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Abstract:
Visual odometry esƟmates the transformaƟons between
consecuƟve frames of a video stream in order to reco-
ver the camera’s trajectory. As this approach does not
require to build a map of the observed environment, it
is fast and simple to implement. In the last decade RGB-
D cameras proliferated in roboƟcs, being also the sensors
of choice formany pracƟcal visual odometry systems. Alt-
hough RGB-D cameras provide readily available depth
images, that greatly simplify the frame-to-frame trans-
formaƟons computaƟon, the number of numerical para-
meters that have to be set properly in a visual odometry
system to obtain an accurate trajectory esƟmate remains
high. Whereas seƫng them by hand is certainly possible,
it is a tedious try-and-error task. Therefore, in this arƟcle
we make an assessment of two populaƟon-based appro-
aches to parameter opƟmizaƟon, that are for long Ɵme
applied in various areas of roboƟcs, as means to find best
parameters of a simple RGB-D visual odometry system.
The opƟmizaƟon algorithms invesƟgated here are par-
Ɵcle swarm opƟmizaƟon and an evoluƟonary algorithm
variant. We focus on the opƟmizaƟon methods themsel-
ves, rather than on the visual odometry algorithm, see-
king an efficient procedure to find parameters that mi-
nimize the esƟmated trajectory errors. From the experi-
mental results we draw conclusions as to both the effi-
ciency of the opƟmizaƟon methods, and the role of par-
Ɵcular parameters in the visual odometry system.

Keywords: ParƟcle SwarmOpƟmizaƟon, EvoluƟonary Al-
gorithm, Visual Odometry, RGB-D

1. IntroducƟon
The new generation of RGB-D cameras allowed

for development of new solutions for Visual Odome-
try (VO) and Simultaneous Localization and Mapping
(SLAM) [24]. Sensors that are available on the mar-
ket since 2010, when the Kinect v1 has been intro-
duced, are inexpensive, but yield accurate measure-
ments, sufϐicient for indoor localization [21]. A VO al-
gorithm computes cameramotion between the conse-
cutive keyframes, and estimates the trajectory (conse-
cutive camera poses) without building any explicit re-
presentation of the environment [23]. Visual odome-
try is conceptually and practically simpler than a full
SLAM system. In VO the estimated trajectory of the ca-
mera is not guaranteed to be optimal in the light of all
collected data. Usually the estimated trajectory drifts
with the distance traveled. However, an implementa-
tion of the VOmethod can be adopted as a “front-end”

for a full SLAM system, which is then combined with
an optimization-based “back-end” for post-processing
of the obtained camera trajectory. This trajectory is
represented as a pose-graph whose edges are con-
straints between the camera poses, and is optimized
to obtain a best explanation of all the collected frame-
to-frame transformations [5].

In the classic approach to VO monocular images
are often used [23], which requires sophisticated al-
gorithms to estimate the spatial transformations bet-
ween the neighboring frames from the corresponden-
ces between sets of 2D points that are determined in
the image space [19]. The problem becomes much ea-
sier if RGB-D frames are used, as they provide readily
available depth information that can be used to turn
the 2Dvisual features into 3Dpoints, keeping however
the correspondences established between the 2D fea-
tures using local point descriptors. Then, estimation of
the transformation (rototranslation) between the two
sets of 3D points can be accomplished applying closed
formulas [15].

In spite of their simplicity RGB-D VO algorithms
are very useful in several areas of robotics. A VO sy-
stem can be applied as a stand-alone localization met-
hod [20], used as a front-end in pose-based SLAM [5],
exploited to pre-process RGB-D data in global localiza-
tion [26], or combined with other methods of estima-
ting the robot’s pose [12].

There are many different solutions to the pro-
blem of visual odometry using RGB-D frames. An early
implementation employing sparse point features has
been presented in [4], while a feature-less, dense ap-
proach was proposed in [16]. The work of Endres et
al. [10] is often considered a standard implementa-
tion of the feature-based RGB-D VOmatched to an op-
timization back-end, ϐinally solving the full SLAM pro-
blem. It is difϐicult to say exactly what blocks a RGB-
D VO system should be composed of, and according
to which principles one should choose parameters in
these blocks. In [5] we tackled this problem at the le-
vel of the building blocks, showing that poor perfor-
mance of the VO front-end hardly can be compensa-
ted by a more developed optimization back-end. This
result makes it clear that parameters of the VO algo-
rithm are of pivotal importance for any RGB-D visual
navigation system.

