
Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

79

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

��� A������� �� �������� M����������� ����������� ��� D����������� A������� �� �������� M����������� ����������� ��� D����������� A������� �� �������� M����������� ����������� ��� D����������� A������� �� �������� M����������� ����������� ��� D��������

�ub���ed: 8th October 2018; accepted: 7th February 2019

Nikita Gerasimov

DOI: 10.14313/JAMRIS_1-2019/10

Abstract:
Several problems related to work reliability appear while
building service-oriented systems. The first problem con-
sists of the lack of sta�c typing and the lack of inter-
service data type checking. The second one consists of
the high connec�vity of services. The ar�cle shows an e�-
ample of the strong and sta�c polymorphic type system
and the type check algorithm. The service-contract and
the contract discovery concepts for universal service lin-
king and type verifica�on are described. ��er theore�c
results had been realized in a service form, theywere app-
lied in prac�ce in the real system, which improved its reli-
ability. �lso, technical realiza�on decreased services con-
nec�vity, which promoted system �uality increase. �o-
wever, the increased comple�ity of the resul�ng system
leveled advanced reliability.

Keywords: microservice architecture, sta�c typing, S��,
services composi�on, service contract

�� ��trod�c�o�
Development of modern, convenient multi-logic

systems often bases on service or microservice orien-
ted architectures (SOA). SOA means that application
logic is divided into several self-suf�icient compo-
nents, providing separate tasks realization [11]. Every
component has a single responsibility.

The advantages of SOA get obvious when develo-
ping high-loaded web-services: separate components
encourage horizontal scaling. Every service, as usual,
does not require various dependencies or speci�ic con-
�iguration. Separate components with a limited range
of tasks have a lower cost ofmaintenance and delivery
to production. Also, logic separationmotivates develo-
pers to design scalable services.

However, SOA has also disadvantages: separation
of service logic leads to the development of a commu-
nication layer between components. Other disadvan-
tages are dependency management, service linking,
type consistency of interfaces, an inequality of pro-
viding and using interfaces [5]. During the develop-
ment of a solid application programming language’s
features solve mentioned issues. After any application
function moves outside the main project, interopera-
tion problems may appear.

Various frameworks and approaches suggest the
ways of system decomposition but do not suggest any
ways for static checking of types consistency. Just as at
dynamic-typing language this fact leads to an increase
in working system instability.

RPC-frameworks like Google Protobuf or Apache
Thrift partially solve static type checking by providing
client and server code generation based on API de�i-
nition. Mentioned solutions enable ensuring at deve-
lopment stage that client and server would use the
identical protocol. However code generation becomes
less trivial while using JSON/XML-PRC, REST or using
event-driven architectures. Moreover, they all provide
synchronous calls and responses.

Next problem is less critical. Detection of outdated
API usage can be nontrivial in complex systems with
various components. Lack of automatized control over
API usage leads to the possibility of important compo-
nent disabling. Let us consider the real case: an out-
dated serviceA provides statistics collection and sen-
ding with mailing service once per month. Logs analy-
sis proves that therewerenoAPI calls during last three
weeks (for example); that is why the service can be di-
sabled.
Finally, we have two main problems:
- the absence of strong type system with static
checking for SOA that leads to potential stability de-
crease

- the absence of dependency control for SOA leading
to possible breaking system in runtime after disa-
bled outdated APIs
Therefore, the primary goal of this research is to

increase the stability of SOA-based systems and decre-
ase runtime errors.
There are two stages to reach the goal:
- improve the existing approach to service API typi�i-
cation to check types statically

- develop service that should control API dependen-
cies in the SOA system
Much of the work presented here touches the des-

cription of a new tool providing the achievement of
formulated goals. New service purpose is close to
service-discovery systems purpose: to detect suitable
components over the network automatically [13]. The
main objective of the new service is checking of type
consistency for providing and using API de�initions.
We call it “contract discovery”.

