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Abstract:
�nowing how to iden�fy terrain types is especially impor-
tant in the autonomous naviga�on, mapping, decision
making and emergency landings areas. For example, an
unmanned aerial vehicle (UAV) can use it to find a suit-
able landing posi�on or to cooperate with other robots
to navigate across an unknown region. Previous works
on terrain classifica�on from RGB images taken onboard
of UAVs shown that only sta�c pixel-based features were
tested with a considerable classifica�on error. This paper
presents a computer vision algorithm capable of iden�-
fying the terrain from RGB images with improved accu-
racy. The algorithm complement the sta�c image featu-
res and dynamic texture pa�erns produced by UAVs ro-
tors downwash e�ect (visible at lower al�tudes) and ma-
chine learning methods to classify the underlying terrain.
The system is validated using videos acquired onboard of
a UAV with a RGB camera.

Keywords: Image processing, Texture,Machine Learning,
Terrain �lassifica�on, �eural �etworks, UAV

1. ��trod�c�o�
Nowadays, due to UAVs’ higher availability and ca-

pabilities, there is a research trend to explore inno-
vative applications of UAVs useful to the society. They
are having a major impact on search and rescue mis-
sions, in logistics, in precision agriculture, among ot-
her applications. Key issues are to provide a safe and
reliable operation and to perceptionate the surroun-
ding area. This latter, within this paper, will be to iden-
tify the underlying terrain. Terrain classi�ication is a
crucial functionality for a wide range of autonomous
vehicles [12]: either for ground vehicles to avoid wa-
ter bodies, aerial vehicles to determine suitable lan-
ding areas, or surface vehicles to detect safe passage-
ways. As further explained in section 2, several appro-
aches have been used for terrain classi�ication. �owe-
ver, there is still margin for improving accuracy by ex-
tracting more complex image features. When at lower
altitudes, UAV’s rotors downwash effect create singu-
lar image texture patterns depending on the type of
terrain, which can be used to differentiate them.

The main goal of this paper is to propose a com-
puter vision algorithm that using RGB images captu-
red by a camera onboard of a UAV is capable of classi-
fying a terrain by analysing static image features (co-
lour and texture) and rotors downwash effect on the
underlying surface. There are several issues that must
be addressed in order to achieve this goal, namely:

(a) (b)

(c) (d)

Fig. 1. a) �oopera�on bet�een Unmanned Aerial
Vehicle (UAV) and Unmanned Surface Vehicle (USV) to
improve the autonomou� navi�a�on. b) �ho�� a plan
made by only USV. c) and d) �ho� a coopera�ve UAV to
improve the plan made by USV [12]

- Which terrains can be more accurately classi�ied
using the downwash effect?

- Which are the texture and motion patterns of each
terrain (water movement for example)?

- Which static and dynamic image features can be ex-
tracted to classify the terrain?
To address these challenges, new optimization

procedures and techniqueswill beproposed in this pa-
per, aiming the best possible performance.

This paper is structured with six sections starting
with an introductory section and followed by a pre-
sentation of related works. In the experimental setup
section the system background, namely the hardware
and the terrain types, are described. On the Terrain
�lassi�icationMethod the system architecture, the sta-
tic and dynamic texture features and the machine le-
arning classi�ier will be presented. The article �inishes
with the experimental results and drawn conclusions.

2. Related Work
UAVs (Unmanned Aerial Vehicle) play an impor-

tant role on the newgeneration of information techno-
logy and is predicted to have a major impact in the
human life in the near future [1]. One of the areas
is in computer vision, where it is possible to acquire,
process, analyse and understand aerial images. Many
researchers have proposed terrain classi�ication sys-
tems based on features derived from colour informa-
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tion [2], texture patterns [4], [8], [11], [9] and from
additional sensors, as is the case of laser scan sy-
stems [15], [14], [6]. Although many of these algo-
rithms are for terrestrial unmanned ground vehicles,
currently there is a shift towards UAVs, where the vi-
sual features have wider importance.

One of the most recent works of terrain detection
and classi�ication is presented in [13]. The authors use
the concept of optical �low to detect the water texture
direction in images acquired by an RGB camera onbo-
ard of a UAV. From the directions of the textural fea-
tures, the algorithm determines if the terrain, where
the UAV is �lying over, is water or non-water. One of
the problems identi�ied is that the UAV must be sta-
ble over the targetwhile identifying the typeof terrain,
which, in the best case, takes four seconds to execute.
Another reason that requires the UAV to be stand still
during calculations is that the computer vision algo-
rithm does not compensate the UAV movement. Thus,
when the directions of the features are calculated, the
results do not represent the reality.

