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Abstract:
The paper describes how to use ArUco markers to deter-
mine the posi�on and orienta�on o�wheeled robots in ��
space. �t is preceded b� a general descrip�on o� the tes-
tbed and a detailed descrip�on o� the marker detec�on
algorithm along with the camera calibra�on using the
ChaArUco markers. The camera has been described and
calibrated using the pinhole camera model, taking into
account distor�on o� the lens. The second part o� the ar-
�cle describes the wheeled robots with their mechanical
construc�on.

Keywords: swarm robo�cs, �ision s�stem, wheeled ro-
bots

1. �ntrod�c�on
In mobile robotics one of the biggest challenges is

determination of the robot’s position and orientation
in space. It can be achieved locally using on board sen-
sors or globally using a external positioning system. In
case of algorithm testing of groups and swarms of ro-
bots the best choice is a external positioning system.
Depending on the requirements the positioning sys-
tems are either based on passive or active markers.
The most precise as well as the most expensive sy-
stems are multicamera motion capture systems, for
example: Vicon Vantage V5, OptiTrack Prime 17W or
PhaseSpace X2E Impulse. These system are characte-
rized by real time tracking with low latency for 6 DoF
tracking of ground and aerial robots. Other cheaper
ways of determining position and orientation are sys-
tems based on �iducial binary markers (�ruco, �RTag,
RUNE-Tag)which are commonly used in virtual reality
applications [2,4,11]. This approach is less precise but
cheaper than the motion capture system.
In the case of robotic swarms, the local interaction be-
tween robots is important, i.e. robots locate and com-
municate, for example, only with their nearest neig-
hbors. This is a necessary requirement to be able to
distinguish a swarm from a multi-robotic system [1].
This requirement exist practically due to the limited
range of sensors and communication modules, which
is associated with equipping all robots with the right
set of sensors. In order to verify the control algorithm,
it is possible to replace the robot sensors with limi-
ted information on the nearest neighbors and obsta-
cles provided by the external vision system. The infor-
mation refers to all obstacles and robots that are at a
distance R simulating the maximum range of the ro-
bot’s sensors.

The paper presents a description of a vision system
for determination of robots position and orientation
in space and testing the control algorithmswith exam-
ple of leader following. For performance evaluation of
proposed vision system the paper ends with four ex-
periments and discussion of the results.

2. Robots
Objects used in experimental research are non-

holonomic two-wheeled robots. Due to the targeted
use of robots in multi-robot systems, robot groups or
swarms, the small size of the robot (in this case 160
mm in diameter) is important, as well as a simplemat-
hematicalmodel describing the dynamics of the robot.

(a)

(b)

Fig. 1.������� �����: �� � ���������� �� � �������
��������� �� ������

Where in (�ig. 1),α = [α1, α2]
T arewheels rotation

angles and generalized coordinates, M = [M1,M2]
T

are driving torques. The two-wheeled robot dynamics
model is described by the matrix equations in papers
[6] and [7].

2.1. Control Algorithm
The robot control algorithm is a follow-up control,

the leader and the follower are following the desi-
red trajectory, the important difference is that the tra-
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jectory of the robot following the leader is genera-
ted online based on their relative position, the cont-
rol scheme diagram is shown on ��ig. 2). The follower
maintains the desired distance from the leader acting
as if it were connected by a virtual damped spring
��ig. 1b). Spring parameters are selected experimen-
tally. Robots are controlled by a PD controller.

Fig. 2. Control scheme diagram

2.2. Robot Design
The mobile robots used in experimental research

are symmetric two-wheeled robots with two ball cas-
ters ��ig. 3a). The robot is equipped with a WiFi mo-
dule for communication with an external vision sy-
stem that transmits the distance value between the ge-
ometric center of the robot and the centers of its nea-
rest neighboring robots along with their angular posi-
tion relative to the i-th robot. The robot PCB is also its
frame to which the motors and robot support wheels
are mounted ��ig. 3b).

The robot is controlled by the popular 8 bit At-
mega2560 microcontroller, which allows program-
ming in several languages. Assembler, C, Arduino lan-
guage and also by using custom libraries, it’s possible
to program the robot directly through Arduino add-
on in MathWorks Matlab / Simulink package . The last
solution signi�icantly speeds up the process of design
and veri�ication of the control algorithm. With a large
number of robots, it is important to easily charge and
reprogram the robots, it can be achieved by adding an
additionalwireless communicationmodule andadjus-
ting the robots to use the docking station or contact
charging.