On the other hand, in some of the best knownRGB-
D-based localization systems, e.g. the system develo-
ped by Endres et al. [9, 10], numeric parameters were
selected for a given RGB-D sequence by exhaustive se-
arch in the parameter space. Those parameters go-
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verned the feature detector parameters, feature ma-
tching and outliers detection. While such a strategy
made it possible to obtain impressive results in terms
of the trajectory estimation accuracy on benchmark
RGB-D sequences [25], it is inefϐicient due to the time
required by the exhaustive search when the objective
function is the minimal discrepancy between the esti-
mated and the reference (i.e. ground truth) trajectory.
Moreover, the found parameters are appropriate only
for the given experiment, and it is unclear if they are
transferable to any other environment or sequence of
RGB-D frames.

Therefore, we try to ϐind the best parameters for
a simple RGB-D VO system using a more efϐicient ap-
proach, which gives also some promise of generaliza-
tion to other, environments, not seen before by the lo-
calization system. This approach is population-based
optimization, which evaluates a population of possi-
ble solutions (called individuals or particles) in order
to ϐind the best one, but at the same time applies some
heuristic strategy to create an offspring that should in-
herit properties from the best solutions found so far,
allowing for further improvements. This very general
scheme may be implemented in many different ways,
leading to Genetic Algorithms [14], Evolutionary Al-
gorithms [3], Particle Swarm Optimization [7] or the
recent Cuttleϐish Algorithm [8]. Algorithms from this
broad family are considered for ourparameters search
problem, due to their global optimization ability, and
because they can handle complex, non-differentiable
search spaces, still showing good explorative proper-
ties.

Although classic genetic algorithms have proven
to be useful search methods in many robotics-related
applications, it is not clear how a genetic algorithm
should be conϐigured and parametrized for our pro-
blem, as the results largely depend on the population
size and the strategy of creating new individuals. The-
refore,weapply twoalgorithms that require aminimal
setup with respect to the meta-parameters (i.e. pa-
rameters of the optimization algorithm itself, not the
VO method). These are the Particle Swarm Optimiza-
tion [7] and an Evolutionary Algorithm in the ecology-
inspired variant proposed by Annunziato and Pizzuti
[2]. These twomethods can dealwith very difϐicult op-
timization problems [22] and they have proven their
usefulness in our earlier research, for instance in the
development of a dynamics model for simulation of a
hexapod robot [6].

This article is an improved and extended version of
the conference paper [17] published in Polish, which
providesmore quantitative results (e.g. RPE plots that
were omitted in the conference paper), but introdu-
ces also a novel on-line optimization procedure for the
point feature detector.

2. Visual Odometry Architecture
2.1. System Structure

The RGB-D VO system used in this research em-
ploys the popular OpenCV library formost of the RGB-
D data processing tasks. The VO structure (Fig. 1) is

Fig. 1. Block scheme of the simple RGB-D visual
odometry system

embedded into the investigated population-based op-
timization method serving as the main part of the ϐit-
ness evaluation block.

Therefore, during the initialization process, the
program sets the few meta-parameters of the popu-
lation and particles/individuals in the investigated al-
gorithm, then loads the ϐirst RGB image from the as-
signed sequence, and extracts keypoints of the sa-
lient visual features. Only keypoints with correspon-
ding depth information are harvested for further pro-
cessing, while these located in the areas of degraded
depth data are discarded. This process is repeated for
all incoming RGB-D data frames. Then, point features
from the newest frame are matched to the ones from
the previous frame with cross-checking of the matc-
hings to clear out spurious associations as soonaspos-
sible [18].

We use RANSAC [13] procedure twice to remove
the remaining bad-matcheswhile transformations be-
tween the consecutive frames are computed [18]. In
each of the RANSAC instances, we draw three point
pairs, which is the minimal number of points requi-
red by the Kabsch algorithm [15] to determine the ro-
totranslation between two successive frames. Once a
candidate transformation is computed, we apply this
transformation to the whole set of keypoints from the
current frame and check how far these points are lo-
cated from their matching counterparts from the pre-
vious frame. Feature points lying too far from their
counterparts, according to a given Euclidean distance
threshold, are considered as outliers. If the ratio bet-
ween the number of outliers and inliers is not satis-
factory (i.e. we have too few inliers), then we discard
the candidate transformation and draw another three
points. However, if toomany drawswere needed, then
we increase the distance threshold. All point pairs that
passed through the RANSAC ϐiltration are then used
to calculate the rotation and translation between the
considered RGB-D frames. Finally, the camera pose is
updated by concatenating the newly computed roto-
translation with the existing camera pose.