A classi�ication method using colour features was
proposed in [2]. The proposedmethod converts a RGB
image into an image entitled ”normal RGB”, where
each pixel is divided by the square root of the three
colour channels. Thus, each terrainwill emphasize the
colour that represents it (for example, green for vege-
tation). The proposed method was limited due to the
fact that it varies signi�icantly with illumination.

Laser scanners have proven to be important to
distinguishing between land and water as presented
in [15], [14] and [6]. However, in lowwater depths the
laser sensor produces incorrect results, due to the fact
that it captures re�lections from the seabed and mis-
classi�ies it as non-water terrain. Therefore, this laser
scan approach, by itself, reveals to be insuf�icient and
requires additional equipment.

3. Experimental Setup
3.�. ��� �la��rm �esign

The aerial vehicle used in the experiments and na-
med as Vigil R6 (Figure 2), is a six-rotor solution that
endows the system with graceful degradation, as it is
able to land with one motor off, although without yaw
control in that condition.

Fig. 2. Aerial robot Vigil R6

Some of the Vigil R6 speci�ications are:
- A VRBRAINhardware is used to control the low level
operation. This hardware contains the IMU and GPS
to know theUAV’s position and orientation. Also, the

VRBRAIN connects to the Odroid-U2 embedded sy-
stem via MAVlink protocol and the UAV’s battery.
Lastly, to control the UAV’s motors it is connected to
a UHF receiver;

- An Odroid-U2 is used to control the high level ope-
ration. It receives data from the distance sensor (LI-
DAR), the RGB camera and communicates with ex-
ternal devices via Wi�i link;

- A RGB camera with a gimbal stabilizer, is instal-
led capturing onboard images at a resolution of
640x480 pixels;

- The camera and lens speci�ications are known, allo-
wing the �ield of view (FOV) and the pixel size inme-
ters to be computed.
For a better understanding of the communications

between various system layers, in Figure 3 it is repre-
sented the system architecture.

Fig. 3. �a�er �o����i�a�o�

3.2. Terrain Types
The dynamic of different terrains when exposed

to wind provoke singular texture patterns that can be
used in their identi�ication. In this paper we study the
importance of static image features, such as colour
and texture, when compared with the dynamic featu-
res exhibited by the downwash effect, for terrain clas-
si�ication.

In this work three different terrain types (water,
vegetation and sand), which can bene�it from the do-
wnwash effect for their identi�ication (Figure 4) were
identi�ied. It canbe seen that the downwash effect pro-
duces: onwater a circular dynamic texture; on vegeta-
tion a linear spread from inside outwards; and on sand
it is almost stable or it moves outwards.

�. Terrain �lassi��a��n �et���
If different types of terrain behave differently

when exposed to UAV rotors downwash effect, then it
should be possible to obtain unique information for
their identi�ication. Based in this research hypothe-
sis, it is possible to obtain some conclusions. When
exposed to the downwash effect, water particles’ mo-
vement is always greater than in vegetation and sand
terrains. Also, regarding static texture, usually vegeta-
tion has a more rough texture than sand or water ter-
rains;water only presents roughnesswhen exposed to

85



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  13,      N°  1       2019

85

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

tion [2], texture patterns [4], [8], [11], [9] and from
additional sensors, as is the case of laser scan sy-
stems [15], [14], [6]. Although many of these algo-
rithms are for terrestrial unmanned ground vehicles,
currently there is a shift towards UAVs, where the vi-
sual features have wider importance.

One of the most recent works of terrain detection
and classi�ication is presented in [13]. The authors use
the concept of optical �low to detect the water texture
direction in images acquired by an RGB camera onbo-
ard of a UAV. From the directions of the textural fea-
tures, the algorithm determines if the terrain, where
the UAV is �lying over, is water or non-water. One of
the problems identi�ied is that the UAV must be sta-
ble over the targetwhile identifying the typeof terrain,
which, in the best case, takes four seconds to execute.
Another reason that requires the UAV to be stand still
during calculations is that the computer vision algo-
rithm does not compensate the UAV movement. Thus,
when the directions of the features are calculated, the
results do not represent the reality.