3. Robo�� Testbe�
The robotic testbed is used for experimental rese-

arch and testing of control algorithms of swarm or a
group of wheeled robots. It consists primarily of two
systems, a vision system and a wireless communica-
tion system ��ig. 4). The vision system is intended to
determine the location of a given robot in space and its
position relative to other robots. The camera of the vi-
sion system is located above the surface on which the
robotmovement is tested at a distance enabling obtai-
ning the desired accuracy of the position and orien-
tation of the robots in the group. The wireless com-
munication system is based on theWiFi wireless com-
munication standard and enables the reading of me-
asurement data from the robot, such as the angular
velocity of the driving wheels. Vision system and wi-
reless communication system are controlled from a

(a)

(b)

Fig. 3.Wheeled robot: a) – with marker b) – without
marker

computer application that allows to view the camera
image, send commands as well as receive and display
data from mobile robots. The tested robots are two-
wheeled mobile robots. Two-wheeled robots are of-
ten used to verify the control algorithms of groups and
swarms of wheeled robots due to their simplicity and
low construction cost. In the case of swarms, this is
a big advantage considering the requirements of the
swarm existence, i.e. large numbers of robots and pos-
sibly the simplest mechanical structure of the robot,
which translates into low costs of series production.

3.1. The Vision System Algorithm
Identi�ication and determination of the robot po-

sition and orientation in space is possible by using
ArUco markers. ArUco �iducial marker are square bi-
nary coded tags with identi�ication number, with the
control bits. Imageprocessing algorithmbasedon four
corners of the marker �inds the coordinates x, y, from
the center of the marker. The robot binary identi�i-
cation number is compared to the previously prepa-
red database of robots’ ID’s. Based on the identi�ica-
tion number and marker orientation, the algorithm
determines the orientation of all robots in the �ield
of view of the camera. Information about the orienta-
tion and location of the robot is recorded and depen-
ding on the used control algorithm, it can be sent to
any robot. Another type of ArUco markers is the ChA-
rUco checkerboard. The ChArUcomarker is a chessbo-
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(a)

(b)

Fig. 4. Research testbed: 1- camera, 2- router,
�-computer, �,�,�- mobile robots: a) – schema�c
diagram b) – research testbed

ard with ArUco markers inside the white chessboard
boxes (�ig. 5). It is usually used to calibrate the camera,
allowing the calibration of partially covered markers,
which is not possiblewith an ordinary black andwhite
chessboard.

(a) (b)

Fig. 5.Marker examples: a) – ArUco marker b) –
ChArUco chessboard

�.�. �a���a �a�ib�a���
Before using the camera, it should be calibrated.

Calibration is carried out once, in case of using a new
camera or after changing its construction, for example
after changing the lens. For camera calibration, black
and white checkers or ChArUco markers are used in
various angular positions with respect to the camera

(�ig. 6). Knowing a few or a dozen items on the chess-

Fig. 6. Calibra�o� process

board using the method described in [14] we are able
to determine the internal parameters of the camera.
Camera calibration process is in other words the de-
termination of the matrix of internal camera parame-
ters, lens distortion parameters and the rotation and
translation matrix describing the transformations be-
tween the global coordinate system and the local ca-
mera coordinate system. The matrix of internal para-
meters togetherwith image distortion parameters are
used for projection of x, y, z coordinates from the ca-
mera described in the plane of the camera image. The
internal parameters of the camera are of form

A =



f1 γ u0

0 f2 v0
0 0 1


 , (1)

where, f1, f2 - focal lengths in pixels, u0, v0 - coordina-
tes of the image center, γ - axis scale factor.
The rotation and translation matrix is written in a
combined form, i.e.