Motivated by the results of previous experiments
[18], we use the AKAZE algorithm [1] for feature de-
tection and description. This detector-descriptor al-
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lows to achieve point feature detection and matching
results that are very similar to the popular SURF
detector-descriptor performance, but with the use of
a binary descriptor, which requires less computation
power in the matching process. Moreover, the AKAZE
license allows for free usage even in commercial appli-
cations, while SURF is patented.

The AKAZE detector searches for maxima of nor-
malized and approximated determinant of image Hes-
sian, which are then compared to the threshold value
τA to ϐind keypoints at different scale levels. The scale
space is built in a similar manner as in SIFT, but with
the use of Fast Explicit Diffusion algorithm instead of
a Gaussian kernel. To detect an interest point the de-
terminant of Hessian is calculated for each image in
the nonlinear scale space and weighted accordingly.
The local maxima are picked as salient point candida-
tes and compared with other candidate points.

The AKAZE descriptor is very similar to the BRIEF
descriptor, with the difference that instead of particu-
lar pixel values it compares regions average intensity
and average horizontal and vertical derivatives of the
image intensity function. The computation of AKAZE
descriptor starts with estimating the orientation by
using a histogram method, and the pattern is rotated
accordingly. Finally, the descriptor vector is generated
by performing binary tests of average areas and the
mean of the horizontal and vertical derivatives in the
areas.

2.2. System Parameters
Both the efϐiciency of keypoint matching between

the consecutive frames, and the small residual dis-
tance errors between the sets of corresponding fea-
tures are of great importance for achieving good qua-
lity of the estimated camera trajectory. On the other
hand – the strive for small residual errors can lead
to rejections of many matched pairs in the ϐirst RAN-
SAC loop, which further can lead to computation of the
rototranslation by using a relatively small number of
keypoints, which in turn decreases quality of the ϐinal
solution.

Thus, for achieving a good quality trajectory the
selection of RANSAC parameters is crucial: the Eu-
clidean distance thresholds dE,1 and dE,2 (respecti-
vely for the ϐirst and the second RANSAC loop), and
the inliers to outliers ratios Γo,1 and Γo,2 (also for
the ϐirst and the second RANSAC loop). The dE,1 and
dE,2 parameters are the initial thresholds in the re-
spective RANSAC procedures. The VO system needs
also to set the AKAZE detection threshold τA adequa-
tely to the scene, because the number of detected fea-
tures directly depends on this parameter. In turn, the
number and quality of the point features inϐluences
the quality of the recovered trajectory. Eventually, the
ϐive described above parameters constitute the vector
θ = [dE,1, dE,2,Γo,1,Γo,2, τA], and are optimized by
population-basedmethods. Twostrategies are applied
to the problem of ϐinding the best parameters:
- all parameters are optimized together in a ϐive-
dimensional search space,

- parameters are optimized hierarchically – after ϐix-
ing the best RANSAC thresholds, we only seek the
best AKAZE detector threshold, assuming that it is
more environment-speciϐic.

3. PopulaƟon-based OpƟmizaƟon Methods
3.1. ObjecƟve FuncƟons

In the optimization process, it is important to
choose a suitable function that shows how much the
particles/individuals ϐit to the environment. In the in-
vestigated case, the VO system is the environment, and
the ϐitness function has to be related to the quality of
the estimated trajectory. For this reason, we chose the
Absolute Trajectory Error (ATE) and the Relative Pose
Error (RPE) as the objective functions. Theywere pro-
posed in [25] and are used commonly in robotics re-
search for SLAM and VO evaluation. The ATE speci-
ϐies the translational errors between the estimated ca-
mera poses along the trajectory, and the ground truth
trajectory poses. The ground truth trajectory is obtai-
ned from an external motion capture system [21]. Be-
cause ATE compares absolute distances between po-
ses taken from two synchronized trajectories, these
trajectories have to be aligned prior to ATE compu-
tation. This is implemented by ϐinding a rotation be-
tween these two rigid sets of points that minimizes
the distance between them assuming a common star-
ting point [25]. Conversely, the RPE calculates the dif-
ference in transformation (that iswhy it has rotational
and translational parts) which would exist after fol-
lowing the estimated trajectory and the ground truth
trajectory independently for the given number of fra-
mes (or time amount, in our case 1 s), and then com-
puting the rototranslation between the estimated tra-
jectory pose and its counterpart from the ground truth
one.

