ment the signals from pairs of muscle groups would
need to be registered [14]. However, the operator will
move the hand during the teleoperation, so the system
needs to recognize the stiffness evenwhen the hand is
moving.

There are several issues in classifying hand stif-
fness using mechanomyography, all being the result
of multiple and non-stationary signal sources registe-
red in the audio signal of the probe. There is stiffness
information in the myographic signal [14] but it also
has information about the motion of the limb, which
is dif�icult to decouple [27]. Also, the mechanomyo-
graphic signal is nonstationary – stiffening the hand
results in a momentary peak in signal (see a peak at
1s at Fig. 5b), followed by a signal with slightly diffe-
rent (compared to relaxed hand) amplitude and fre-
quency. �uscle fatigue also in�luences the vibrations
of muscles.

As in this case, the mechanomyographic signal is
de facto an audio signal, background noises (from, for
example, movement of probe cables, operators clot-
hes) are also registered. Conversely, because the sig-
nal is registered by a microphone, motion artifacts
have less in�luence on the recording that in case of
using an accelerometer.

Also, although less than in the electromyographic
signal, the positioning of the probe could in�luence the
registered signal. We assume that the probe is moun-
ted by the operator, who could not be a specialist in
good signal acquisition or anatomy. Therefore,we can-
not guarantee that the probe will always be put in the
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same place only that it will be in some area around the
particular muscle group.

All previously described issues make a simple sig-
nal �iltering to acquire the stiffness classi�ication infe-
asible, andmost previous approaches are data-driven,
machine learning based,where newdata are classi�ied
using amodel thatwas created using previously acqui-
red and labeled data (supervised learning). Instead of
calibrating the sensor, based on the data, a machine
learning algorithm captures the pattern in the data fa-
cilitating classi�ication.
3.1. Acquiring Data for Supervised Learning

Labeled data for supervised learning was acqui-
red during two experiments using the previously des-
cribed mechanomyographic probes. In both experi-
ments, the probe was placed in 7 different parts of the
arm, on an area of around35mm indiameter, on �lexor
carpi radialis and �lexor carpi ulnaris muscles. The ex-
act placement of the probes is illustrated in Fig.6. In
both experiments, the operator was asked to move
the hand using 20 gestures, typical for normal hand
movement, a list of which is presented in Tab. 1. The
choice of gestureswasmade such that therewere both
static poses and dynamic actions – possibly making it
moredif�icult to classify the stiffness due to themotion
artifacts. We did not try to classify the gestures, but
in the third experiment, they were recorded to enable
better interpretation of the results.

Actions were done twice, once having a relaxed
hand, the second time having it stiffened. Five of the
positions were used in training (1,3,4,5,6 see Fig.6)
while points 2 and 7 were used in tests.

In all three experiments, the goal was to classify
the mechanomyographical signal for a binary label –
whether the hand was stiff or relaxed. Participants
were instructed to stiffen their hand so that the �in-
gerswould not (signi�icantly)movewhen therewould
be an external force and to have near none resistance
to force (just to compensate gravity) when having the
hand relaxed.We did notmeasure the actual mechani-
cal stiffness of the hand.

In the �irst experiment, a plastic probe was used,
and data were acquired with an effective acquisition
frequency of 1024 samples per second and a frame
length of 0.5s. For each vector of samples, magnitudes
of discrete Fourier coef�icientswere calculated and re-
gistered (a vector of length 512). The aim of the Ex-
periment was assessing the feasibility to use a simple
sensor with computationally fast data process (even
on microcontrollers or DSP’s) to acquire a usable sig-
nal.

In the second experiment, data were collected
using the silicone-rubber probe, with an audio signal
being registered with a frequency of 16 kHz and labe-
ledwith the frequency of 2 Hz (i.e., every half-second).
A single audio recordingwas registered for one action.