[R|t] =



r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3


 , (2)

where, rij - element of rotation matrix, t1 - element of
translation matrix.
The matrices of internal camera parameters as well
as rotation and translation are used in the simplest
camera model, i.e. the pinhole camera model. A pin-
hole camera is a camera without a lens with a small
aperture in the shape of a small hole. The light passing
through the hole casts the inverted image of the ob-
ject on the camera sensor. In such a simpli�ied model,
the relationship between coordinates of a point in a
three-dimensional global system and the coordinates
of the projection of the point on the camera image are
expressed by the formula

s
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 = A[R|t]
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maintains the desired distance from the leader acting
as if it were connected by a virtual damped spring
��ig. 1b). Spring parameters are selected experimen-
tally. Robots are controlled by a PD controller.

Fig. 2. Control scheme diagram
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dule for communication with an external vision sy-
stem that transmits the distance value between the ge-
ometric center of the robot and the centers of its nea-
rest neighboring robots along with their angular posi-
tion relative to the i-th robot. The robot PCB is also its
frame to which the motors and robot support wheels
are mounted ��ig. 3b).

The robot is controlled by the popular 8 bit At-
mega2560 microcontroller, which allows program-
ming in several languages. Assembler, C, Arduino lan-
guage and also by using custom libraries, it’s possible
to program the robot directly through Arduino add-
on in MathWorks Matlab / Simulink package . The last
solution signi�icantly speeds up the process of design
and veri�ication of the control algorithm. With a large
number of robots, it is important to easily charge and
reprogram the robots, it can be achieved by adding an
additionalwireless communicationmodule andadjus-
ting the robots to use the docking station or contact
charging.

3. Robo�� Testbe�
The robotic testbed is used for experimental rese-

arch and testing of control algorithms of swarm or a
group of wheeled robots. It consists primarily of two
systems, a vision system and a wireless communica-
tion system ��ig. 4). The vision system is intended to
determine the location of a given robot in space and its
position relative to other robots. The camera of the vi-
sion system is located above the surface on which the
robotmovement is tested at a distance enabling obtai-
ning the desired accuracy of the position and orien-
tation of the robots in the group. The wireless com-
munication system is based on theWiFi wireless com-
munication standard and enables the reading of me-
asurement data from the robot, such as the angular
velocity of the driving wheels. Vision system and wi-
reless communication system are controlled from a

(a)

(b)

Fig. 3.Wheeled robot: a) – with marker b) – without
marker

computer application that allows to view the camera
image, send commands as well as receive and display
data from mobile robots. The tested robots are two-
wheeled mobile robots. Two-wheeled robots are of-
ten used to verify the control algorithms of groups and
swarms of wheeled robots due to their simplicity and
low construction cost. In the case of swarms, this is
a big advantage considering the requirements of the
swarm existence, i.e. large numbers of robots and pos-
sibly the simplest mechanical structure of the robot,
which translates into low costs of series production.

3.1. The Vision System Algorithm
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sition and orientation in space is possible by using
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nary coded tags with identi�ication number, with the
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corners of the marker �inds the coordinates x, y, from
the center of the marker. The robot binary identi�i-
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red database of robots’ ID’s. Based on the identi�ica-
tion number and marker orientation, the algorithm
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where, Ui, Vi - coordinates of the point on the image
plane in the camera reference system according to the
pinhole camera model, s - scale factor.
If the camera is equipped with a lens, the pinhole
camera model is insuf�icient to properly transform
the coordinates of the image. The presence of the
lens introduces image distortion and thus complica-
tes the description of the camera model. We can dis-
tinguish two types of distortion. Radial distortion cau-
sing image distortion symmetric to the lens radius,
examples are barrel and pincushion distortion. The
second type of distortion is tangential distortion re-
sulting from non-parallelism of the lens with the ca-
mera optical sensor (�ig. 7).

(a) (b) (c)

Fig. 7.