A classi�ication method using colour features was
proposed in [2]. The proposedmethod converts a RGB
image into an image entitled ”normal RGB”, where
each pixel is divided by the square root of the three
colour channels. Thus, each terrainwill emphasize the
colour that represents it (for example, green for vege-
tation). The proposed method was limited due to the
fact that it varies signi�icantly with illumination.

Laser scanners have proven to be important to
distinguishing between land and water as presented
in [15], [14] and [6]. However, in lowwater depths the
laser sensor produces incorrect results, due to the fact
that it captures re�lections from the seabed and mis-
classi�ies it as non-water terrain. Therefore, this laser
scan approach, by itself, reveals to be insuf�icient and
requires additional equipment.

3. Experimental Setup
3.�. ��� �la��rm �esign

The aerial vehicle used in the experiments and na-
med as Vigil R6 (Figure 2), is a six-rotor solution that
endows the system with graceful degradation, as it is
able to land with one motor off, although without yaw
control in that condition.

Fig. 2. Aerial robot Vigil R6

Some of the Vigil R6 speci�ications are:
- A VRBRAINhardware is used to control the low level
operation. This hardware contains the IMU and GPS
to know theUAV’s position and orientation. Also, the

VRBRAIN connects to the Odroid-U2 embedded sy-
stem via MAVlink protocol and the UAV’s battery.
Lastly, to control the UAV’s motors it is connected to
a UHF receiver;

- An Odroid-U2 is used to control the high level ope-
ration. It receives data from the distance sensor (LI-
DAR), the RGB camera and communicates with ex-
ternal devices via Wi�i link;

- A RGB camera with a gimbal stabilizer, is instal-
led capturing onboard images at a resolution of
640x480 pixels;

- The camera and lens speci�ications are known, allo-
wing the �ield of view (FOV) and the pixel size inme-
ters to be computed.
For a better understanding of the communications

between various system layers, in Figure 3 it is repre-
sented the system architecture.

Fig. 3. �a�er �o����i�a�o�

3.2. Terrain Types
The dynamic of different terrains when exposed

to wind provoke singular texture patterns that can be
used in their identi�ication. In this paper we study the
importance of static image features, such as colour
and texture, when compared with the dynamic featu-
res exhibited by the downwash effect, for terrain clas-
si�ication.

In this work three different terrain types (water,
vegetation and sand), which can bene�it from the do-
wnwash effect for their identi�ication (Figure 4) were
identi�ied. It canbe seen that the downwash effect pro-
duces: onwater a circular dynamic texture; on vegeta-
tion a linear spread from inside outwards; and on sand
it is almost stable or it moves outwards.

�. Terrain �lassi��a��n �et���
If different types of terrain behave differently

when exposed to UAV rotors downwash effect, then it
should be possible to obtain unique information for
their identi�ication. Based in this research hypothe-
sis, it is possible to obtain some conclusions. When
exposed to the downwash effect, water particles’ mo-
vement is always greater than in vegetation and sand
terrains. Also, regarding static texture, usually vegeta-
tion has a more rough texture than sand or water ter-
rains;water only presents roughnesswhen exposed to

85



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  13,      N°  1      2019

86

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Examples of terrain types: water (a)(b);
�e�eta�on (c)(d); and sand (e)(f)

wind and downwash effect; and sand (�ine grains) has
a lower roughness. It can also be seen that sand de-
pends on the patterns already in the terrain, showing
usually a more irregular texture (�igures 4.e and 4.f)
when compared with water that shows a unique sig-
nature and regular texture when exposed to wind (�i-
gures 4.a and 4.b).
4.1. System Architecture

The proposed system architecture to classify the
terrain using texture information is shown in Figure 5.
As previously identi�ied in sections 1 and 4, two tex-
ture features are proposed to classify the terrain, na-
mely, static and dynamic textures. At this stage it were
also assessed the features that can be computed in pa-
rallel, in order to speedup the system execution time.