Each hand gesture motion recording, for each per-
son, was split into 0.5 s labeled recordings. In the �irst
experiment, as the data was labeled every 500 ms,
3220 half-second training and 689 (around 20%) tes-
ting label-recording pairs were acquired, which adds

Tab. 1. �and mo�ons used in data ac�uisi�on �or
mechanomyography experiments

number activity
1 �lat hand
2 �lat hand rotated 90 degrees
3 closed �ist
4 closed �ist rotated 90 degrees
5 spherical grasp
6 3 �inger grip
7 wedge grip
8 pointing
9 4 straightened �ingers
10 2 straightened (freedom gesture)
11 a cylindrical grasp
12 radial palmar grasp
13 �inger wave motion
14 tapping �ingers
15 a ”scissor” gesture
16 �lexing hand in wrist
17 a hand laying on table
18 grabbing a box (transverse volar grip)
19 grabbing a bottle (cylindrical palmar pre-

hension)
20 using a keyboard

Fig. 6. Sensor placement during the experiments

up to about 30 minutes of the registered signal.
In the second experiment, 6944 half-second trai-

ning and 2962 (about 27%) testing label-recording
pairs were acquired, adding up to around 80 minutes
of a signal.

3.2. Experiment 1
For the �irst experiment, three classes of algo-

rithms were investigated. These were: Support Vector
Machines (SVM)with Linear Kernel, Extreme Random
Trees and Neural Networks.

For SVM and Extreme Random Trees, we used
Scikit-Learn implementations and Keras for Neural
Networks [1, 25]. For Fully-Connected Neural Net-
work we used a three-layer Neural Network, with one
hidden layer, batch normalization, and dropout du-
ring training, see Fig. 9. In all cases, a backpropaga-
tion learning algorithm was used. Similar algorithms
were used in other papers for electro ormechanomyo-
graphy analysis [6].

Feature vector was constructed from magnitudes
of Fourier coef�icients, corresponding to frequency
band 0-50 Hz. Also, a recursive feature elimination
(RFE) method was used to select a subset of features
that had the highest importance. The method trains
the classi�ier using an initial set of features, compu-
tes the feature importance (a ranking classi�ier) for the
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same place only that it will be in some area around the
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gistered (a vector of length 512). The aim of the Ex-
periment was assessing the feasibility to use a simple
sensor with computationally fast data process (even
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using the silicone-rubber probe, with an audio signal
being registered with a frequency of 16 kHz and labe-
ledwith the frequency of 2 Hz (i.e., every half-second).
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Each hand gesture motion recording, for each per-
son, was split into 0.5 s labeled recordings. In the �irst
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up to about 30 minutes of the registered signal.
In the second experiment, 6944 half-second trai-

ning and 2962 (about 27%) testing label-recording
pairs were acquired, adding up to around 80 minutes
of a signal.

3.2. Experiment 1
For the �irst experiment, three classes of algo-

rithms were investigated. These were: Support Vector
Machines (SVM)with Linear Kernel, Extreme Random
Trees and Neural Networks.

For SVM and Extreme Random Trees, we used
Scikit-Learn implementations and Keras for Neural
Networks [1, 25]. For Fully-Connected Neural Net-
work we used a three-layer Neural Network, with one
hidden layer, batch normalization, and dropout du-
ring training, see Fig. 9. In all cases, a backpropaga-
tion learning algorithm was used. Similar algorithms
were used in other papers for electro ormechanomyo-
graphy analysis [6].

Feature vector was constructed from magnitudes
of Fourier coef�icients, corresponding to frequency
band 0-50 Hz. Also, a recursive feature elimination
(RFE) method was used to select a subset of features
that had the highest importance. The method trains
the classi�ier using an initial set of features, compu-
tes the feature importance (a ranking classi�ier) for the
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classi�ier and removes the feature with the smallest
ranking criterion. The procedure is repeated until a
desired (reduced) number of features is achieved [12].

For each classi�ication method and each type of fe-
ature vector a hyperparameter optimizationwas used,
as all selected algorithms are highly dependent on se-
lected hyperparameters (C parameter for SVMwith li-
near kernel, number of estimators, min sample split,
a maximum number of features for extreme random
trees, number of neurons on a layer and regularization
parameters for a neural network).

A grid search with cross-validation (5-split) was
used for optimization. For each algorithmand each hy-
perparameter, we created a list of values to evaluate
and then we took the Cartesian product of these pos-
sible values. Then, for each hyperparameter combina-
tion, the machine learning algorithm was taught on a
4/5ths of the test data, while tested on the remaining
1/5th (of the test set), repeating �ive times on a dif-
ferent split. Subsequently, a mean precision value, ta-
ken from evaluating the taught algorithms on particu-
lar test sets was used as a return value for hyperpara-
meter combination.