The next section demonstrates state of the art. The
third sectionde�ines theproposed type systemand the
type checking algorithm to be realized in contract dis-
covery service. Section 4 surveys the concept of con-
tract and how contract-discovery service provides a
client to service linking. Section 5 describes our rea-
lization details of contract discovery service. Section 6
illustrates our experience in application such service

79

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

80

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

to the realmicroservice-orientedevent-driven system.
This paper is an extended version of conference

paper “Static typing and dependencymanagement for
SOA” [7].

2. State of the Art
2.�. Approaches to Service Composi�on

Since themicroservice concept is the development
of the service one,we can look overmethods and ideas
of composition for SOA.

Several well-known standards of organizing ser-
vice communication exist, e.g. WS-BPEL, WS-CDL,
BPML, ebXML, OWL-S, WSMF, etc. Though the men-
tioned de�initions suit business process speci�ication,
they cover various complex scenarios, for example,
WS-BPEL or WS-CDL allows de�ining user roles [12].
According to several de�initions, microservices do not
cover hole processes, but they implement limeted lo-
gic operations. Therefore microservice composition
cannot be expressed in termsofmentioned standards.

Except for well-known speci�ications like menti-
oned above, serveral research projects exist: eFlow,
WISE, SOA4All, etc. Most of them have the same dis-
advantages. Another projects (e.g., METEOR-S, BCDF,
SCENE) requires custom runtime environment or cu-
stom service executor [9]. We suppose such environ-
ment to be super�luous.

The most �itting project we found are SWORD
and ASTRO. The �irst one determines service interface
with lightware domain-speci�ic language that is more
simple than XML from previous examples. Project‘s
compiler automatically veri�ies new service scheme
to be compatible with current running services. This
guarantees that a new update of a service would not
break the whole system or that new service would
work with another.

All described projects seem to be too complicated
or too limited according to our requirements. Firstly,
no one supports nonsynchronous communication, for
example, event-driven architectures. Secondly, most
of them suit for a description of business-process, not
for a description of the behaviour of small services.
Thirdly, we consider underlying XML format too ver-
bose and not enough compact for our purposes.

2.2. Linking of Microservices
One of the modern popular ways to link microser-

vices is the service discovery one. The matter of the
way is �inding dependent service by the name in the
central services registry. The central registry provi-
des registering of instances, checks the state of alre-
ady registered ones, and provides access to informa-
tion about services addresses.

However, service discovery does not check the
compatibility of acquired and acquiring services.

2.3. Interface Consistency
Developer can de�ine an interface of synchronous

microservice with OpenAPI for REST [4], WSDL for
SOAP [3], Protobuf for GRPC [2] or Apache Thrift. Data

validation is usually performed with XML-Schema or
JSON-Schema.

Except Thrift or Protobuf, Apache Avro [1] is anot-
her project attempting not only to describe a way of
data encoding and validation but also attempting to
control interfaces compatibility and versioning.

All mentioned, Thrift, Protobuf, Avro, WSDL, and
OpenAPI are created to support synchronous RPC or
REST.

3. Type System
Data can be encoded with custom binary or text

format while interoperation: with XML or JSON. Enco-
ded data satis�ies restrictions of communication pro-
tocol: SOAP, XML-RPC (XML); REST, JSON-RPC (JSON);
Protobuf, Thrift (binary) and so on. APIs based on the
communication protocols can be described with for-
mal speci�ications: WSDL for SOAP, OpenAPI for REST,
etc. Event-driven SOA often uses the message broker
system like Apache �a�ka, RabbitM� or NATS which
transfers text-encoded messages. Among the mentio-
ned ways of data representation, JSON is the most po-
pular format for service communication. Validating re-
ceived data becomes a simple task with JSON Schema
validation or Apache Avro validation.

We suppose JSON Schema to be more actual than
Avro. However, it is only the validation standard wit-
hout any subtyping or polymorphism support, so we
make our own subtype checking algorithm.

Allmentioned above protocols are limited by using
simple (integer, boolean, etc.) or complex (arrays and
records) types [4] [3]. For example, simpli�ied JSON
Schema type system [14] can be expressed as presen-
ted at the �igure 1.

Described grammar is simpli�ied because it does
not cover complex predicates containing boolean lo-
gic. Also, the grammar does not cover speci�ic type for-
mats.

