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Abstract:
With the growing presence of robots in human popula-
ted environments, it becomes necessary to render their
presence natural, rather than invasive. To do that, ro-
bots need to make sure the acous�c noise induced by
their mo�on does not disturb people nearby. �n this line,
this paper proposes a method that allows the robot to
learn how to control the amount of noise it produces,
taking into account the environmental context and the
robot’s mechanical characteris�cs. �oncretely, the robot
adapts its mo�on to a speed that allows it to produce
less noise than the environment’s background noise and,
hence, avoiding to disturb nearby humans. For that, be-
fore execu�ng any given task in the environment, the ro-
bot learns how much acous�c noise it produces at di�e-
rent speeds in that environment by gathering acous�c in-
forma�on through a microphone. The proposed method
was successfully validated on various environments with
various background noises. �n addi�on, a ��� sensor was
installed on the robot in order to test the robot’s ability to
trigger the noise-aware speed control procedure when a
person enters the sensor’s field of view. The use of a such
a simple sensor aims at demonstra�ng the ability of the
proposed system to be deployed in minimalis�c robots,
such as micro unmanned aerial vehicles.

Keywords: Social �obots, �cous�c �oise,�o�on �ontrol,
Self-Supervised Learning

�� ��trod�c�o�
Robot safe navigation in human-populated envi-

ronments is one of the most studied topics in the �ield
of robotics since its early days, having reached a point
in which self-driving cars became a reality [21]. To
be well accepted in environments like of�ices, house-
holds, and factories, robots need to navigate among
people in a predictable, non-disturbing way. Socially-
aware robot navigation is a relatively new �ield that
aims at exactly solving this problem by including in
the robot’s navigation system explicit knowledge of
human behaviour, including cultural preferences [14,
25].

Social awareness in robots should include geome-
tric aspects of motion planning (e.g., avoid invading
personal spaces) but also more subjective aspects re-
lated to the acoustic impact robots have over the envi-
ronment. This is in line with current knowledge about
the relevance of adequate noise prevention and miti-
gation strategies for public health [6]. Hence, depen-
ding on the context in which the robot is immersed in,

e.g., library versus cafeteria, the robot should be allo-
wed to induce more or less acoustic noise in the envi-
ronment.

To control the amount of acoustic noise induced in
the environment, robots may change their motion ac-
cordingly. To that purpose, robots should be provided
with a forward model that could predict how much
noise will be induced in the environment if a given
speed is chosen. With that model the robot should be
able to select the speed that induces an acoustic noise
level that better trades-off the navigation goal and the
comfort of the humans sharing the same environment.
This paper proposes amethod that allows robots to le-
arn and use these forwardmodels in away that the ro-
bot induces a limited level of acoustic noise trading-off
some noise level with the desired speed criteria. Fig. 1
illustrates a typical use-case of the proposed system.

In the proposed system, learning takes place by ha-
ving the robot performing a set of prede�ined motor
actions to actively induce acoustic noise in the envi-
ronment. The outcome of these controlled interacti-
ons is a set of context-action-sensation tuples that the
robot accumulates in an associative memory to learn
how to predict its motion-induced noise, given a mo-
tor action and an environment context. With the kno-
wledge acquired with this self-supervised active lear-
ning strategy, the robot can then select, at each mo-
ment, the maximum velocity possible (up-to a refe-
rencedesiredvelocity) that induces less acoustic noise
than the background’s environment acoustic noise.
Fig. 2 illustrates thebasic principles of operationof the
proposed system.

To validate the proposed method, a small-sized
ROS-enabled [24] research-oriented wheeled robot,
TurtleBot2, has been equippedwith amicrophone and
a simple PIR sensor capable of binary detection of a
person in its �ield of view. The simplicity of the sen-
sory apparatus aims at matching the one that would
be available if a small-sized robot would be conside-
red, such as amicrounmannedaerial vehicle.With this
approach we intend to demonstrate that the propo-
sed method could be used to such small sized robots,
which are expected to populate our environments and
possibly organised as swarms (refer to [7] for a sur-
vey on swarm robotics). In fact, self-supervised lear-
ning in micro air vehicles has been demonstrated in a
different context [29].