A model with the best parameters was then tested
on the test set.

3.3. Experiment 2
In the second experiment, in addition to the same

features as in Experiment 1, that is constructed from
magnitudes of FFT coef�icients and eliminated using
RFE feature selection, we evaluated other signal trans-
forms.

Namely, we used spectral analysis using Wavelet
Packet decomposition, and we directly used the deci-
mated signal in the time domain. Spectral analysis and
direct method were used motivated by the previously
researched nonstationarity of the signal [7].

For analysis using Wavelet Packets, we used the
methodology described in [30], for analysis of EEG sig-
nal. We used the same parameters, that is Daubechies
wavelet 4 (db4) wavelet family and 6th level of wa-
velet packet decomposition. For calculations, PyWave-
lets library for Python language was used [21].

Wavelet packet decomposition, for a signal of
length 256 and 6th level of decomposition, produces
64 vectors of length 7. Sorted by frequency, the �irst
25 of those represents frequencies between 0-50 Hz.

Several combinations of features were investiga-
ted, each set creating a feature vector. Same types of
feature vectors were selected for a shorter time win-
dow 0.25s.
- feature vector constructed from a concatenation of
25 �irst (frequency sorted) vectors from the 6th level
of Wavelet Packet decomposition (length 25*7) – all
decom�osition coef�icients

- feature vector constructed from a concatenation of a
vector where each element is a mean of elements of
one of the vectors of Wavelet Packet decomposition
– average coef�icients from [30], with a vector where
each element is a normof one of the vectors ofWave-
let Packet decomposition, �irst 25 vectors were used

(length 50) – subband energy vector [30],
- subset of features constructed from concatenation
of subband energy vector and average coef�icients
and reduced by feature elimination using Recursive
feature elimination (RFE). The scikit-learn imple-
mentation of the RFE algorithm was used [25].
Additionally, other architectures of neural net-

workswere used, namely convolutional (see Fig. 10b),
and recurrent (seeFig.10c) neural networks,which re-
quired different input data formats:
- in case of convolutional neural networks, the input
was a matrix (64x7) where each row was one of the
vectors of Wavelet Packet decomposition, forming
an ”image” of the spectrogram (see Fig.7) –matrix of
decom�osition coef�icients. This approach is similar
to the representation used by Wołczowski and Zdu-
nek in [33] – each measurement can be represented
as a 3D tensor y ∈ RI1×I2×I3 , where I1 is the scale
dimensionality, I2 is time shift dimensionality, I3 is
the number of sensors (1 or 2).

- for a recurrent network, a rawdecimated time series
vector was used, of length 256.

(a) Relaxed hand (b) ���ened hand

Fig. 7. Image of matrix made from vectors of Wavelet
�ac�et �ecomposi�on. �orresponding �me series are
presented in Fig. 5

Similarly to the �irst experiment, for each method
and feature set combination, a hyperparameter opti-
mization based on cross-validation (5-fold) was used.
The model with the best set of hyperparameters was
evaluated on the test set. Also for all algorithms, the
speedof executionwasmeasured. Thiswasdoneusing
a categorization of a random vector by a selectedmet-
hod, using timeit Python function,which repeated exe-
cution of this function several times to estimate mean
execution time and standard deviation.
3.�. �������b�e�t S��ne�� ��a��i��a�on ��ing ��o�

probe Set
In this experiment, subjects were equipped with

two probes using the two-probe set (see Fig. 4). Seven
healthy subjects, 4 male, 3 female, 5 right- and 2 left-
handed, age 22-33, performed an experimental proto-
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Fig. 8. A two-probe set placement for the
m�l�-par�c�pant e�per�ment

col. For all subjects, the right handwas used, and there
were no changes for the setup of the probe. The whole
procedure lasted between 10 and 30minutes per par-
ticipant. All subjects participated voluntarily and gave
written consent to the procedures. Experimenters pla-
ced the probe over the �lexor digitorum super�icialis
and extensor digitorum (if not possible due to the dif-
ferences in subject forearm diameter the probes were
placed so they would be on two sides of brachioradi-
alis muscle), see Fig 8. All subjects repeated the same
set of actions as in previous experiments (see Tab. 1),
which were recorded. Overall, 664 gesture recordings
were collected, consisting of 7445 seconds of data.