According to standardization and popularity, we
took JSON Schema as a base for our type system. To
improve the compatibility of services, we suppose the
described type system to be structural one [10]. This
statement enables us to ensure that B is a subtype of
A in A <: B if for every parameter fromA there is an
equal parameter fromB (1). We assert that types pre-
dicates are equal if their names and parameters con-
form. An induction rule is used to specify the subtype
with predicates relation (2).

Γ ⊢ A

Γ ⊢ B

Γ ⊢ A <: B (1)

Γ ⊢ AP1 Γ ⊢ BP2 Γ ⊢ P1 = P2

Γ ⊢ AP1 <: BP2
(2)

Finally, we did not change JSON Schema syntax for
compatibility with existing software purposes.

80

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

⟨t⟩ ::= ⟨arr⟩ | ⟨obj⟩ | ⟨num⟩ | ⟨str⟩ | boolean | ⟨p⟩ ⟨t⟩

⟨arr⟩ ::= {⟨t⟩} | ⟨ap⟩ ⟨arr⟩

⟨ap⟩ ::= additionalItems |maxItems |minItems
| uniqueItems | contains

⟨obj⟩ ::= ⟨t⟩ ⟨t⟩ | ⟨op⟩ ⟨obj⟩

⟨op⟩ ::= maxProperties | minProperties | requi-
red

| properties | patternProperties
| additionalProperties | dependencies
| propertyNames

⟨num⟩ ::= integer | real | ⟨np⟩ ⟨int⟩

⟨np⟩ ::= multipleOf |maximum |minimum

⟨str⟩ ::= string | ⟨sp⟩ ⟨str⟩

⟨sp⟩ ::= maxLength |minLength | pattern

⟨p⟩ ::= const | enum

Fig. 1. Simplified grammar of JSON Schema

Algorithm 1 Type checking
Require: type1, type2
subtype ← true;
if type1 is scalar then
subtype ← type1! = type2||type1.p! = type2.p;
else {type1 is object}
for all type1.f do
subtype ← subtype&&self(type1.f, type2[type1.f]);
end for
end if

3.1. Algorithm of Subtype Checking
Our type checking algorithm 1 veri�ies that every

�ield from the type A is equal to the same one from
the type B. Record type.p returns all predicates from
the type type. Code type2[field] takes from type2 sub-
�ield with the name field and code type2.f takes all
�ields from type2. The algorithm does not try to ana-
lyse predicates, it just checks identity of the name and
the parameter. Types of the JSON Schema object are
checking recursively. List of subtype required �ields
must be equal to the parent type one.
3.2. Example of Subtyping

De�ine 2 types:A at listing 1 andB at listing 2.

�i��ng 1. Type A
{

"title": "Person",
"type": "object",
"properties": {

"firstName": {
"type": "string"

}
},
"required": [

"firstName"
]

}

�i��ng 2. Type B
{

"title": "Person",
"type": "object",
"properties": {

"firstName": {
"type": "string"

},
"secondName": {

"type": "string"
}

},
"required": [

"firstName",
"secondName"

]
}

Here type A requires document to contain �ield
string firstName and therefore any document con-
taining firstName is suitable for this schema. TypeB
also requires this string �ield to be in a descibing do-
cument. Thuswe can assert thatB is the subtype ofA:
A <: B.

ThoughB <: A can not be true becauseB applies
one more required restriction for a document: string
�ield secondName.

�. �e�crip�on of Contract Concept
We introduce the concept of a contract to describe

communication between services. A service contract
is an analog of communication speci�ication which
describes one remote call or one session of informa-
tion transfer. List of contracts forms regular communi-
cation protocol (like OpenAPI or WSDL) if every item
of the list is provided with the same service or the
same endpoint.

Interoperation of services divides into two cate-
gories: a synchronous and nonsynchronous one. The
synchronous communication (RPC, REST) requires a
protocol to de�ine the way of call, the way of response
and optionally an error de�inition. Custom protocols
can specify complex sequences of data units passing
to an inter-service channel. The nonsynchronous one
(event-driven design) requires a protocol to de�ine the
only type of transmitting data.