Five main processes were identi�ied in the archi-
tecture (�igure 5), namely:
- �ecti�ied ��a�e: Performs lens geometrical cor-
rections;

- Texture Filter: Extracts terrain’s static textural in-
formation using Gabor �ilters;

- Threshold: A thresholding is applied to the static
texture image to highlight the terrain roughness;

- Projections: Vertical and horizontal projections
were applied to the thresholded image, extracting
unique features that help differentiate the different
types of terrains;

- Motion Analysis: Extracts information from dyna-
mic textures. Optical �low and thresholding techni-

Start

Raw Image

Recti�ied image

Texture Filter

Threshold

Projections

Motion Analysis

Frames < n

�lassi�ication

Output (Terrain)

Stop

yes

no

Fig. 5. Proposed system architecture

ques are used to identify the moving parts;
- �lassi�ication: The extracted features are used as
inputs of an automatic classi�ied to identify the type
of terrain. Machine learning techniques already pro-
ved to be ef�icient for terrain classi�ication [10], [7],
[5].

4.�. Sta�c �e�tures
This section presents the proposed method for ex-

tracting terrain’s static textures, based on the Gabor
�ilter to be able to choose multiple texture directions.
This �ilter is the impulse response formed by a multi-
plication of a sinusoidal signal with a Gaussian enve-
lope function and canbe computedusing the following
complex equation:

G(x, y, λ, θ, ψ, σ, γ) = e

(
− x′2+γ2 y′2

2 σ2

)

e

(
i

(
2π x′

λ +ψ

))

(1)
Its real and an imaginary components can be obtained
by equations 2 and 3, respectively:

G(x, y, λ, θ, ψ, σ, γ) = e

(
− x′2+γ2 y′2

2 σ2

)

cos
(
2π

x′

λ
+ ψ

)

(2)

G(x, y, λ, θ, ψ, σ, γ) = e

(
− x′2+γ2 y′2

2 σ2

)

sin
(
2π

x′

λ
+ ψ

)

(3)
where:

x′ = x cos(θ) + y sin(θ) (4)

y′ = −x sin(θ) + y cos(θ) (5)
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Fig. 4. Examples of terrain types: water (a)(b);
�e�eta�on (c)(d); and sand (e)(f)
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These equations (1, 2 and 3) require as input para-
meters:
- x and y: Filter coordinates, where x represents the
columns and y the rows;

- Lambda (λ): Represents the sinusoid’s wavelength;
- Theta (θ): De�ines the Gaussian envelope orienta-
tion;

- Psi (ψ): Symbolizes the phase offset;
- Sigma (σ): Describes the Gaussian envelope size;
- Gamma (γ): Re�lects the shape of the ellipse in the
gabor �ilter space.
In this work we used only the real component of

the Gabor function (equation 2). After obtaining the
multiplicationof aGaussianwith a sinusoidal function,
i.e. the kernel of the �ilter, it will be convolved with the
original image (equation 6). The result of the Gabor
�ilter applied over a water surface is presented in Fi-
gure 6.

f [x, y] ∗ g[x, y] =
n1∑
−n1

n2∑
−n2

f [n1, n2] · g[x− n1, y − n2]

(6)

(a) (b)

(c) (d)

Fig. 6. ��am��e of a s�a�c �e��ure e��rac�on� a) �a�
image; b) c) �on�o�u�on �i�� ��e �abor ���er θ-0
degrees (b) and θ-90 degrees (c); d) Sum of images b)
and c) a�er ��res�o�ding

As can be seen in �igure 6, it is possible to obtain
the texture of a water-type terrain when it is affected
by the downwash effect of the UAV. From the binarized
image, awidth projectionwasmade to see the singular
features of this terrain type (Figure 7).

From the observed vertical projection of water
type terrain (�igure 7) it can be seen that it produ-
ces an undulatory effect with a local minimum in the
centre of the downwash. This effect in water type ter-
rains is due to the lower roughness in the centre of
the downwash. However, due to the water movement,
around the centre a higher roughness is observed

Fig. 7.�id�� �ro�ec�on of ��e e�am��e in �igure 6.d

(white pixels in the binarized image in �igure 6.d). The
next step was to translate this observed feature into a
computational model.

By calculating the local maxima and minima of the
vertical projection in �igure 6.d, it is possible to calcu-
late a line (red line in Figure 7) that most closely ap-
proximates these points. A polynomial regression was
used.

The Lowess’s theory calculates a line closest to a
given set of points, through weights assigned to each
point in a neighbouring window. In this work, to re-
duce the number of points, only the projection’s local
maxima andminimawere used. The number of points
that this window can contain is de�ined by the user.
�nce de�ined, it will traverse all points of the vector. In
each set of n points, the best values for the slope (m)
and the intercept (b) that minimize the sum squared
residuals are calculated using equation 7:

S(m, b) =
n∑

i=1

wi ((m · xi + b)− yi)
2 (7)

where, the weight function w is:

w(d) =

{
(1− |d|3)3 for |d| < 1

0 for |d| ≥ 1
(8)

In equation 8, d is the distance between each win-
dow point and its neighbours. The �inal step is to
obtain for each window the smoothed projection va-
lues from the obtained line equation (m an b), i.e., the
red line in �igure 7.