In order to determine the errors we need to have
the estimated trajectory T = {T1,T2, . . . ,Tk} ∈
SE(3), and the ground truth trajectory Tgt =
{Tgt

1 ,T
gt
2 , . . . ,T

gt
k } ∈ SE(3), where Ti and Tgt

i are ca-
mera poses for the i-th frame in the sequence expres-
sed by 4×4 homogeneous matrices, and k is the num-
ber of camera poses in the trajectory. The ATE for the
i-th frame is computed as:

EATE
i =

(
Tgt
i

)−1 Ti (1)

and the ATE RMSE value for the whole trajectory is
computed as the Root Mean Square Error of (1) for all
nodes of T and Tgt:

ATERMSE =

√√√√ k∑
i=1

(
EATE
i

)2 1

k
. (2)

The RPE for i-th frame is given by the equation:

ERPE
i =

(
(Tgt

i )
−1Tgt

i+1

)−1 (T−1
i Ti+1

)
. (3)

Then, we can obtain the relative translational RPEt(i)

or rotational RPEr(i) error at i-th frame taking the
translational or rotational part of ERPE

i and computing
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the Euclidean norm or Euler angle, respectively. Simi-
larly to ATE, the RPE RMSE for the whole trajectory is
obtained calculating theRMSEover the respectiveper-
frame errors for the whole trajectories:

RPERMSE
r =

√√√√ k∑
i=1

(
Rot

(
ERPE
i

))2 1

k
, (4)

RPERMSE
t =

√√√√ k∑
i=1

(
Trans

(
ERPE
i

))2 1

k
, (5)

where RPERMSE
r and RPERMSE

t stand for the rotational
and translational RPE RMSE, respectively, while Rot(.)
is the operator that extracts rotational part of the
transformation as the Euler angle, and Trans(.) is the
operator that extracts translational part of the same
transformation and calculates its Euclidean norm.

Having the ground truth trajectory Tgt, the estima-
ted trajectoryT(θ) that depends on the VOparameters
θ, and the ATE and RPE given by (1) and (3), respecti-
vely, we deϐine the optimization problem of VO system
parameters with the use of ATE:

argmin
θ

FATE =

k∑
i=1

(
Tgt
i

)−1 Ti(θ). (6)

Similarly, for the translational part of RPE we mini-
mize the following form:

argmin
θ

FRPEt =

k∑
i=1

Trans
((

(Tgt
i )

−1Tgt
i+1

)−1

(
T−1
i (θ)Ti+1(θ)

))
. (7)

3.2. ParƟcle Swarm OpƟmizaƟon
This approach simulates a ϐlock of birds ϐlying

around in search of a cornϐield [7]. The block scheme
in Fig. 2 shows the general structure of this met-
hod. During the initialization stage, we draw a popu-
lation of parameters that are represented by m par-
ticles. Each particle has n parameters (in our case
n=5 or n=1, depending on the considered optimiza-
tion strategy) that are the particle’s position in the n-
dimensional space, and the corresponding number of
velocities. The velocities have no direct physical inter-
pretation in the VO algorithm, but they control explo-
ration of the search space – the higher the velocity, the
bigger the parameter changes between the consecu-
tive iterations.

Each particle is evaluated to determine how good
the parameter set it deϐines in the search space ϐits to
the “environment”, which in our case is the VO pro-
blem. Thus, the ϐitness measure is deϐined by the VO
performance. Namely, the ϐitness value depends on the
translational RPERMSE or ATERMSE value, according
to the chosen optimization variant. For the m-th par-
ticle, we keep the best parameter vector found up to
the current iteration of the algorithm, as well as the
globally best parameter vector found by any particle.