In order to level differences between the methods,
we de�ine a contract as a sequence of message types.
Thus, HTTP call would be a chain of two messages
while an event would be a chain consisting of one ele-
ment. A contract also contains:
- an endpoint of service which provides contract rea-
lization (provider)

- an address to check the contract provider urgency

81

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

81

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

to the realmicroservice-orientedevent-driven system.
This paper is an extended version of conference

paper “Static typing and dependencymanagement for
SOA” [7].

2. State of the Art
2.�. Approaches to Service Composi�on

Since themicroservice concept is the development
of the service one,we can look overmethods and ideas
of composition for SOA.

Several well-known standards of organizing ser-
vice communication exist, e.g. WS-BPEL, WS-CDL,
BPML, ebXML, OWL-S, WSMF, etc. Though the men-
tioned de�initions suit business process speci�ication,
they cover various complex scenarios, for example,
WS-BPEL or WS-CDL allows de�ining user roles [12].
According to several de�initions, microservices do not
cover hole processes, but they implement limeted lo-
gic operations. Therefore microservice composition
cannot be expressed in termsofmentioned standards.

Except for well-known speci�ications like menti-
oned above, serveral research projects exist: eFlow,
WISE, SOA4All, etc. Most of them have the same dis-
advantages. Another projects (e.g., METEOR-S, BCDF,
SCENE) requires custom runtime environment or cu-
stom service executor [9]. We suppose such environ-
ment to be super�luous.

The most �itting project we found are SWORD
and ASTRO. The �irst one determines service interface
with lightware domain-speci�ic language that is more
simple than XML from previous examples. Project‘s
compiler automatically veri�ies new service scheme
to be compatible with current running services. This
guarantees that a new update of a service would not
break the whole system or that new service would
work with another.

All described projects seem to be too complicated
or too limited according to our requirements. Firstly,
no one supports nonsynchronous communication, for
example, event-driven architectures. Secondly, most
of them suit for a description of business-process, not
for a description of the behaviour of small services.
Thirdly, we consider underlying XML format too ver-
bose and not enough compact for our purposes.

2.2. Linking of Microservices
One of the modern popular ways to link microser-

vices is the service discovery one. The matter of the
way is �inding dependent service by the name in the
central services registry. The central registry provi-
des registering of instances, checks the state of alre-
ady registered ones, and provides access to informa-
tion about services addresses.

However, service discovery does not check the
compatibility of acquired and acquiring services.

2.3. Interface Consistency
Developer can de�ine an interface of synchronous

microservice with OpenAPI for REST [4], WSDL for
SOAP [3], Protobuf for GRPC [2] or Apache Thrift. Data

validation is usually performed with XML-Schema or
JSON-Schema.

Except Thrift or Protobuf, Apache Avro [1] is anot-
her project attempting not only to describe a way of
data encoding and validation but also attempting to
control interfaces compatibility and versioning.

All mentioned, Thrift, Protobuf, Avro, WSDL, and
OpenAPI are created to support synchronous RPC or
REST.

3. Type System
Data can be encoded with custom binary or text

format while interoperation: with XML or JSON. Enco-
ded data satis�ies restrictions of communication pro-
tocol: SOAP, XML-RPC (XML); REST, JSON-RPC (JSON);
Protobuf, Thrift (binary) and so on. APIs based on the
communication protocols can be described with for-
mal speci�ications: WSDL for SOAP, OpenAPI for REST,
etc. Event-driven SOA often uses the message broker
system like Apache �a�ka, RabbitM� or NATS which
transfers text-encoded messages. Among the mentio-
ned ways of data representation, JSON is the most po-
pular format for service communication. Validating re-
ceived data becomes a simple task with JSON Schema
validation or Apache Avro validation.

We suppose JSON Schema to be more actual than
Avro. However, it is only the validation standard wit-
hout any subtyping or polymorphism support, so we
make our own subtype checking algorithm.

Allmentioned above protocols are limited by using
simple (integer, boolean, etc.) or complex (arrays and
records) types [4] [3]. For example, simpli�ied JSON
Schema type system [14] can be expressed as presen-
ted at the �igure 1.