After obtaining this smoothed projection, new lo-
cal minima and maxima are calculated and used to
obtain two features:
1) Areameasured between the localminimumand its

respective two local maxima;
2) Integral between the localminimumand its two re-

spective local maxima.
The �irst has the advantage of being relative to

minima and maxima values, while the integral gives
an absolute value and will vary for lower and higher
roughness.
4.3. Dynamic Textures

This section presents the proposed method for ex-
tracting dynamic terrain textures.
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Fig. 8.�i�th �ro�ec�on �ho�ing the area �gra� color) in
rela�on �ith integral ��ello�)

As mentioned in section 4, water-type terrain only
exhibit dynamic texture when exposed to the down-
wash effect. However, in spite having a dynamic tex-
ture, when analysing the optical �low it is never stron-
ger than the dynamic observed for sand and vegeta-
tion. As referred in section 3, the optical �low met-
hod can calculate the distance travelled by block ma-
tching features in a given frame sequence. In this pa-
per, the Farneback algorithm [3] was used to detect
themovement of these features. One of the advantages
to using the Farneback algorithm is the direct �low, Fd

, return of features between two frames. The �low dis-
placement Fd between features in frame n and n − 1
can be obtained from equation 9:

Fd = Sn − Sn−1 (9)

where Sn and Sn−1 are the sample pixels between
two frames.

(a) (b)

(c)

Fig. 9. �xam�le of a ���cal Flo� conce�t u�ing
Farneback algorithm: a) Current frame; b) Next frame; c)
���cal Flo� re�ult

With the obtained �low, as shown in Figure 9 is
then used to calculate the distance travelled (trajec-

tory) by each feature in a sequence of frames:

Traveldistance =

n∑
i=2

√
Ax(i) +By(i) (10)

where:

Ax(i) =
[
x1 − xi−1 + Fdx

]2 (11)

By(i) =
[
y1 − yi−1 + Fdy

]2 (12)
and xi and yi are the positions in x and y in the

most recent frame (n), x1 and y1 are the initial posi-
tions (n = 1) and Fdx and Fdy are the �low displace-
ments between frames n and n− 1. We used normali-
zed x and y coordinates for the calculations.

To eliminate features that did not move or were al-
most static in a sequence of frames, it was imposed
that:

{
Red feature for Trajectory ≥ Threshold

Nothing for Trajectory ≤ Threshold

(13)
From the equation 13 and knowing the maximum

number of features (it is pre-de�ined the number of fe-
atures in rows and colums in the image), we calculate
the percentage of dynamic features that appear in the
image (equation 14):

Dynamicfeature =
filtered features

Total features
· 100% (14)

Fromequation 14, an example showing this theory
is shown in Figure 10.
�.�. ��a��i�ca���

The data from dynamic textures and static textu-
res are quite alike. It’s not a trivial task for a human
being to identify a terrain from the outputs of the two
analyses. In order to merge the data while increasing
certainty and automating the classi�ication of the type
of terrain, a machine learning technique was used, na-
mely a feed-forward neural network (NN).

The architecture of the designed neural network,
was composed by two layers, a hidden layer with 10
neurons and an output layer with 3 neurons (water,
vegetation and sand).

The NN received the integral and area between the
two local maxima as mention in sub-section 4.2, and
the number of dynamic features detected as shown in
sub-section 4.3. A sigmoidal function (equation6)was
used as activation function and the �inal classi�ication
was derived from the output neuronwith highest acti-
vation value.