The correct camera model for calibration is de-
rived by combining the pinhole camera model with
the correction of radial and tangential distortions. The
model describes a matrix equation

[
ui

vi

]
=


Dusu

(
ũi + δu

(r)
i + δu

(t)
i

)

Dv

(
ṽi + δv

(r)
i + δv

(t)
i

)

+

[
u0

v0

]
, (4)

where, ui, vi - coordinates of the point on the image
plane in the camera’s reference frame after taking into
account distortion of the image, ũi, ṽi - projection of
coordinates of a point on the image plane, δu(r)

i , δv
(r)
i

- coordinates of the point in the image plane shifted ra-
dially, δu(t)

i , δv
(t)
i - coordinates of a point on the image

plane shifted due to tangential distortion, Du, Dv -
conversion factors of millimeters to pixels, su - scale
factor.
The coordinates of a point Pi (xi, yi, zi) on the image
plane corresponds to the relationship resulting from
the pinhole camera model

[
ũi

ṽi

]
=

f

zi

[
xi

yi

]
. (5)

Radial distortion δu
(r)
i , δv

(r)
i and tangential distortion

δu
(t)
i , δv

(t)
i are expressed by equations

[
δu

(r)
i

δv
(r)
i

]
=

[
ũi

(
1 + k1r

2
i + k2r

4
i + k3r

6
i

)
ṽi
(
1 + k1r

2
i + k2r

4
i + k3r

6
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)
]
, (6)

[
δu

(t)
i

δv
(t)
i

]
=

[
2p1ũiṽi + p2

(
r2i + 2ũi

2
)

2p2ũiṽi + p1
(
r2i + 2ṽi

2
)
]
, (7)

where, k1, k2, k2 - radial distortion coef�icients, p1, p2
- tangential distortion coef�icients, ri =

√
ũi

2 + ṽi
2 .

The camera used on the research testbed is a camera
with a resolutionof 1920x1080p, 120FPSwith anOm-
niVision OV4689 optical sensor . After performing the
calibration algorithm, the following camera parame-
ters were obtained

A =



1262 0 371
0 1284 637
0 0 1


 ,



k1
k2
k3


 =



−0.26± 0.03
−1.36± 0.03
2.86± 0.03


 ,

[
p1
p2

]
=

[
0.02± 0.01
0.05± 0.01

]

(8)
�.�. �a���� ����c��� ��g��i���

Detection of markers is carried out on the basis of
an algorithm developed in publication [5]. The pro-
cess of ArUco markers detection and binary code ex-
traction is shown in (�ig. 8)

Fig. 8.

Marker detection algorithm can be divided into 5
stages:
1) Image segmentation - extraction of the most dis-

tinctive contours from camera image presented in
shades of gray using local adaptive thresholding .

2) �xtraction of contours and image �iltration - obtai-
ned image with highlighted contours is subjected
to the algorithm in from [3], giving a set of con-
tours from which emerge rectangular contours re-
sembling ArUco markers .

3) �xtract binary code markers - the �irst step is to
change from perspective projection for orthogonal
projection using a homographicmatrix and perfor-
ming thresholding from [9]. The resulting binary
image is divided by a rectangular grid where each
cell is assigned a value of 1 or 0 depending on the
color of the cell.

4) Marker identi�ication and error correction - Identi-
�ication numbers are determined based on the bi-
nary value inside themarker border for all 4 possi-
blemarker rotations. The obtained values are com-
pared with the dictionary of possible marker iden-
ti�ication numbers.
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5) Corners position determination and pose estima-
tion of the marker - knowledge of the position of
the marker’s corners is required to determine the
marker pose. In the case of ArUco, the corners of
the markers are determined by the linear regres-
sion algorithm of the pixels on the edge of themar-
ker to determine their intersection.
Aruco library available in OpenCV repository

in Python language allows for markers detection
using the command cv2.aruco.detectMarkers.
For marker’s pose estimation the command
cv2.aruco.estimatePoseSingleMarkers can be
used.

4. Experiments
To determine the marker localization error a ra-

dial positioning error map was experimentally obtai-
ned. The robot arena was �illed with ��0markers spa-
ced 68mm fromeach other forming a grid (black dots).
The ex and ey positioning errors of each marker were
used to calculate the radial error er =

√
e2x + e2y which

is shown in color on the error map (�ig. 9).

Fig. 9. Vision system error map

As it is shown on the error map, the radial error
increaseswith the distance from the center point (0,0)
and its highest value reaches 15 mm in the corners of
the camera �ield vision.

To evaluate the usefulness of the proposed vision
system in testing swarms and groups of robots a re-
lation between the camera FPS and number of robots
was determined (�ig. 10).