Described grammar is simpli�ied because it does
not cover complex predicates containing boolean lo-
gic. Also, the grammar does not cover speci�ic type for-
mats.

According to standardization and popularity, we
took JSON Schema as a base for our type system. To
improve the compatibility of services, we suppose the
described type system to be structural one [10]. This
statement enables us to ensure that B is a subtype of
A in A <: B if for every parameter fromA there is an
equal parameter fromB (1). We assert that types pre-
dicates are equal if their names and parameters con-
form. An induction rule is used to specify the subtype
with predicates relation (2).

Γ ⊢ A

Γ ⊢ B

Γ ⊢ A <: B (1)

Γ ⊢ AP1 Γ ⊢ BP2 Γ ⊢ P1 = P2

Γ ⊢ AP1 <: BP2
(2)

Finally, we did not change JSON Schema syntax for
compatibility with existing software purposes.

80

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

⟨t⟩ ::= ⟨arr⟩ | ⟨obj⟩ | ⟨num⟩ | ⟨str⟩ | boolean | ⟨p⟩ ⟨t⟩

⟨arr⟩ ::= {⟨t⟩} | ⟨ap⟩ ⟨arr⟩

⟨ap⟩ ::= additionalItems |maxItems |minItems
| uniqueItems | contains

⟨obj⟩ ::= ⟨t⟩ ⟨t⟩ | ⟨op⟩ ⟨obj⟩

⟨op⟩ ::= maxProperties | minProperties | requi-
red

| properties | patternProperties
| additionalProperties | dependencies
| propertyNames

⟨num⟩ ::= integer | real | ⟨np⟩ ⟨int⟩

⟨np⟩ ::= multipleOf |maximum |minimum

⟨str⟩ ::= string | ⟨sp⟩ ⟨str⟩

⟨sp⟩ ::= maxLength |minLength | pattern

⟨p⟩ ::= const | enum

Fig. 1. Simplified grammar of JSON Schema

Algorithm 1 Type checking
Require: type1, type2
subtype ← true;
if type1 is scalar then
subtype ← type1! = type2||type1.p! = type2.p;
else {type1 is object}
for all type1.f do
subtype ← subtype&&self(type1.f, type2[type1.f]);
end for
end if

3.1. Algorithm of Subtype Checking
Our type checking algorithm 1 veri�ies that every

�ield from the type A is equal to the same one from
the type B. Record type.p returns all predicates from
the type type. Code type2[field] takes from type2 sub-
�ield with the name field and code type2.f takes all
�ields from type2. The algorithm does not try to ana-
lyse predicates, it just checks identity of the name and
the parameter. Types of the JSON Schema object are
checking recursively. List of subtype required �ields
must be equal to the parent type one.
3.2. Example of Subtyping

De�ine 2 types:A at listing 1 andB at listing 2.

�i��ng 1. Type A
{

"title": "Person",
"type": "object",
"properties": {

"firstName": {
"type": "string"

}
},
"required": [

"firstName"
]

}

�i��ng 2. Type B
{

"title": "Person",
"type": "object",
"properties": {

"firstName": {
"type": "string"

},
"secondName": {

"type": "string"
}

},
"required": [

"firstName",
"secondName"

]
}

Here type A requires document to contain �ield
string firstName and therefore any document con-
taining firstName is suitable for this schema. TypeB
also requires this string �ield to be in a descibing do-
cument. Thuswe can assert thatB is the subtype ofA:
A <: B.

ThoughB <: A can not be true becauseB applies
one more required restriction for a document: string
�ield secondName.

�. �e�crip�on of Contract Concept
We introduce the concept of a contract to describe

communication between services. A service contract
is an analog of communication speci�ication which
describes one remote call or one session of informa-
tion transfer. List of contracts forms regular communi-
cation protocol (like OpenAPI or WSDL) if every item
of the list is provided with the same service or the
same endpoint.

Interoperation of services divides into two cate-
gories: a synchronous and nonsynchronous one. The
synchronous communication (RPC, REST) requires a
protocol to de�ine the way of call, the way of response
and optionally an error de�inition. Custom protocols
can specify complex sequences of data units passing
to an inter-service channel. The nonsynchronous one
(event-driven design) requires a protocol to de�ine the
only type of transmitting data.