This article is an extended and improved version
of a previously published conference paper [1], provi-
ding a more detailed description of the proposed sy-
stem alongside a deeper analysis of the experimental
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Fig. 1. A cartoon representa�on o� the proposed method’s use case. �oth top-le� and bo�om-le� images represent the
ini�al state where the robot is idle at an environment where there are some people having conversa�ons. The di�erence
is that at the top images, the robot does not use any noise controller, while in the bo�om images, the robot uses the
proposed noise controller. At the top-right image, the robot moved near humans while making considerable noise,
causing discom�ort and �orcing people to speak higher to con�nue the conversa�ons. At the bo�om-right image, because
the robot is moving slower, it does not make more noise than the people and e�ecutes its task while people con�nue to
talk to each other normally. The squared object with two semi circle at the sides is the robot. The humans are
represented by circle with a more �a�en circle, somewhat similar to a plus signal. The dialogue balloons represent the
conversa�ons and the bigger the balloon and the le�ers, the higher the people are talking. The do�ed lines represent the
path o� the robot and the semi circles nearby represent the noise the robot is producing, where the higher quan�ty o�
semi circles, the more noise

Fig. 2. A cartoon representa�on o� the proposed method’s major steps. The red dot at the robot’s middle compartment
represents the microphone. The blue curved lines represent the robot’s speed. The more and �cker the lines, the �aster
the robot is moving. The musical notes represent the environment’s background noise. The more and bigger notes, the
higher the volume. At the top-le� image, the robot is not using the purposed method, and so, the robot is moving at any
speed without considera�on o� the noise around it. �hen using the system, the robot needs to be idle and listen to the
background noise, as depicted at the top-right image. Then, the lower the background noise �bo�om-le� image�, the
slower the robot moves. �� there is a high background noise �bo�om-right image�, the robot is allowed to move �aster
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results. This paper is organized as follows. Section 2
describes the related work. Section 3 gives an intro-
duction to some theory about sound that inspired this
work. Section 4 describes the proposed method and
how it can be implemented. Section 5 describes the
developed system. In section 6, a set of experimental
results are presented. Finally, conclusions and future
research avenues are presented in section 7.

2. Related Work
The ability for robots to navigate safely in human-

populated environments has been extended in recent
years to also encompass human safety, which me-
ans that these robots’ navigation systems need to be
socially-aware. In fact, socially-aware robot navigation
has been demonstrated in of�ice environments, hou-
ses, and museums [14,25] and more recently in facto-
ries [17,20].

In addition to ensure the safety of people and
goodsnearby robots, it is also important to foster com-
fort in human-robot interactions, as prescribed in the
theory of proxemics for human-human interactions
[9]. This theory predicts that comfort is a function of
the distance between the interacting agents, as well as
their relationships, cultures, and intentions. Contem-
porary socially-aware robot navigation has included
these concepts to promotemore natural human-robot
interactions [16,25,27].

Acoustic pollution induced by robots also affects
human comfort. A strategy to reduce the acoustic im-
pact robots may have in people-populated environ-
ments is to compel these robots to select paths that
move closer to sound sources present in the environ-
ment [18]. By doing this, the robot masks its acoustic
signature with the ones of the sound sources distri-
buted throughout the environment. To handle several
acoustic noise sources, acoustic maps can be created
and updated by the robot by activelymoving in the en-
vironment [12, 19]. These maps indicate the location
of the several sound sources, which can then be used
to hide the robot’s acoustic signature. Another appli-
cation based on the sound captured by a robot’s mi-
crophones is the detection of obstacles that are out-
side of its �ield of vision [13]. This paper contributes
to the state of the art by proposing a solution that does
not require the explicitmapping of sound sources and,
thus, reducing computational complexity and learning
time.

The wide variety of environments and robot me-
chanical structures render dif�icult designing by hand
a set of rules that helps the robot to control its acoustic
signature in a way that people do not feed disturbed
by its presence. An alternative to the hand crafting of
these rules is to allow the robot to learn them in a self-
supervised way as a function of the environment and
motion speed.

Self-supervised learning has been attracting con-
siderable attention, in particular in safe navigation
domain, which requires the robot to autonomously le-
arn classi�iers for terrain assessment from images and
point clouds [3, 4, 10, 22, 23, 29, 30]. In general, in this

previouswork the robot is asked to learnwhat percep-
tual features better predict a given robot-terrain inte-
raction, provided ground-truth labels produced by an
active perception process. For instance, by manipula-
ting an object, the robot is able to obtain ground-truth
regarding how traversable that object is [4]. The lear-
ned associative mapping can then be used to predict
future robot-terrain interactions, given sensory feed-
back. In this paperwe address a similar problem: to le-
arn the acoustic noise induced by the robot in a given
environment by engaging in pre-de�ined motor acti-
ons to generate suf�icient ground-truth labels for the
learning process to take place.