Sθ(x) =
1

1+ e−θTx
(15)

The training dataset was composed by 251 sam-
ples, from which 70% were for training, 15% for tes-
ting and 15% for validation. Even thought we were
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Fig. 8.�i�th �ro�ec�on �ho�ing the area �gra� color) in
rela�on �ith integral ��ello�)

As mentioned in section 4, water-type terrain only
exhibit dynamic texture when exposed to the down-
wash effect. However, in spite having a dynamic tex-
ture, when analysing the optical �low it is never stron-
ger than the dynamic observed for sand and vegeta-
tion. As referred in section 3, the optical �low met-
hod can calculate the distance travelled by block ma-
tching features in a given frame sequence. In this pa-
per, the Farneback algorithm [3] was used to detect
themovement of these features. One of the advantages
to using the Farneback algorithm is the direct �low, Fd

, return of features between two frames. The �low dis-
placement Fd between features in frame n and n − 1
can be obtained from equation 9:

Fd = Sn − Sn−1 (9)

where Sn and Sn−1 are the sample pixels between
two frames.

(a) (b)

(c)

Fig. 9. �xam�le of a ���cal Flo� conce�t u�ing
Farneback algorithm: a) Current frame; b) Next frame; c)
���cal Flo� re�ult

With the obtained �low, as shown in Figure 9 is
then used to calculate the distance travelled (trajec-

tory) by each feature in a sequence of frames:

Traveldistance =

n∑
i=2

√
Ax(i) +By(i) (10)

where:

Ax(i) =
[
x1 − xi−1 + Fdx

]2 (11)

By(i) =
[
y1 − yi−1 + Fdy

]2 (12)
and xi and yi are the positions in x and y in the

most recent frame (n), x1 and y1 are the initial posi-
tions (n = 1) and Fdx and Fdy are the �low displace-
ments between frames n and n− 1. We used normali-
zed x and y coordinates for the calculations.

To eliminate features that did not move or were al-
most static in a sequence of frames, it was imposed
that:

{
Red feature for Trajectory ≥ Threshold

Nothing for Trajectory ≤ Threshold

(13)
From the equation 13 and knowing the maximum

number of features (it is pre-de�ined the number of fe-
atures in rows and colums in the image), we calculate
the percentage of dynamic features that appear in the
image (equation 14):

Dynamicfeature =
filtered features

Total features
· 100% (14)

Fromequation 14, an example showing this theory
is shown in Figure 10.
�.�. ��a��i�ca���

The data from dynamic textures and static textu-
res are quite alike. It’s not a trivial task for a human
being to identify a terrain from the outputs of the two
analyses. In order to merge the data while increasing
certainty and automating the classi�ication of the type
of terrain, a machine learning technique was used, na-
mely a feed-forward neural network (NN).

The architecture of the designed neural network,
was composed by two layers, a hidden layer with 10
neurons and an output layer with 3 neurons (water,
vegetation and sand).

The NN received the integral and area between the
two local maxima as mention in sub-section 4.2, and
the number of dynamic features detected as shown in
sub-section 4.3. A sigmoidal function (equation6)was
used as activation function and the �inal classi�ication
was derived from the output neuronwith highest acti-
vation value.

Sθ(x) =
1

1+ e−θTx
(15)

The training dataset was composed by 251 sam-
ples, from which 70% were for training, 15% for tes-
ting and 15% for validation. Even thought we were
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(a)

(b)

(c)

Fig. 10. ��namic textures detec�on �� �arne�ac�
algorithm and distance tra�elled calcula�on� a� water� c�
�egeta�on and d� sand

using a quite simple NN, after training the NN, it
was obtained 92.9% accuracy on the training set and
93.8% on the test dataset.

5. Experimental Results
To validate the proposed static and dynamic tex-

ture features for terrain classi�ication, a total 251 fra-
mes from several types of terrains were used to vali-
date the proposed system. From these 90 frameswere
for water, 88 frames for vegetation and 73 frames for
sand.

Regarding the static texture feature the area and
integral were calculated and displayed in Figure 11. It
is possible to observe a clear separation between wa-
ter, vegetation and sand, even with some outliers. In
water type terrain, the three clusters that can be noti-
ced for the integral feature, were mainly due to diffe-
rent water environments (lake and pool).

To validate the dynamic texture feature it was cal-
culated in a three frame period (n = 3) and plotted

Fig. 11. �ta�c �exture � �ela�on in area with respect to
the integral of minimum and maxima locals

against the area feature from the static texture. This
feature shows the same discriminant level to separate
the different terrains. From Figure 12, it can be seen
that water type terrain obtained a lower dynamic tex-
ture value (< 45%), which can due to a higher con-
centration of these dynamic features in the downwash
centre and outside hasn’t exceed the threshold. Sand
and vegetation shown a more uniform pattern, obtai-
ning a higher number of features. On average, sand
presents a percentage between 55% to 90%. Finally,
vegetationwith a percentage of features between90%
and 100%, is the terrainwith highest dynamic texture,
i.e., moving features.