From these data we compute the velocities and positi-
ons of each particle in the parameter space for the next
iteration, as given by the formulas:

vi+1
m = vim +c1 ∗ rand() ∗ (lbest − pi

m)

+c2 ∗ rand() ∗ (gbest − pi
m),

pi+1
m = pi

m + vi+1
m , (8)

wherevim is the velocity of them-th particlepi
m, c1 and

c2 are constant values, lbest is the best parameter vec-
tor found by the given particle, gbest is the globally best
parameter vector, while pi+1

m and vi+1
m are the new po-

sitions and velocities of them-th particle. We perform
these operations until one of the stop criteria is rea-
ched. These stop criteria are:
1) a satisfying ϐitness value has been achieved,
2) no ϐitness improvement has been noticed for se-

veral consecutive iterations,
3) the maximum allowed number of iterations has

been exceeded.

Fig. 2. Block scheme of the PSO algorithm

The implemented PSO is the most simple variant
of the algorithm, which is characterized by fast com-
putation of the particle updates and high speed of con-
vergence. Unfortunately, fast convergence can lead to
the loss of diversity among the particles, resulting in
premature convergence. A number of solutions to this
problem has been proposed in the literature, such as
the perturbed PSO algorithm [27], that introduces ad-
ditional perturbance to the global best solution in or-
der to maintain diversity. However, more complicated
PSO variants are more time consuming, because they
perform additional computations for each particle up-
date. Hence, we stick with the canonical PSO variant,
observing however the behavior of the particles (see
Fig. 7). The visualizations suggest that sufϐicient diver-
sity is preserved among the particles till the ϐinal itera-
tion, even though the stop criteria is the lack of ϐitness
improvement for several iterations.

The PSO meta-parameters have been chosen in
such a way, that results should be obtained in a rea-
sonable amount of time (several hours). We have set
c1=c2=2and limited themaximumallowedvelocity for
particles to the range from -0.005 to 0.005. The velo-
cities are initialized as random values close to zero, as
suggested in [11].We have used 40 particles to effecti-
vely use available threads for parallel computation for
maximum20 iterations. In all experiments the PSOop-
timization has ended detecting no improvement for
several iterations, and newer reached the maximum
iterations limit.
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Fig. 3. Block scheme of the evoluƟonary algorithm

3.3. EvoluƟonary Algorithm
As an alternative to the PSO algorithm we have

chosen an variant of the Evolutionary Algorithm (EA),
a self-adapting algorithm inspired by natural ecosys-
tems [2]. Contrary to typical Genetic Algorithms, it re-
quires setting a minimal number of parameters. Few
changes have been made in order to adopt the algo-
rithm described in [2] to our problem. We use real
numbers (of float type) instead of binary strings to
code the genome. Initially, we specify the maximum
size of the population r and the number of individu-
als in the ϐirst generation, for which we draw the ini-
tial parameters (genomes). Successive generations are
created and evaluated in a loop until one of the stop
criteria is met. The stop criteria are exactly the same
as used for PSO. In the loop we draw the individuals
that interact with other individuals, while the remai-
ning individuals undergo a mutation process. The in-
dividuals are drawn with the probability Pi (where
i is the iteration number), which is equal to the ra-
tio between the population size in the i-th generation,
and themaximumallowed population size. Among the
individuals that have to interact with the others we
drawwith the same probabilityPi those that will ϐight
with others, while the remaining ones can reproduce.
In the ϐight interaction the stronger individual (ha-
ving better ϐitness value) always wins, while the we-
aker one disappears. The reproduction is accomplis-
hed by randomly exchanging parts of the genomes in a
single-point crossover operation. The crossover point
is drawn from a normal distribution. Mutation is im-
plemented as initiation of a new individual with one
gene randomly changed with respect to its “parent”
individual, which in this action is also preserved. If
any of these actions would lead to exceeding the max-
imum population size limit, then the weakest indivi-
dual from the population disappears. For fair compa-
rison we set parameters of EA to operate on a popula-
tion of approximately the same size as in PSO. In our
experiments, the initial number of individual equals
10, and their maximal number is 40. We set the maxi-
mum number of iterations to 20.

4. Off-line OpƟmizaƟon Results
As an important aimof our researchwas todemon-

strate that theVOparameters optimizedusing thepro-
posedapproachare transferable betweendifferent en-

vironments, we have used two different sequences of
RGB-D frames: fr1_desk and fr1_room from thepopular
TUM RGB-D Benchmark [25] as the learning sequen-
ces. Through thewhole paper the parameter set obtai-
ned using the fr1_desk sequence is denoted OP1, while
the one obtained using the fr1_room sequence is de-
noted OP2. For veriϐication of the results we used the
putkk_Dataset_1_Kin_1 sequence from an entirely dif-
ferent publicly available dataset [21], which was ne-
wer used for optimization.