In order to level differences between the methods,
we de�ine a contract as a sequence of message types.
Thus, HTTP call would be a chain of two messages
while an event would be a chain consisting of one ele-
ment. A contract also contains:
- an endpoint of service which provides contract rea-
lization (provider)

- an address to check the contract provider urgency

81

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

82

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

- a direction of every chain unit - is the message inco-
ming or outgoing for provider
In opposite to provider of contract, the user one

claims that a service needs any provider to work cor-
rectly. User contract has the same format as the provi-
der one but does not specify endpoint. User contracts
ensure that the system’s services have all dependen-
cies and work correctly.

The user contract is compatiblewith provider con-
tract if the chains of the �irst one occur to be subtypes
of the second one. It means that if A <: B is the valid
judgment, then the provider takes type A at the input
when a client can call it with typeB. The provider ser-
vicemust be ready for input datawith typeB andmust
process it like data with typeA.
�.�. �esc�i��on o� Conce��u�l Con���c� �iscove�� �e��

vice
Servicesmust declare their requirements themsel-

ves because they contain all related API information.
There are two targets for pushing declarations:
- all other services �e.g. broadcast noti�ication)
- central service delegated to manage contracts

�oti�ication of all other services requires broad-
cast messaging and storing information about the
whole system in each one. �oreover, broadcast noti�i-
cationwould require implementation of type and con-
tract checking in every service. Therefore, central con-
trol is preferable.

Services which collect information about system
components, provide their addresses and watch for
their state are called “service discovery”. Since our tool
manages contract providers we call it “contract disco-
very” service. Prospective realization should have fol-
lowing features:
1) register contract provider
2) register contract user
3) watch for providers and users to be alive
4) deliver ondemand information about contract pro-

viders for contract users
5) verify that all dependencies are resolved and show

dependency problems
6) warn after disabling all providers of the contract

that is still used
Providers send information to the service at their

startup moment or at their deploy moment. Users
get their dependencies also at the start by registering
their dependencies or by separate call.

�. �e�li���on o� Con���c� �iscove�� �n� �es�
�n�
We implemented the �irst version of the contract

discovery service as a proof-of-concept PHP daemon
built on top of ReactPHP [6]. The daemon was used
within a test suite containing stub services. After ha-
ving proved the idea, we made the second realiza-
tionwithGolang. Service implements all requirements
andall described functions. Daemon registers contract

providers and users perform regular alive checks and
type checking.

We used described service for managing depen-
dencies and for type checking in the existing event-
driven system. Services in this system register their
contracts at their start. They also gain their own re-
quirements via contract discovery. While services use
message broker and do not expect any result of the
call, all registered contracts consist of no more than
one schema. Users obtain routing keys for dispatching
messages frommatched provider contracts.

Though the proposed approach does not suppose
an improvement of some speci�ic algorithm or data
passing technique, we cannot present any numeric
metrics. However, after registering automatization
had been made, we noticed that the process of adding
new services to the system became easier. Advances
that we found are:
- inter-service integration became easier as the result
of inter-service strong typing - service will not start
while dependencies are not resolved

- contract-�irst developmentmakes positive in�luence
on service building speed

- developers do not need to keep track of the service
dependencies in con�iguration
We also noticed several complicities:

- maintenance of all types consistency is complicated
- there is no one place to store all actual contracts.
Contract discovery stores only registered at present
time items.

- lack of information about actual data routes
- all system depends on the central component
- since contract discovery checks only online services
it does not provide real static type system

- contract discovery guarantees consistency of con-
tract types but not identity of contracts and real in-
terfaces

6. Conclusion
As the result we have replaced direct static servi-

ces linkingwithdetectionof themost suitable contract
provider. This kind of interaction allows us to ensure
that enabled servicewouldwork correctly andhave all
required dependencies. Also, the usage of strong poly-
morphic typing enables us to ensure that APIs of in-
teracting services are compatible. Contract discovery
service ensures that a system does not have any de-
pendency problems at the moment and helps to trace
usage of an outdated interfaces.