Data were processed through the same pipeline as
in previous experiments, separate for both channels
(i.e., low-pass �iltering and decimation and 6th level
wavelet pocket features).

Two machine learning architectures – convolutio-
nal neural networks and extra trees classi�ier – were
used. For each participant, �ive conditions were evalu-
ated. In �irst, learning was done using single-channel
recordings of the other participants and test was done
on this participant. In the second, two channels were
used. In third, also two channels were used, but for
each participant, data was scaled used ScikitLearn ro-
bust scaler: i.e., the median was removed, and data
was scaled to interquartile (1st quartile and 3rd quar-
tile) range per each channel. In forth condition, only
same-subject recordings were used, using 5-fold data
splitting, i.e., data was split 5 times into test-train
sets, and the result is the mean precision value. In
the �ifth condition, only same-subject recordings were
used (with 5-fold data splitting), but only one mecha-
nomyography channel (sensor on the anterior side of
the arm).

3.5. Results and Discussion
Results of the Experiment one (plastic probe) and

comparison to results for the same features but for si-
licone probe (from Experiment two) are presented in
table 2. Rest of results for experiment two (single si-
licone probe, features constructed from Wavelet Pac-
ket Decomposition or raw time vector) are presen-
ted in table 3. Results of the third experiment (multi-
participant experiment) are presented in Fig. 11.

The Table 2 shows that nearly every method gave
signi�icantly better results for a silicone-probe than a

plastic one. Still, an 89% accuracy of classi�ication can
be achievedwith a simple plastic probe, using Support
�ector �lassi�ication (with Linear Kernel) with a fea-
ture vector being all magnitudes of FFT coef�icients.
This feature set is also the best for silicone probe, with
91%accuracy.What is important, thismethod ismuch
faster than Extra Trees �lassi�ier and Neural Network,
with time for single classi�ication being around 30 us
for S��and around 2ms for Extra Trees �lassi�ier and
Neural Network. The preparation of the signal, that is
calculation of magnitudes of Fourier coef�icients takes
approximately 916± 5ns (for sampling frequency of 1
kHz).

We also assume that 94% result of classi�ica-
tion for Extra Trees �lassi�ier is probably erroneously
good, as mean result on cross-validated data was only
74%.

The Table 3, presents that overall best result is
achieved where a convolutional neural network is
used on a 1s time frame, with each wavelet packet
decomposition vector constructing one row of the in-
put matrix, achieving a classi�ication result of 94.5%.
Using a longer time frame gives better results, but for
a 0.25s time frame, 90% accuracy is still possible. In-
terestingly, using a raw timeframe and recurrent neu-
ral network would result in the classi�ication with the
accuracy of 89% but with the signi�icantly longer cal-
culation times – 18 ms compared with classi�ication
times of less than 2ms and transformation times (for
signal decimation and wavelet packet decomposition)
of 4 ms.

In the third experiment models based on two-
probe input had a better result (i.e., two-channel
cross-participant results were better than one chan-
nel cross-participant results, and two-channel same-
subject results were better than one channel same-
subject results) but themulti-person experiment with
the two-probe set has also shown signi�icant diffe-
rences in results between participants. Best results
were achievedwhenmodels were trained using same-
subject data evenwhen using only one of the channels.
This is similar to the results of other groups. Particu-
larly, Youn and Kim presented that for estimating el-
bow �lexion forces from���signal same-subject vali-
dation tests were signi�icantly better than those of the
cross-subject validation test [34]. Per-participant data
normalization did not signi�icantly improve the cross-
participant results.

The comparably more reduced performance in all
the cases can be explained by the fact that the cur-
rent design of the two probe harness does not allow
accurate placement of two probes depending on the
forearm size and that the participants were not trai-
ned. Also, therewere fewer recordings per-participant
than in the previous experiments, which can explain
a worse performance of neural-network-based algo-
rithms, which tend to require large amounts of data
and over-learn otherwise.