After necessary calculations for marker detection
and pose estimation the camera fps drops form 120 to
22fps with addition of new robots (�ig. 10). In case of
13 markers fps drops to 60fps, for 24 markers drops
below 30fps. The experiment shows that the vision sy-
stem iswell suited for groups and swarms of robots up
to 24 robots. For 30fps the minimum step size in ro-
bot control algorithm is 0.03s, bigger step size would
result in unacceptable numerical errors in the control
algorithm.

For performance evaluation of the proposed vision

Fig. 10. Change of fps with increase of numbers of
robots

system in context of robotics two experiments were
performed. The vision systemdetermines the position
and orientation of markers. In the �irst experiment a
marker is placedonaprogrammable slidermoving the
set distance. In the second experiment the vision sy-
stem is used in example of leader following. In both
cases the values of marker’s position and orientation
are compared with values from encoders.

4.1. Programmable Slider

The Aruco Marker is placed on the moving pro-
grammable slider traversing the desired distancewith
given velocity slope. The marker is rotating along its
axis with set angle and angular velocity. The slider is
being moved by a toothed belt connected to a step-
per motor with an encoder. The marker is mounted
on the servo-motor shaft located on the moving cart
(�ig. 11) [12].

Fig. 11. The slider

The sliderwas positioned along the x axis of the ca-
mera. The sliders set distancewas 0.81m from the �irst
limit switch to the next and themarker set rotation an-
gle was 4π

2 . The resulted sliders traverse distance and
marker rotation angle are depicted in (�ig. 12c) and
(�ig. 12a). The maximum positioning error in x axis
was2mm (�ig. 12d)whereas themaximumorientation
angle error was 0.02rad (�ig. 12b).
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where, Ui, Vi - coordinates of the point on the image
plane in the camera reference system according to the
pinhole camera model, s - scale factor.
If the camera is equipped with a lens, the pinhole
camera model is insuf�icient to properly transform
the coordinates of the image. The presence of the
lens introduces image distortion and thus complica-
tes the description of the camera model. We can dis-
tinguish two types of distortion. Radial distortion cau-
sing image distortion symmetric to the lens radius,
examples are barrel and pincushion distortion. The
second type of distortion is tangential distortion re-
sulting from non-parallelism of the lens with the ca-
mera optical sensor (�ig. 7).

(a) (b) (c)

Fig. 7.

The correct camera model for calibration is de-
rived by combining the pinhole camera model with
the correction of radial and tangential distortions. The
model describes a matrix equation
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]
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where, ui, vi - coordinates of the point on the image
plane in the camera’s reference frame after taking into
account distortion of the image, ũi, ṽi - projection of
coordinates of a point on the image plane, δu(r)

i , δv
(r)
i

- coordinates of the point in the image plane shifted ra-
dially, δu(t)

i , δv
(t)
i - coordinates of a point on the image

plane shifted due to tangential distortion, Du, Dv -
conversion factors of millimeters to pixels, su - scale
factor.
The coordinates of a point Pi (xi, yi, zi) on the image
plane corresponds to the relationship resulting from
the pinhole camera model

[
ũi

ṽi

]
=

f

zi

[
xi

yi

]
. (5)

Radial distortion δu
(r)
i , δv

(r)
i and tangential distortion

δu
(t)
i , δv

(t)
i are expressed by equations

[
δu

(r)
i

δv
(r)
i

]
=

[
ũi

(
1 + k1r

2
i + k2r

4
i + k3r

6
i

)
ṽi
(
1 + k1r

2
i + k2r

4
i + k3r

6
i

)
]
, (6)

[
δu

(t)
i

δv
(t)
i

]
=

[
2p1ũiṽi + p2

(
r2i + 2ũi

2
)

2p2ũiṽi + p1
(
r2i + 2ṽi

2
)
]
, (7)

where, k1, k2, k2 - radial distortion coef�icients, p1, p2
- tangential distortion coef�icients, ri =

√
ũi

2 + ṽi
2 .

The camera used on the research testbed is a camera
with a resolutionof 1920x1080p, 120FPSwith anOm-
niVision OV4689 optical sensor . After performing the
calibration algorithm, the following camera parame-
ters were obtained

A =



1262 0 371
0 1284 637
0 0 1


 ,



k1
k2
k3


 =



−0.26± 0.03
−1.36± 0.03
2.86± 0.03


 ,

[
p1
p2

]
=

[
0.02± 0.01
0.05± 0.01

]

(8)
�.�. �a���� ����c��� ��g��i���

Detection of markers is carried out on the basis of
an algorithm developed in publication [5]. The pro-
cess of ArUco markers detection and binary code ex-
traction is shown in (�ig. 8)

Fig. 8.