Tab. 1. Number of point features per frame detected by
the VO with the AKAZE detecƟon threshold τA
opƟmized by the EvoluƟonary Algorithm with ATE-based
fitness funcƟon

RGB-D data min. num. aver. num. max. num.
sequence of points of points of points
fr1_desk 105 659 1435
fr1_room 12 509 1301
putkk_Dataset
_1_Kin_1 42 328 795

The three RGB-D sequences used in our research
are characterized by different size of the scene, diffe-
rent dynamics of themoving camera, and different ob-
jects being observed. All that results in different num-
bers of feature points that are detected in a singleRGB-
D frame (Tab. 1). In the TUM RGB-D Benchmark se-
quences the Kinect sensor was moved by hand, slowly
in fr1_desk and much faster in fr1_room, with the tra-
jectory spanning much larger volume of space in the
latter case. Contrarily, in the PUTKK dataset the Asus
Xtion sensor was attached to a wheeled robot, which
resulted in fast, but smoother motion. Thus, the mini-
mal numberof features extracted froma frame ismuch
smaller for fr1_room,mostly due to fast rotationsof the
camera that are present in this sequence. The num-
ber of features never drops to such a small value for
putkk_Dataset_1_Kin_1, but the average andmaximum
number of features are smaller than for both TUM
RGB-D Benchmark sequences due to the larger room
size and the limited range of depth perception in the
RGB-D sensor. Example visualizations of the environ-
ments used in the research are depicted in Fig. 4.

Our experiments began with optimization of all
ϐive system parameters: the AKAZE detection thres-
hold τA and the RANSAC parameters.We used the PSO
algorithm conϐigured with the ATE-based objective
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Fig. 4. VisualizaƟon of the colored point clouds
registered with the ground truth trajectories from the
fr1_desk sequence (a), and the putkk_Dataset_1_Kin_1
sequence (b)

function. The optimization session did not exceed nine
iterations. Table 2 contains the optimal parameter va-
lues found in this experiment. The ATE RMSE and RPE
RMSE scores for these parameter sets, and their ma-
nually entered counterparts are collected in Tab. 3.

Tab. 2. VO parameters that got opƟmized and their best
values

Method dE,1 Γo,1 dE,2 Γo,2 τA
OP1 0.059 0.812 0.042 0.836 0.0021
OP2 0.042 0.916 0.012 0.855 0.0013
Manually 0.03 0.80 0.003 0.80 0.002

Tab. 3. ATE RMSE and RPE RMSE comparison for two
sequences

fr1_room
Error metric manually OP1 OP2
ATE RMSE [m] 1.573 1.728 0.288
Trans. RPE RMSE [m] 0.348 0.358 0.115
Rot. RPE RMSE [◦] 22.632 26.201 2.529

Dataset1_Kin1
Error metric manually OP1 OP2
ATE RMSE [m] 0.829 0.912 0.697
Trans. RPE RMSE [m] 0.019 0.020 0.013
Rot. RPE RMSE [◦] 0.374 0.407 0.248

Differences in the quality of the frame-to-frame
transformations estimation for the different parame-
ter vectors are clearly visible on the plots on the RPE
RMSE (Fig. 5), that shows the “local” quality of the tra-
jectory estimation, i.e. it neglects the inϐluence the in-
accuracy of the previous parts of the trajectory has on
the current camera pose. It is apparent from the com-
parison of these plots that the parameters optimized
on a challenging enough sequence (i.e. OP2 that invol-
ved much faster motion of the Kinect and more diver-
siϐied objects in the ϐield of view) make it possible to
achieve relative translations without large errors.

To complete the quantitative results for the PSO
experiment we show also the qualitative results in
the form of trajectories with the ATE visualized on
them. Figure 6 presents the ATE plots for fr1_desk
sequence in the ϐirst row, the fr1_room sequence in
the second row, and for the veriϐication sequence
putkk_Dataset_1_Kin_1 in the third row.