�. �nteg�a�on �it� a R����ased ��ste�
The mechanomyography-based stiffness classi�i-
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Fig. 8. A two-probe set placement for the
m�l�-par�c�pant e�per�ment

col. For all subjects, the right handwas used, and there
were no changes for the setup of the probe. The whole
procedure lasted between 10 and 30minutes per par-
ticipant. All subjects participated voluntarily and gave
written consent to the procedures. Experimenters pla-
ced the probe over the �lexor digitorum super�icialis
and extensor digitorum (if not possible due to the dif-
ferences in subject forearm diameter the probes were
placed so they would be on two sides of brachioradi-
alis muscle), see Fig 8. All subjects repeated the same
set of actions as in previous experiments (see Tab. 1),
which were recorded. Overall, 664 gesture recordings
were collected, consisting of 7445 seconds of data.

Data were processed through the same pipeline as
in previous experiments, separate for both channels
(i.e., low-pass �iltering and decimation and 6th level
wavelet pocket features).

Two machine learning architectures – convolutio-
nal neural networks and extra trees classi�ier – were
used. For each participant, �ive conditions were evalu-
ated. In �irst, learning was done using single-channel
recordings of the other participants and test was done
on this participant. In the second, two channels were
used. In third, also two channels were used, but for
each participant, data was scaled used ScikitLearn ro-
bust scaler: i.e., the median was removed, and data
was scaled to interquartile (1st quartile and 3rd quar-
tile) range per each channel. In forth condition, only
same-subject recordings were used, using 5-fold data
splitting, i.e., data was split 5 times into test-train
sets, and the result is the mean precision value. In
the �ifth condition, only same-subject recordings were
used (with 5-fold data splitting), but only one mecha-
nomyography channel (sensor on the anterior side of
the arm).

3.5. Results and Discussion
Results of the Experiment one (plastic probe) and

comparison to results for the same features but for si-
licone probe (from Experiment two) are presented in
table 2. Rest of results for experiment two (single si-
licone probe, features constructed from Wavelet Pac-
ket Decomposition or raw time vector) are presen-
ted in table 3. Results of the third experiment (multi-
participant experiment) are presented in Fig. 11.

The Table 2 shows that nearly every method gave
signi�icantly better results for a silicone-probe than a

plastic one. Still, an 89% accuracy of classi�ication can
be achievedwith a simple plastic probe, using Support
�ector �lassi�ication (with Linear Kernel) with a fea-
ture vector being all magnitudes of FFT coef�icients.
This feature set is also the best for silicone probe, with
91%accuracy.What is important, thismethod ismuch
faster than Extra Trees �lassi�ier and Neural Network,
with time for single classi�ication being around 30 us
for S��and around 2ms for Extra Trees �lassi�ier and
Neural Network. The preparation of the signal, that is
calculation of magnitudes of Fourier coef�icients takes
approximately 916± 5ns (for sampling frequency of 1
kHz).

We also assume that 94% result of classi�ica-
tion for Extra Trees �lassi�ier is probably erroneously
good, as mean result on cross-validated data was only
74%.

The Table 3, presents that overall best result is
achieved where a convolutional neural network is
used on a 1s time frame, with each wavelet packet
decomposition vector constructing one row of the in-
put matrix, achieving a classi�ication result of 94.5%.
Using a longer time frame gives better results, but for
a 0.25s time frame, 90% accuracy is still possible. In-
terestingly, using a raw timeframe and recurrent neu-
ral network would result in the classi�ication with the
accuracy of 89% but with the signi�icantly longer cal-
culation times – 18 ms compared with classi�ication
times of less than 2ms and transformation times (for
signal decimation and wavelet packet decomposition)
of 4 ms.

In the third experiment models based on two-
probe input had a better result (i.e., two-channel
cross-participant results were better than one chan-
nel cross-participant results, and two-channel same-
subject results were better than one channel same-
subject results) but themulti-person experiment with
the two-probe set has also shown signi�icant diffe-
rences in results between participants. Best results
were achievedwhenmodels were trained using same-
subject data evenwhen using only one of the channels.
This is similar to the results of other groups. Particu-
larly, Youn and Kim presented that for estimating el-
bow �lexion forces from���signal same-subject vali-
dation tests were signi�icantly better than those of the
cross-subject validation test [34]. Per-participant data
normalization did not signi�icantly improve the cross-
participant results.

The comparably more reduced performance in all
the cases can be explained by the fact that the cur-
rent design of the two probe harness does not allow
accurate placement of two probes depending on the
forearm size and that the participants were not trai-
ned. Also, therewere fewer recordings per-participant
than in the previous experiments, which can explain
a worse performance of neural-network-based algo-
rithms, which tend to require large amounts of data
and over-learn otherwise.