With a strong connection to the ideas of active per-
ception [2,5], the self-supervised learning concept fol-
lows the affordanceprinciple studied byGibson for the
animal kingdom [8]. The concept of affordances links
the ability of a subject, through its actions, to the featu-
res of the environment and, so, to learn an affordance
the agent needs to interact with the environment. This
idea has been deeply studied in humans [15, 26] and
more recently in robotics [11] including for safe navi-
gationpurposes [28]. In this paperweaddress thepro-
blem of learning what acoustic noise level is afforded
by the environment, given its and the robot’s charac-
teristics.

�. �rel����ar�e� o� ��o�����
From a physics perspective, sound is a vibration

that typically propagates as an audible wave of pres-
sure. This wave propagates through a transmission
medium such as a gas, liquid or solid. Our human ears
detect changes in sound pressure.

It is well known that the sound level decreases
non-linearly as the distance from the sound source in-
creases. Moreover, the characteristics of the environ-
ment, e.g., the design of the room (shape, furnishing,
surface �inishes etc.) in�luences the extent towhich the
sound level decreases along with the distance.

Sound pressure level (SPL) or acoustic pressure le-
vel is a logarithmicmeasure of the effective pressure of
a sound relative to a reference value. Sound pressure
level, denoted Lp and measured in dB, is de�ined by

Lp = 20 log p

p0
[dB], (1)

wherep is the rootmean square soundpressure andp0
is the reference sound pressure (normally the lowest
threshold of human hearing, 20µPa).

Since microphones have a transfer factor or sen-
sitivity given by some value in mV/Pa, in a particular
context or environment, we can relate the sample am-
plitudes acquired by themicrophone to the strength of
the acoustic signal (pressure level). This can be repre-
sented by the simpli�ied (un-weighted) linear sound
pressure level (LSPL) given by

LSPL =
1

N

∑N

i=1
| xi − x̄ |, (2)

whereN is the number of samples per second,xi is the
sampled amplitude, and x̄ is the sample mean value.
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4. Proposed Method
4.1. Sensing

Since every environment is unique, the noise in-
duced by the robot is also different when navigating
in each of those environments. Therefore, the robot
needs to select its speed according to the context in
which it is. The set of possible contexts the robot may
operate is de�ined as

C = {c1, c2, . . .}. (3)
The robot’s speedalso affects thenoise it produces.

Depending on the robot’s characteristics, the robot
produces different noise levels. Hence, the robot needs
to learn the impact of each speed in each context. Ho-
wever, it is not always possible to test all speeds in all
environments. Let us de�ine that the set of speeds that
have been tried by the robot in a given context c ∈ C
is

S[c] = {s[c]1 , s
[c]
2 , . . .}. (4)

As it will be described below, each speed in each
environment is tested multiple times (for robustness
purposes) by performing a set of �ixed action patterns.
As a result of the �ixed action patterns noise is pro-
duced, whosemagnitude is measuredwith the robot’s
on-board microphone, resulting in a time-series asso-
ciated to the context c ∈ C and speed s ∈ S[c] in que-
stion:

X [c][s] =
{
x[c][s][0], x[c][s][1], . . . x[c][s][n[c][s]]

}
. (5)

4.2. Learning
Learning occurs by storing in an associative me-

mory the average noise level, µ[c][s], and a conserva-
tive measure of the noise level variation (dispersion),
σ
[c][s]
+ , conservative noise level variation hereafter, ob-

served while performing each assessed speed s ∈ S[c]

in context c ∈ C:

M =
{(

µ[c][s], σ
[c][s]
+

)
, ∀c ∈ C, ∀s ∈ S[c]

}
, (6)

where the average noise level for speed s ∈ S[c] in con-
text c ∈ C is given by

µ[c][s] =
1

n[c][s]

n[c][s]∑
i=0

x[c][s][i]. (7)

The conservative noise level variation measure is
given by the sum of the standard deviation with the
standard error of the mean, allowing to take into ac-
count the uncertainty that emerges from the sample
size:

σ
[c][s]
+ = σ[c][s] + σ

[c][s]
− , (8)

where the standard deviation of the noise level for
speed s ∈ S[c] in context c ∈ C is given by