Fig. 12. ��namic �exture � �ela�on in num�er of
features with respect to the integral of minimum and
maxima locals

Finally, these features were extracted from the �i-
gures 4.a-f and shown to the neural network classi�ier,
which outputted the automated terrain classi�ication.
The extracted features and the classi�ication result is
shown in Table 1. As expected the proposed features
and classi�icationmethod, shown good results by clas-
sifying correctly all the six examples, reinforcing the
idea that a combination of static and dynamic texture
can be used to automatically extract terrain type from
RGB images.

6. Conclusion
The main objective of this paper was to design a

computer vision system capable of extracting static
and dynamic image features, such as optical �low and
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Tab. 1. Experimental Results

Figure Static Texture Dynamic Texture Classi�ication
Area (%) Integral (%) Number of Features (%)

1 1.44 8.32 32.88 water
2 1.55 7.59 36.70 water
3 0.01 27.42 98.32 vegetation
4 0.05 23.71 98.69 vegetation
5 0.24 14.67 63.74 sand
6 0.07 4.07 59.30 sand

texture features, to identify the type of terrainwith im-
proved accuracy by taking advantage of the the UAV’s
rotors downwash pattern effect. For this, it was neces-
sary to conduct a research into detection methods al-
ready implemented and of interest to this work.

Texture features, such as Gabor �iltering (static tex-
tures) and optical �low (dynamic textures), were stu-
died to improve terrain classi�ication aiming the best
possible performance.

We emphasize that by implementing the static tex-
tures �ilter, vegetation-like terrainswere found to have
a higher texture than sand andwater type terrains. On
the other hand,water-type terrain, also presents a sin-
gular characteristic due to the downwash effect pro-
voked by the UAV, which can be decisive to different it
from other terrain types.

Although the system takes only 90 ms to classify
the type of terrain where the UAV is �lying over, the
algorithm is not taking into account the drone mo-
vement which will bring some noise in the execution
of the dynamic texture for the terrains classi�ication.
The main goal will be, with the data from IMU, GPS,
GLONASS, barometer and accelerometer, merged in a
kalman �ilter, give more reliable position of the UAV
and thus it will be possible to remove the movement
of the drone and consequently increase the accuracy
of the system for terrain classi�ication.

One of the major problems encountered throug-
hout this work was the irregularity that the sand pre-
sents. As this terrain presents irregular textures, the
static part of the system may take on forms of all
kinds (but never presents a high texture - almostwhite
image), including thewave form of the water-type ter-
rain. It is for this reason that it is necessary to join
more parallel logic to this algorithm in order to avoid
this type of problems.

Classi�ication is an interesting and engaging to-
pic on nowadays research community. On the future,
we expect to explore different techniques in order to
achieve higher accuracy meanwhile having the most
generic model. As a start, we need to acquire a larger
data set with unbiased and varied frames. From that
we can obtain different static features using state of
the artDeepNeuralNetworks. As input of thedeepnet,
we can plug the each frame and the information from
the Dynamic textures analyses. From that, we expect
the network to �ind it’s own static features that repre-
sent a terrain, and increase the classi�ication precision
from the motion data.

Another approach we intend to explore is the in-

clusion of more drone �light data into the Machine Le-
arning algorithm in use. For example, Altitude data gi-
ves a good clue to wish information can be extracted
from each pixel in the image, and the drone drift can
in�luence the image stabilization. All this precious in-
formation can bemerged to increase precision and the
resilient to unexpected behaviours and scenarios.
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Fig. 13. ���m�l�� o� t�rr�in t��t�d �or th�ir cl���i�c��on u�in� �t��c t��tur� �l�orithm� �ith th� in�ut im��� (�r�t
column) it i� �o��i�l� to u�� th� ���or �lt�r conc��t (��cond column) �nd th�r��or� th� �idth �ro��c�on c�lcul��on
(third column)
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Fig. 14. ���m�l�� o� ������n ������ �o� ����� cl�����c��on u��n� ��n�m�c ����u�� �l�o����m� ���� ��� �n�u� �m��� �����
column) �� �� �o����l� �o u�� ��� o��c�l �o� conc��� ���con� column) �n� ������o�� ��� �����l �����nc� c�lcul��on ������
column)
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