�. �nteg�a�on �it� a R����ased ��ste�
The mechanomyography-based stiffness classi�i-
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cation device can be integrated with a robotic system
using the ROS (Robot Operating System). The program
does online data processing and classi�ication, results
of which are available as ROS topics.

ROS node publishes the recognized category, the
estimated probability of classi�ication (if applicable:
in SVM with Linear Kernel and Neural Network) and
a decomposed (wavelet packet, FFT) or raw signal. In
an actual system, the short 0.25s time frame is used.

The proposed integration as a part of a teleo-
peration system is illustrated in Fig. 12. Operator’s
hand pose and position are tracked by a vision sy-
stem and a sensor glove. From this data, the desi-
red gripper pose is calculated. Simultaneously, macha-
nomygraphic probe, placed on the operator’s arm,me-
asures the muscle signals. A data processing pipeline,
described in previous sections, is used to classify the
stiffness. The stiffness class is then used by the grip-
per controller, working in a stiffness control mode, to
switch the stiffness to either hard or soft. After cali-
bration, we plan to use the probability of the label to
further adjust the stiffness of the gripper.

Also, other ROS nodes can subscribe to stiffness,
probability of the label, as well as, raw data or proces-
sed data topics.

Fig. 11.

5. Conclusions
In this paper, we presented a concept of a sim-

ple and inexpensive device to measure mechanomyo-
graphic signal for estimation of hand’s stiffness using
machine learning methods. The device with the best
classi�ication method was robust to probe displace-
ment, showing an over 90% accuracy of classi�ication
with 4 Hz speed and for a 15 mm displacement of the
probe. The system is capable of achieving 94% accu-
racy if the algorithms could run on a graphical card
and 1 Hz frequency of classi�ication and when cali-
brated for a particular person. Results achieved are
comparable to those of other authors with 90% achie-
ved for mechanomyography (1s window of acquisi-
tion) [15] and 95% for electromyography [24].

The prototyping of the device can be extremely
low-cost, with a material cost of around 10 PLN (less
than 3 USD) for plastic probes and 20 PLN (5 USD) for
silicone probes, and requires only a simple FDM 3D
printer.

A described device is limited by its use of only one
or two channels, but the signal acquisition is very sim-
ple and can run on a standard PC with a built-in au-
dio card. �e put the software code and CAD �iles for
the devices in open source repository [35]. The device
software is prepared as aROSPackage to enable re-use
and integration with ROS-based systems.

As further steps, we plan to use the mechanomyo-
graphic signals to enable regression of stiffness, simi-
larly as Hoppner et al. did for electromyographic sig-
nal [14]. Also, we plan to improve the two-probe se-
tup to enable better �it a particular muscle-group pair.
This, however, needs to be followed by an easy-to-use
protocol for teleoperators so they can �ix the sensor
themselves.
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czyński, “Towards sensor position-invariant
hand gesture recognition using a mecha-
nomyographic interface”. In: 2017 Signal
Processing: Algorithms, Architectures, Arran-
gements, and Applications (SPA), 2017, 53–58,
10.23919/SPA.2017.8166837.

[19] K. Kiguchi and Y. Hayashi, “An EMG-Based
Control for an Upper-Limb Power-Assist

38

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 2 2019

Exoskeleton Robot”, IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cy-
bernetics), vol. 42, no. 4, 2012, 1064–1071,
10.1109/TSMCB.2012.2185843.

[20] E. Krueger, E. M. Scheeren, G. N. Nogueira-Neto,
V. L. da Silveira Nantes Button, and P. No-
hama, “Advances and perspectives of mecha-
nomyography”, Revista Brasileira de Engenha-
ria Biomédica, vol. 30, no. 4, 2014, 384–401,
10.1590/1517-3151.0541.

[21] G. Lee, F. Wasilewski, R. Gommers, K. Wohlfahrt,
A. O’Leary, and H. Nahrstaedt. “Pywavelets - wa-
velet transforms in python”, 2006.

[22] R. Lopez and T. C. Davies, “The effect of surface
electromyography placement on muscle activa-
tion amplitudes and timing”. In: 2016 IEEE EMBS
International Student Conference (ISC), 2016, 1–
4, 10.1109/EMBSISC.2016.7508618.