Marker detection algorithm can be divided into 5
stages:
1) Image segmentation - extraction of the most dis-

tinctive contours from camera image presented in
shades of gray using local adaptive thresholding .

2) �xtraction of contours and image �iltration - obtai-
ned image with highlighted contours is subjected
to the algorithm in from [3], giving a set of con-
tours from which emerge rectangular contours re-
sembling ArUco markers .

3) �xtract binary code markers - the �irst step is to
change from perspective projection for orthogonal
projection using a homographicmatrix and perfor-
ming thresholding from [9]. The resulting binary
image is divided by a rectangular grid where each
cell is assigned a value of 1 or 0 depending on the
color of the cell.

4) Marker identi�ication and error correction - Identi-
�ication numbers are determined based on the bi-
nary value inside themarker border for all 4 possi-
blemarker rotations. The obtained values are com-
pared with the dictionary of possible marker iden-
ti�ication numbers.
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5) Corners position determination and pose estima-
tion of the marker - knowledge of the position of
the marker’s corners is required to determine the
marker pose. In the case of ArUco, the corners of
the markers are determined by the linear regres-
sion algorithm of the pixels on the edge of themar-
ker to determine their intersection.
Aruco library available in OpenCV repository

in Python language allows for markers detection
using the command cv2.aruco.detectMarkers.
For marker’s pose estimation the command
cv2.aruco.estimatePoseSingleMarkers can be
used.

4. Experiments
To determine the marker localization error a ra-

dial positioning error map was experimentally obtai-
ned. The robot arena was �illed with ��0markers spa-
ced 68mm fromeach other forming a grid (black dots).
The ex and ey positioning errors of each marker were
used to calculate the radial error er =

√
e2x + e2y which

is shown in color on the error map (�ig. 9).

Fig. 9. Vision system error map

As it is shown on the error map, the radial error
increaseswith the distance from the center point (0,0)
and its highest value reaches 15 mm in the corners of
the camera �ield vision.

To evaluate the usefulness of the proposed vision
system in testing swarms and groups of robots a re-
lation between the camera FPS and number of robots
was determined (�ig. 10).

After necessary calculations for marker detection
and pose estimation the camera fps drops form 120 to
22fps with addition of new robots (�ig. 10). In case of
13 markers fps drops to 60fps, for 24 markers drops
below 30fps. The experiment shows that the vision sy-
stem iswell suited for groups and swarms of robots up
to 24 robots. For 30fps the minimum step size in ro-
bot control algorithm is 0.03s, bigger step size would
result in unacceptable numerical errors in the control
algorithm.

For performance evaluation of the proposed vision

Fig. 10. Change of fps with increase of numbers of
robots

system in context of robotics two experiments were
performed. The vision systemdetermines the position
and orientation of markers. In the �irst experiment a
marker is placedonaprogrammable slidermoving the
set distance. In the second experiment the vision sy-
stem is used in example of leader following. In both
cases the values of marker’s position and orientation
are compared with values from encoders.

4.1. Programmable Slider

The Aruco Marker is placed on the moving pro-
grammable slider traversing the desired distancewith
given velocity slope. The marker is rotating along its
axis with set angle and angular velocity. The slider is
being moved by a toothed belt connected to a step-
per motor with an encoder. The marker is mounted
on the servo-motor shaft located on the moving cart
(�ig. 11) [12].

Fig. 11. The slider

The sliderwas positioned along the x axis of the ca-
mera. The sliders set distancewas 0.81m from the �irst
limit switch to the next and themarker set rotation an-
gle was 4π

2 . The resulted sliders traverse distance and
marker rotation angle are depicted in (�ig. 12c) and
(�ig. 12a). The maximum positioning error in x axis
was2mm (�ig. 12d)whereas themaximumorientation
angle error was 0.02rad (�ig. 12b).
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(a)

(b)

(c)

(d)

Fig. 12. �lots of the mar�er orienta�on and posi�on
val�es from vision system: a) – the angle of orienta�on
β of the mar�er b) – the angle of orienta�on error based
on odometry and camera data c) – mar�er posi�on d) –
mar�er posi�on error based on odometry and camera
data

4.2. Following the Leader
The leader marked as 1 follows the set trajectory

while the following robot 2 has to follow the leader
keeping the distance 20cm from the center of the le-
ader.