To demonstrate how the particles behave in the

Fig. 5. Plots of translaƟonal RPE measured on
putkk_Dataset_1_Kin_1 for the VO parameters set
manually (a), and opƟmized using fr1_desk (b) or
fr1_room (c)

multi-dimensional search space we show in Fig. 7 the
evolution of particles during the OP2 experiment. Red
dots represent initial positions of particles, blue dots
– transitional positions, and green dots the ϐinal po-
sitions achieved when the stop criteria occurred. The
bigger black dot represents the best particle, i.e. the
optimal parameters vector.

We decided to reuse obtained RANSAC ϐiltration
parameters in the next tests because the parameters
obtained in the OP2 optimization process on fr1_room
sequence allowed to achieve the best results and chan-
ged insigniϐicant for different environments. Hence,
in further experiments we have only optimized the
AKAZE detector τA parameter, but this time with the
use of two different approaches inspired by nature.
Table 4 shows the best values of the τA parameter
obtained after optimization with the use of PSO algo-
rithm with the alternative ATE-based and RPE-based
objective functions, and with the use of the EA with
only RPE-based objective function. Table 5 collects er-
ror values of the VO system while using these para-
meters. The obtained detection threshold τA is signiϐi-
cantly lower in case of using ATE RMSE instead of RPE
RMSE in optimization and thus allows to take into ac-
countmore points during trajectory estimation, but in
exchange for slightly larger temporary RPE errors.

Tab. 4. The AKAZE detector parameter τA and its
opƟmal values according to different opƟmizaƟon
variants

Method and PSO ATE PSO RPE
detection threshold 0.000623 0.001367
Method and EA ATE EA RPE
detection threshold 0.000703 0.001412

However, during veriϐication, this does not allow
to achieve signiϐicantly better ATE RMSE results. For
this reason, it is better to use the detection threshold
obtainedwith the use of RPE-based objective function,
because this accelerates the calculations. In Tab. 5 we
have also included results for theVOsystemwith SURF
detector-descriptor, for which the same optimization
procedurewas applied to thedetection threshold. This
demonstrates that our approach can be transferred to
visual odometry systems of different parameters.

Figure 8 presents the comparison of the recovered
trajectorieswith the ATE visualized. In general, all sets
of parameters used in the experiment allowed for cor-
rect trajectory estimation. It follows that both investi-
gated optimization methods are suitable for automa-
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Fig. 6. ATE error plots (black lines represent the ground truth trajectory, blue lines the esƟmated trajectory, and red
segments the Euclidean errors). Subfigures (a), (b), (c) are obtained for the fr1_desk sequence, (d), (e), (f) for the
fr1_room sequence, and (g), (h), (i) for the putkk_Dataset_1_Kin_1 sequence. The parameters were either set manually
in (a), (d) and (g), or obtained by PSO opƟmizaƟon in the OP1 experiment (b), (e) and (h), or in the OP2 experiment in (c),
(f) and (i)

Tab. 5. Trajectory esƟmaƟon results for τA obtained through opƟmizaƟon

fr1_room putkk_Dataset1_Kin1

Error metric PSO PSO EA EA SURF PSO PSO EA EA
ATE RPE ATE RPE EA RPE ATE RPE ATE RPE

ATE RMSE [m] 0.290 0.292 0.295 0.312 0.369 0.662 0.614 0.624 0.628
Trans. RPE RMSE[m] 0.120 0.114 0.119 0.115 0.122 0.009 0.012 0.009 0.013
Rot. RPE RMSE [◦] 2.403 2.585 2.382 2.632 2.615 0.172 0.232 0.175 0.239

tic search of the best parameter values for a RGB-D
VO system. However, there are some important diffe-
rences. The PSO algorithm searched through a signiϐi-
cantly larger area in the parameter space. In all expe-
riments the optimization with PSO was about ϐivefold
longer than with the use of the EA (58 h versus 11 h
for the ATE-based objective function). Moreover, con-
ϐigurations with the RPE-based objective function re-
quired about 10% less time than those employing the
ATE-based objective function. In all these cases the
programrunningunder Linuxused all 12 threads avai-
lable on the i5 CPU desktop PC, with nearly 100%CPU
load. Having in mind the computation time and simi-
lar results, we recommend EAwith the RPE-based ob-
jective function as a handy software tool to quickly
ϐind reasonable parameters of a VO system. However,
for a more thorough optimization (e.g. for a particular
environment that does not change much in time) the
use of PSO is recommended, due to its better explora-
tory properties. It seems that the use of ATE-based ob-
jective function does not have any signiϐicant positive
effect on the ϐinal results, thus theRPE-basedobjective

function is recommended for both optimization met-
hods, as it allows for faster computation of the ϐitness
values.