σ[c][s] =

√∑n[c][s]

i=0

(
x[c][s][i]− µ[c][s]

)2
n[c][s] − 1

, (9)

and the standard error of the mean of the noise level
for speed s ∈ S[c] in context c ∈ C is given by

σ
[c][s]
− =

σ[c][s]

√
n[c][s]

. (10)

4.3. Memory Recall
The associative memory allows the robot to know

how much acoustic noise it induces in the environ-
ment at different speeds and contexts. This informa-
tion is then used by the robot to adapt its speed in
order to avoid producing noise whose magnitude is
higher than the one of the environment’s background
noise.

Let us assume the robot needs to perform a given
task which requires the robot to move at a given de-
sired speed sr . Then, the robot needs to determine
whether it produces less noise than the environment
at speed sr and, if not, what should be its maximum
speed in order to ful�il that condition. To perform this
analysis the robot needs to consult its memory.

Let us imagine the robot needs to know the ex-
pected conservative noise level variation if travelling
at a given speed sr in a given context c. If that speedhas
beenexperiencedby the robot, then itsmemory canbe
used by a direct recall process. However, if that speed
has never been experienced, then the robot needs to li-
nearly interpolate from the two closest speeds stored
in memory. Formally, in those cases where sr ∈ S[c],
the conservative noise level variation is obtained with

σr(c, sr) = σ
[c][sr]
+ , (11)

whereas in those cases where sr ̸∈ S[c], the conserva-
tive noise level variation is instead obtained with

σr(c, sr) = ψ
(
sr, s

−, σ[c][s−], s+, σ[c][s+]
)
, (12)

with:

ψ(x, x0, y0, x1, y1) =
y0(x1 − x) + y1(x− x0)

x1 − x0
, (13)

where the immediately above and below speeds me-
morised inM [c] for for context c ∈ C are given by

s+[c] = arg min
s∈S[c],s>sr

(s− sr), (14)

s−[c] = arg min
s∈S[c],sr>s

(sr − s). (15)

The robot canalso consult itsmemory toobtain the
expected average noise level if travelling at speed sr .
Instead of consulting directly the memory, the robot
uses a model learned from the data stored in memory.
A set of tests (seebelow) showthat for lowspeeds a se-
cond degree polynomial �itswell the data, where as for
high speeds a simpler linearmodel is suf�icient. Hence,
the expected average noise level is given by,

µr(c, sr) =

{
ax2 + bx+ c if sr <= sd

dx+ e if sr > sd
(16)
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σ
[c][s]
− =

σ[c][s]

√
n[c][s]

. (10)

4.3. Memory Recall
The associative memory allows the robot to know

how much acoustic noise it induces in the environ-
ment at different speeds and contexts. This informa-
tion is then used by the robot to adapt its speed in
order to avoid producing noise whose magnitude is
higher than the one of the environment’s background
noise.

Let us assume the robot needs to perform a given
task which requires the robot to move at a given de-
sired speed sr . Then, the robot needs to determine
whether it produces less noise than the environment
at speed sr and, if not, what should be its maximum
speed in order to ful�il that condition. To perform this
analysis the robot needs to consult its memory.

Let us imagine the robot needs to know the ex-
pected conservative noise level variation if travelling
at a given speed sr in a given context c. If that speedhas
beenexperiencedby the robot, then itsmemory canbe
used by a direct recall process. However, if that speed
has never been experienced, then the robot needs to li-
nearly interpolate from the two closest speeds stored
in memory. Formally, in those cases where sr ∈ S[c],
the conservative noise level variation is obtained with

σr(c, sr) = σ
[c][sr]
+ , (11)

whereas in those cases where sr ̸∈ S[c], the conserva-
tive noise level variation is instead obtained with

σr(c, sr) = ψ
(
sr, s

−, σ[c][s−], s+, σ[c][s+]
)
, (12)

with:

ψ(x, x0, y0, x1, y1) =
y0(x1 − x) + y1(x− x0)

x1 − x0
, (13)

where the immediately above and below speeds me-
morised inM [c] for for context c ∈ C are given by

s+[c] = arg min
s∈S[c],s>sr

(s− sr), (14)

s−[c] = arg min
s∈S[c],sr>s

(sr − s). (15)