(a)

(b)

Fig. 13. Leader following: a)- paths of leader’s and
follower’s geometric centers �with speci�ed posi�ons
every 1s) ,b) – the distance error of maintaining desired
distance between robots from the vision system

The paths were obtained by approximating the
measuring points from the vision system. The average
difference in distance in individual time moments
marked on the movement path, ��ig. 13) is 20cm . The
maximum distance error is 0.042m, while the average
error is 0.041m. To determine the position and orien-
tation of the camera the odometry was used. The
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(a)

(b)

(c)

Fig. 14. Plots of the β angle of the leader frame and
robot frame orienta�on error� a) – the angle of
orienta�on β of the leader frame determined by the
�ision system b) – the angle of orienta�on β of the
leader frame determined by the odometry c) – the
di�erence of the leader�s orienta�on angle based on
odometry data and camera from 2s to 14s

change of distance error between robots is shown in
(�ig. 13b), while the difference in the angle β of the le-
ader frame on the basis of data from odometry and ca-
mera is shown in (�ig. 14c). Based on the chart of the

slope of the leader�s frame (�ig. 14b), it can be noticed
that in 15.5s there was a wheels slip, which is also vi-
sible on the leader�s path in (�ig. 13a). The leader had
to move on a straight line, make one loop and conti-
nue to move along the straight line. The shape of the
obtained trajectory is affected by the blurring of the
image resulting from the movement of robots and the
initial placement of the robots. Due to the low speed,
we assume that the image of the markers is sharp. In
order to correctly assess the error of determining the
position and orientation of the robots, it is necessary
to compare the resultswith anadditional video system
with known camera parameters. To determine the es-
timate values of the position and orientation error, we
compare the measurements with the known position
and orientation of the marker. The uncertainty of de-
termining the position of the markers is:∆x = 2mm,
∆y = 3mmwhile orientation∆β = 0.02rad.

5. Results Discussion
To evaluate whether the results we gathered are

correct we will compare our results with known pu-
blications on using the Aruco Markers with position
and orientation accuracy estimation.

According to our research the radial error incre-
ases with the distance from the center of the camera
�ield vision (point (0,0)). Similar resultswere obtained
in [8] where Aruco Markers were tested in virtual ex-
periments. The radial error is dependent with the dis-
tance between amarker and the camera. ” The further
a marker is from the camera, the bigger the error in
the 3D estimations. Under 4m the distance error keep
below 5cm”. The same is true in our experiment. The
biggest difference is in case of the orientation error.
The Authors have shown that the orientation error is
below 0.02◦ under 4m of distance camera-marker. In
our case the error is 0.02rad. The discrepancy may be
the result of the ”inaccuracy of method used to esti-
mate the real true pose” as the Authors concluded.

In publication [13] the Authors used Aruco mar-
kers for visual SLAM and concluded that the mean po-
sitioning error is less than 2%calculated from the dis-
tance camera-marker. In the distance equal 2.5m the
positioning error is less than 5cm which is the same
as in previous publication.

It is worth adding that when the marker is directly
below the camera the positioning error drops below
1mm (�ig. 9). In publication [10] the Authors have
shown that it is possible to achieve positioning accu-
racy less than 0.075mm along X and Y axis and 0.3mm
along Z axis. Which explains high accuracy in our ex-
periments near point (0,0).

6. Summary
The above article shows how thanks to the previ-

ously calibrated camera, the vision system allows re-
gistering the position and orientation of up to 24 mo-
bile robots in space with 30 fps or 13 robots with 60
fps. The ArUcomarker, located in the geometric center
of the robot, gives the opportunity to track the actual
trajectory of the robot. The accuracy of the position
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val�es from vision system: a) – the angle of orienta�on
β of the mar�er b) – the angle of orienta�on error based
on odometry and camera data c) – mar�er posi�on d) –
mar�er posi�on error based on odometry and camera
data

4.2. Following the Leader
The leader marked as 1 follows the set trajectory

while the following robot 2 has to follow the leader
keeping the distance 20cm from the center of the le-
ader.