From the other side, the presented approach so-
phisticates control over current interaction of a sy-
stem components.

It also does not provide real static type checking
for communication of an elements: contract discovery
does not guarantee the identity of contracts and real
interfaces and does not guarantee service compatibi-
lity before new service is enabled.

Finally, we did not gain the main goal: stability of
the system has not increased signi�icantly.

82

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

83

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

- a direction of every chain unit - is the message inco-
ming or outgoing for provider
In opposite to provider of contract, the user one

claims that a service needs any provider to work cor-
rectly. User contract has the same format as the provi-
der one but does not specify endpoint. User contracts
ensure that the system’s services have all dependen-
cies and work correctly.

The user contract is compatiblewith provider con-
tract if the chains of the �irst one occur to be subtypes
of the second one. It means that if A <: B is the valid
judgment, then the provider takes type A at the input
when a client can call it with typeB. The provider ser-
vicemust be ready for input datawith typeB andmust
process it like data with typeA.
�.�. �esc�i��on o� Conce��u�l Con���c� �iscove�� �e��

vice
Servicesmust declare their requirements themsel-

ves because they contain all related API information.
There are two targets for pushing declarations:
- all other services �e.g. broadcast noti�ication)
- central service delegated to manage contracts

�oti�ication of all other services requires broad-
cast messaging and storing information about the
whole system in each one. �oreover, broadcast noti�i-
cationwould require implementation of type and con-
tract checking in every service. Therefore, central con-
trol is preferable.

Services which collect information about system
components, provide their addresses and watch for
their state are called “service discovery”. Since our tool
manages contract providers we call it “contract disco-
very” service. Prospective realization should have fol-
lowing features:
1) register contract provider
2) register contract user
3) watch for providers and users to be alive
4) deliver ondemand information about contract pro-

viders for contract users
5) verify that all dependencies are resolved and show

dependency problems
6) warn after disabling all providers of the contract

that is still used
Providers send information to the service at their

startup moment or at their deploy moment. Users
get their dependencies also at the start by registering
their dependencies or by separate call.

�. �e�li���on o� Con���c� �iscove�� �n� �es�
�n�
We implemented the �irst version of the contract

discovery service as a proof-of-concept PHP daemon
built on top of ReactPHP [6]. The daemon was used
within a test suite containing stub services. After ha-
ving proved the idea, we made the second realiza-
tionwithGolang. Service implements all requirements
andall described functions. Daemon registers contract

providers and users perform regular alive checks and
type checking.

We used described service for managing depen-
dencies and for type checking in the existing event-
driven system. Services in this system register their
contracts at their start. They also gain their own re-
quirements via contract discovery. While services use
message broker and do not expect any result of the
call, all registered contracts consist of no more than
one schema. Users obtain routing keys for dispatching
messages frommatched provider contracts.

Though the proposed approach does not suppose
an improvement of some speci�ic algorithm or data
passing technique, we cannot present any numeric
metrics. However, after registering automatization
had been made, we noticed that the process of adding
new services to the system became easier. Advances
that we found are:
- inter-service integration became easier as the result
of inter-service strong typing - service will not start
while dependencies are not resolved

- contract-�irst developmentmakes positive in�luence
on service building speed

- developers do not need to keep track of the service
dependencies in con�iguration
We also noticed several complicities:

- maintenance of all types consistency is complicated
- there is no one place to store all actual contracts.
Contract discovery stores only registered at present
time items.

- lack of information about actual data routes
- all system depends on the central component
- since contract discovery checks only online services
it does not provide real static type system

- contract discovery guarantees consistency of con-
tract types but not identity of contracts and real in-
terfaces

6. Conclusion
As the result we have replaced direct static servi-

ces linkingwithdetectionof themost suitable contract
provider. This kind of interaction allows us to ensure
that enabled servicewouldwork correctly andhave all
required dependencies. Also, the usage of strong poly-
morphic typing enables us to ensure that APIs of in-
teracting services are compatible. Contract discovery
service ensures that a system does not have any de-
pendency problems at the moment and helps to trace
usage of an outdated interfaces.