The robot canalso consult itsmemory toobtain the
expected average noise level if travelling at speed sr .
Instead of consulting directly the memory, the robot
uses a model learned from the data stored in memory.
A set of tests (seebelow) showthat for lowspeeds a se-
cond degree polynomial �itswell the data, where as for
high speeds a simpler linearmodel is suf�icient. Hence,
the expected average noise level is given by,

µr(c, sr) =

{
ax2 + bx+ c if sr <= sd

dx+ e if sr > sd
(16)
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where a, . . . , e are parameters learned with regres-
sion based on a set of data points corresponding to tu-
ples speed-noise:

D[c] =
{(

s, µ[c][s]
)
, ∀s ∈ S[c]

}
. (17)

�.�. ����n ��ntr�l
Algorithm 1) outlines the process used by the pro-

posed system to selectwhich speed is sent to actuators
in order to best take into account the robot’s induced
noise level, its memory, and desired speed.

Data: desired speed, sr (input)
Data: environment context, c (input)
Data: speed search step, α (input)
Result: Noise aware robot speed control

1 Set robot’s speed to 0
2 Store environment noise level for δ seconds in

E
3 Compute: µe =

∑
e∈E e/|E|

4 Initialise x: x ← µr(c, sr) + σr(c, sr)
5 Initialise selected speed: s ← sr
6 while x > µe ∧ s > α do
7 Decrement selected speed: s ← s− α
8 Update x: x ← µr(c, s) + σr(c, s)9

end
10 Set robot’s speed to s

Algorithm 1:Motion controller

The algorithm receives the robot’s desired speed,
sr , if noise level was not a concern. This speed is often
task-oriented. The algorithmalso assumes that the en-
vironment context, c, is known, for instance using vi-
sion (not the focus of this article). The output of this
algorithm is, if possible, the highest speed, up to sr , the
robot canmove that does not producemore noise than
the environment.

First, the robot is asked to stop (Step 1). This way,
the robot’s induced noise does not interfere with the
next step. With the microphone, the robot gathers the
environment’s noise levels, E, for a determined num-
ber of seconds, δ (Step 2). These noise levels are then
used to calculate an average background noise level,
µe (Step 3). Then, the robot predicts, in a conservative
manner, the expected noise produced by the robot at
speed s (Step 4).

The selected speed, s, is initially set to the desired
speed sr (Step 5), because the desired speed must be
the highest selected speed possible. Then, a small cy-
cle (Steps 6-�) needs to be performed to �ind the best
speed.While the predicted robot’s noise is higher than
the environment’s background noise and the selected
speed is higher than a given speed search step α (Step
6), the selected speed is decremented (Step 7) and the
predicted robot’s noise with that speed is computed
(Step 8).

When the robot �inds a speed which is expected to
produce less noise than the environment’s, the algo-
rithm ends and the robot actuator speed is set to the
selected speed s (Step 10). If the selected speed gets
lower than the speed search step, then it is assumed

Fig. 3. Diagram sho�ing the connec�ons bet�een the
microphone and the Raspberry Pi 2. It is possible to see
that the ’Vref’ (reference voltage) is different from the
”VDD” on the ADC in order to amplify a bit the signal

the robot cannot produce less noise than the environ-
ment and the robot’s speed is set to the selected speed.
Hence, the speed search stepα should be set to themi-
nimum speed possible the robot can perform the task
at hand.

5. Experimental Setup
The proposed method has been devised to allow

complex and minimalist robots to adjust their speed
in order to control their induced noise when naviga-
ting nearby people (e.g., a micro aerial vehicle �lying in
a of�ice environment). However, the system could be
easily adapted in order to perform the opposite ope-
ration, that is, render the robot salient in the acoustic
landscape. This could be interesting for tasks in which
would be important to attract people’s attention to the
robot.

This section presents the instantiation of the pro-
posedmethod to a small-sized ground robot, a Turtle-
Bot 2.0, equipped with a microphone and a Raspberry
pi 2 Model B for data acquisition and transmission to
the robot’smainprocessingunit. Fig. 3 showsadigram
with the connections between themicrophone and the
raspberry pi, whereas Fig. 4 depicts the robot used.