(a)

(b)

Fig. 13. Leader following: a)- paths of leader’s and
follower’s geometric centers �with speci�ed posi�ons
every 1s) ,b) – the distance error of maintaining desired
distance between robots from the vision system

The paths were obtained by approximating the
measuring points from the vision system. The average
difference in distance in individual time moments
marked on the movement path, ��ig. 13) is 20cm . The
maximum distance error is 0.042m, while the average
error is 0.041m. To determine the position and orien-
tation of the camera the odometry was used. The
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Fig. 14. Plots of the β angle of the leader frame and
robot frame orienta�on error� a) – the angle of
orienta�on β of the leader frame determined by the
�ision system b) – the angle of orienta�on β of the
leader frame determined by the odometry c) – the
di�erence of the leader�s orienta�on angle based on
odometry data and camera from 2s to 14s

change of distance error between robots is shown in
(�ig. 13b), while the difference in the angle β of the le-
ader frame on the basis of data from odometry and ca-
mera is shown in (�ig. 14c). Based on the chart of the

slope of the leader�s frame (�ig. 14b), it can be noticed
that in 15.5s there was a wheels slip, which is also vi-
sible on the leader�s path in (�ig. 13a). The leader had
to move on a straight line, make one loop and conti-
nue to move along the straight line. The shape of the
obtained trajectory is affected by the blurring of the
image resulting from the movement of robots and the
initial placement of the robots. Due to the low speed,
we assume that the image of the markers is sharp. In
order to correctly assess the error of determining the
position and orientation of the robots, it is necessary
to compare the resultswith anadditional video system
with known camera parameters. To determine the es-
timate values of the position and orientation error, we
compare the measurements with the known position
and orientation of the marker. The uncertainty of de-
termining the position of the markers is:∆x = 2mm,
∆y = 3mmwhile orientation∆β = 0.02rad.

5. Results Discussion
To evaluate whether the results we gathered are

correct we will compare our results with known pu-
blications on using the Aruco Markers with position
and orientation accuracy estimation.

According to our research the radial error incre-
ases with the distance from the center of the camera
�ield vision (point (0,0)). Similar resultswere obtained
in [8] where Aruco Markers were tested in virtual ex-
periments. The radial error is dependent with the dis-
tance between amarker and the camera. ” The further
a marker is from the camera, the bigger the error in
the 3D estimations. Under 4m the distance error keep
below 5cm”. The same is true in our experiment. The
biggest difference is in case of the orientation error.
The Authors have shown that the orientation error is
below 0.02◦ under 4m of distance camera-marker. In
our case the error is 0.02rad. The discrepancy may be
the result of the ”inaccuracy of method used to esti-
mate the real true pose” as the Authors concluded.

In publication [13] the Authors used Aruco mar-
kers for visual SLAM and concluded that the mean po-
sitioning error is less than 2%calculated from the dis-
tance camera-marker. In the distance equal 2.5m the
positioning error is less than 5cm which is the same
as in previous publication.

It is worth adding that when the marker is directly
below the camera the positioning error drops below
1mm (�ig. 9). In publication [10] the Authors have
shown that it is possible to achieve positioning accu-
racy less than 0.075mm along X and Y axis and 0.3mm
along Z axis. Which explains high accuracy in our ex-
periments near point (0,0).

6. Summary
The above article shows how thanks to the previ-

ously calibrated camera, the vision system allows re-
gistering the position and orientation of up to 24 mo-
bile robots in space with 30 fps or 13 robots with 60
fps. The ArUcomarker, located in the geometric center
of the robot, gives the opportunity to track the actual
trajectory of the robot. The accuracy of the position
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measurement depends on the resolution and accuracy
of the camera calibration as well as the distance from
center of the camera �ield vision. The longer the dis-
tance the higher the positioning error. Simplicity of
robot construction, ease of programming and availa-
bility of programming libraries such as OpenCV and
ArUco enable easy implementation and veri�ication of
robot control algorithms.
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