From the other side, the presented approach so-
phisticates control over current interaction of a sy-
stem components.

It also does not provide real static type checking
for communication of an elements: contract discovery
does not guarantee the identity of contracts and real
interfaces and does not guarantee service compatibi-
lity before new service is enabled.

Finally, we did not gain the main goal: stability of
the system has not increased signi�icantly.

82

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 13, N° 1 2019

Therefore, we have new ideas on how to provide
strong control over the services interaction. We sug-
gest specifying all data types in a single �ile or project
with a description of the whole services communica-
tion design. Moreover, such de�inition is expected to
resemble a source code on any functional program-
ming language and can also introduce instructions for
deploying services. We expect that such source code
will be assembled into container con�iguration �iles
and the translatorwould perform static type checking.
The concept that we are developing now recalls beha-
vioural and session types [8]. Replacing dynamic con-
tract discoverywith service de�inition compilerwould
save listed advantages and decrease described disad-
vantages.

AUTHOR
Nikita Gerasimov – Mathematics and Mechanics Fa-
culty, Saint Petersburg University, Universitetsky pro-
spekt, 28, Peterhof, St. Petersburg, Russia, e-mail:
n.gerasimov@2015.spbu.ru.

REFERENCES
[1] Apache Software Foundation, “Apache Avro™

1.9.0 Documentation”, http://avro.apache.org
/docs/current/, Accessed on: 2018-11-10.

[2] Google, “Developer Guide | Protocol Buffers”,
https://developers.google.com/protocol-
buffers/docs/overview, Accessed on: 2018-11-
10.

[3] W3C, “Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language”,
https://www.w3.org/TR/wsdl, Accessed on:
2018-04-26.

[4] OpenAPI Initiative, “The OpenAPI Speci�i-
cation”, https://github.com/OAI/OpenAPI-
Speci�ication/blob/master/versions/3.0.1.md,
Accessed on: 2018-04-26.

[5] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Maz-
zara, F. Montesi, R. Musta�in, and L. Sa�ina. “Mi-
croservices: Yesterday, Today, and Tomorrow”.
In: M. Mazzara and B. Meyer, eds., Present and Ul-
terior Software Engineering, 195–216. Springer
International Publishing, Cham, 2017.

[6] N. Gerasimov. “Contract checker”,
http://github.com/tariel-x/cc, Accessed on:
2018-05-07.

[7] N. Gerasimov, “Static typing and dependencyma-
nagement for SOA”. In: Annals of Computer
Science and Information Systems, vol. 16, 2018,
105–107.

[8] K. Honda, V. T. Vasconcelos, and M. Kubo. “Lan-
guage primitives and type discipline for struc-
tured communication-based programming”. In:
G. Goos, J. Hartmanis, J. van Leeuwen, and C. Han-
kin, eds., Programming Languages and Systems,
volume 1381, 122–138. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1998.

[9] A. L. Lemos, F. Daniel, and B. Benatallah, “Web
Service Composition: A Survey of Techniques
and Tools”, ACM Comput. Surv., vol. 48, no. 3,
2015, 33:1–33:41, DOI: 10.1145/2831270.

[10] B. C. Pierce, Types and Programming Languages,
The MIT Press: Cambridge, 2002.

[11] R. Rodger, The Tao of Microservices, Manning Pu-
blications: Shelter Island, New York, 2017.

[12] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo,
S. Bourne, and X. Xu, “Web services com-
position: A decade’s overview”, Informa-
tion Sciences, vol. 280, 2014, 218–238,
DOI: 10.1016/j.ins.2014.04.054.

[13] L. Sun, H. Dong, F. K. Hussain, O. K. Hus-
sain, and E. Chang, “Cloud service selection:
State-of-the-art and future research di-
rections”, Journal of Network and Compu-
ter Applications, vol. 45, 2014, 134–150,
DOI: 10.1016/j.jnca.2014.07.019.

[14] A. Wright, H. Andrews, G. Luff, “JSON Schema Va-
lidation: A Vocabulary for Structural Validation
of JSON”, http://json-schema.org/latest/json-
schema-validation.html, Accessed on: 2018-04-
26.

83