[23] M. Ma. MMG sensor for muscle activity detection
: low cost design, implementation and experimen-
tation : a thesis presented in ful�ilment of the re-
quirements for the degree of Masters of Engineer-
ing in Mechatronics, Massey University, Auckland,
New Zealand. Thesis, Massey University, 2010.

[24] M. A. Oskoei and H. Hu, “Evaluation of Support
Vector Machines in Upper Limb Motion Classi�i-
cation Using Myoelectric Signal”. In: 14th Inter-
national Conference on Biomedical Engineering:
ICBME 2008, 2008.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Mi-
chel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in
python”, Journal of Machine Learning Research,
vol. 12, 2011, 2825–2830.

[26] A. O. Posatskiy and T. Chau, “The effects of
motion artifact on mechanomyography: A
comparative study of microphones and acce-
lerometers”, Journal of Electromyography and
Kinesiology, vol. 22, no. 2, 2012, 320–324,
10.1016/j.jelekin.2011.09.004.

[27] J. Silva and T. Chau, “Coupled microphone-
accelerometer sensor pair for dynamic noise
reduction in MMG signal recording”, Elec-
tronics Letters, vol. 39, no. 21, 2003, 1496,
10.1049/el:20031003.

[28] J. Silva, T. Chau, S. Naumann, W. Helm, and
A. A. Goldenberg, “Optimization of the signal-
to-noise ratio of silicon-embedded micropho-
nes for mechanomyography”. In: CCECE 2003
- Canadian Conference on Electrical and Com-
puter Engineering. Toward a Caring and Hu-
mane Technology, vol. 3, 2003, 1493–1496,
10.1109/CCECE.2003.1226187.

[29] J. Silva, W. Heim, and T. Chau, “A Self-Contained,
Mechanomyography-Driven Externally Powered

Prosthesis”, Archives of Physical Medicine and Re-
habilitation, vol. 86, no. 10, 2005, 2066–2070,
10.1016/j.apmr.2005.03.034.

[30] W. Ting, Y. Guo-zheng, Y. Bang-hua, and S. Hong,
“EEG feature extraction based on wavelet pac-
ket decomposition for brain computer interface”,
Measurement, vol. 41, no. 6, 2008, 618–625,
10.1016/j.measurement.2007.07.007.

[31] M.Watakabe, K.Mita, K. Akataki, and Y. Itoh, “Me-
chanical behaviour of condenser microphone in
mechanomyography”,Medical and Biological En-
gineering and Computing, vol. 39, no. 2, 2001,
195–201, 10.1007/BF02344804.

[32] A. Wołczowski, M. Błędowski, and J. Witkow-
ski, “The System for EMG and MMG Signals
Recording for the Bioprosthetic Hand Control”,
Journal of Automation, Mobile Robotics and In-
telligent Systems, vol. 11, no. 3, 2017, 22–29,
10.14313/JAMRIS_3-2017/25.

[33] A. Wołczowski and R. Zdunek, “Electromyo-
graphy and mechanomyography signal recogni-
tion: Experimental analysis using multi-way ar-
ray decomposition methods”, Biocybernetics and
Biomedical Engineering, vol. 37, no. 1, 2017, 103–
113, 10.1016/j.bbe.2016.09.004.

[34] W. Youn and J. Kim, “Feasibility of using an arti�i-
cial neural network model to estimate the elbow
�lexion force from mechanomyography”, Journal
of Neuroscience Methods, vol. 194, no. 2, 2011,
386–393, 10.1016/j.jneumeth.2010.11.003.

[35] I. Zubrycki. “A ROS node for aquisition, learning
and sharing mechanomyografy data from au-
dio signal: AdoHaha/mechanomiography_node”,
April 2018.

[36] J. M. Zuniga, T. J. Housh, C. L. Camic, C. Rus-
sell Hendrix, H. C. Bergstrom, R. J. Schmidt, and
G. O. Johnson, “The effects of skinfold thicknes-
ses and innervation zone on the mechanomyo-
graphic signal during cycle ergometry”, Journal of
Electromyography and Kinesiology, vol. 21, no. 5,
2011, 789–794, 10.1016/j.jelekin.2011.05.009.

39