5. On-line OpƟmizaƟon of VO Parameters
The results obtained in the off-line experiments

encouraged us to go one step further and to try tu-
ning parameters of the AKAZE detector on-line, which
should make it possible to adapt the VO system to
changing environment properties, such as the amount
of texture that directly inϐluences the number of point
features, or changing lighting. In this casewewere also
optimizing the AKAZE percentile parameter τP , besi-
des τA detection threshold. From the initial PSO ex-
periments we have noticed that the obtained estima-
tions were much worse in scenarios where less than
250 keypoints remained after RANSAC ϐiltration. The-
refore, we tried to use the PSO method to ϐind para-
meters allowing for retrieving a satisfying number of
keypoints in those demanding frames. For the sake
of speed, the on-line optimization was initialized only
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Fig. 7. EvoluƟon of parƟcles during opƟmizaƟon on
fr1_room sequence. In (a) the x-axis shows Γo,1, and
the y-axis Γo,2, while in (b) x-axis is for dE,1, and y-axis
for dE,2. In both subfigures the z-axis shows the τA
parameter. See main text for the meaning of the color
dots

Fig. 8. Comparison of ATE results: fr1_room in (a), (c),
(e), and putkk_Dataset1_Kin1 in (b), (d), (f). The first
row (a,b) shows PSO/ATE results, the second row (c,d)
PSO/RPE results, and the third row (e,f) GA/RPE results

whenwe had less than 50 points during the VO opera-
tion.

In the experiment only RPEwas used as the ϐitness

Tab. 6. Trajectory esƟmaƟon results for the AKAZE
parameters obtained through on-line opƟmizaƟon

sequence ATE [m] Trans. RPE [m] Rot. RPE [◦]
fr_desk 0.1225 0.0758 2.5094
fr_room 0.3233 0.1212 2.5794
Dataset_1 0.5000 0.0097 0.1739

value, as it reϐlects the local changes to the accuracy
of the estimated trajectory. This time we also used
40 particles, but the ϐirst one was reserved for the al-
ready best parameters vector, found during off-line
optimization. Next 11 particles (the used PC can run
12 threads simultaneously) constituted a set of previ-
ously best parameters, and they were calculated only
once during the PSO optimization. In Tab. 6 we pre-
sent results obtained for the same three sequenceswe
already used in the off-line experiments, while Fig. 9
presents the corresponding ATE and RPE plots.

Fig. 9. Results of the on-line opƟmizaƟon experiments
on three sequences: fr1_desk (a,b), fr1_room (c,d), and
putkk_Dataset1_Kin1 (e,f)

Although the AKAZE threshold was changed on-
line by the PSO procedure, the ϐinal ATE RMSE and
RPE RMSE results were in general not improved
as compared to the best off-line results. Only for
the putkk_Dataset1_Kin1 sequence the results impro-
ved slightly. This is the sequence with a relatively
smooth camera motion and constant lighting conditi-
ons, which suggests that the population-based optimi-
zation method is too slow to adapt on-line to sudden
changes in the incoming data.

6. Conclusion
We demonstrated how simple to implement

population-based optimization methods can be app-
lied to the task of ϐinding best parameters for a RGB-D
visual odometry system. The proposed procedure
can replace the exhaustive search that is sometimes
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used to ϐind parameters that guarantee best results
on the popular benchmark sequences. Although its
main advantage is the improved speed (hours instead
of several days), we have shown that the computed
parameters generalize to other sequences, as long
as they involve similar environments and camera
dynamics.

Wedemonstrated also that the parameters of RAN-
SAC, which is widely used in VO and SLAM are of great
importance to provide a proper trade-off between
the number of point features processed for frame-to-
frame transformations and the matching accuracy.

We presented also a novel approach for on-line
optimization of selected VO parameters that are ex-
pected to change along with the changes in the obser-
ved environment. Whereas the preliminary results of
on-line optimization show only a small improvement,
there is still room for further researchwith this appro-
ach using faster parameter search methods. The on-
line performance could be also improved by a massi-
vely parallel implementation of the standardPSOalgo-
rithm on a GPU, but we do not consider this a feasible
approach for VO on-board a mobile robot due to the
energy consumption constraints.
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