5.�. �i�r�p��ne p��i��n
The robot has three compartments in which the

microphone can be placed (top compartment, middle
compartment and bottom compartment), as depicted
in Fig. 5. In addition to selecting the most appropriate
compartment for microphone placement, it is neces-
sary to verify whether it should be placed at the front
or at the back of the robot, making a total of six diffe-
rent possible positions. In order to determine the best
position, an experiment was performed. In all tested
positions, the microphone is pointing downwards so
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Fig. 4. Turtlebot 2.0. The robot used in this work

Fig. 5. �obot with its top, middle, and bo�om
compartments

as to be highly in�luenced by the wheels and motors
acoustic noise. Fig. 6 plots the acoustic noise level re-
cordedby the robot’smicrophonewhenplaced in each
of the six positions while travelling at 0.2m/s.

Fig. 6 shows that there was no major difference
between having the microphone at the back or at the
front of the robot in any compartment, although it has
a little better performance at the back. Regarding the
different compartments, the top compartment provi-
des the worst performance. It is possible to differen-
tiate the robot’s noise, but not as well as in the others
compartments. Both the middle and bottom compart-
ment are good to distinguish the robot’s noise, with
the bottom having an advantage because it is more
perceptible.

As the robot can potentially move at higher speeds
than the tested 0.2 m/s, for example in cases where
there is more noise in the environment, a second ex-
periment with the robot moving at 0.5 m/s on a con-
crete �loor was performed. Fig. 7 shows the results of
that experiment.

It is noticeable in Fig. 7 howmuchmore thenoise is
saturated when the microphone is at the bottom com-
partment. Saturation occurs due to closeness to the
motors and due to the high mechanical impact indu-
ced by the rough terrain on the robot’s structure. For
this reason, the back of the middle compartment was
selected as the most appropriate to place the microp-

Fig. 6. �cous�c noise level induced by the robot while
moving at 0.2 m�s on top of ceramic �les, with the
microphone on different compartments and located at
the front and back of the robot. It is possible to check
the environment’s noise right at the beginning. The
spike that follows represent the robot’s mo�on onset.
Then the noise stabilizes because the robot is constantly
moving at the target speed. The spike that occurs at the
middle represent the moment when the robot passes
from one ceramic �le to another, which causes some
mechanical impact that results in a higher acous�c
noise. The following order represents the images
se�uen�ally from top to bo�om� � � bo�om
compartment, back posi�on� 2 � bo�om compartment,
front posi�on� � � middle compartment, back posi�on� �
� middle compartment, front posi�on� � � higher
compartment, back posi�on� � � higher compartment,
front posi�on. The ver�cal axis represents the acous�c
noise level, and the horizontal axis represents the
different samples from the microphone

hone. The remainder of the article assumes the mi-
crophone to be located in this selected position.
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hone. The remainder of the article assumes the mi-
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Fig. 7. �cous�c noise level induced �� the ro�ot while
moving at 0.5 m/s on top of rough concrete floor, with
the microphone on different compartments located at
the �ac� of the ro�ot. �i�e on �g. �, the ver�cal axis
represents the acous�c noise level, and the hori�ontal
axis represents the different samples from the
microphone. The top image plots the samples acquired
with the microphone on the middle compartment and
the �o�om image plots the samples acquired with the
microphone on the �o�om compartment

5.2. Learning phase
With the microphone position established, it is

possible to gather the robot’s noise. To test if the sy-
stem works in various scenarios, four different con-
texts (environments) were selected. Since the robot
moves with wheels, the major difference between the
contexts is the �loor (tiles, cement, carpet and wood).
The set of tested contexts is:

C = {tiles, wood, cement, carpet}. (18)

For a robot moving alongside humans, it cannot
move too fast, as that can be uncomfortable for them.
For that reason, the set of speeds ranges from 0.0 m/s
to 0.8 m/s in 0.1 m/s steps. Gathering data when the
robot is stopped (0.0m/s) can be important in situati-
ons where the robot’s noise is not as easily distinguis-
hable from the environment’s noise, and so, the robot
can have a reference of the environment’s noise. The
set of tested speeds in each environment c ∈ C is:

S[c] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. (19)

The robotmoves at each speed for each context for
about 2 seconds. This is repeated 15 times as to have a
good amount of samples. For each context, the conditi-
ons are the same. The robot always starts at the same
place, to make each repetition as similar as possible,
and it needed to be as much silent as possible in the
environment. Every time there is some kind of noise

that is not from the robot’s motion, that run is discar-
ded and a new one is performed until all 15 similar
repetitions are completed.

The microphone data gathered for each context
and speed compose the set of noise levels (X [c][s]),
which allows to store the set of tuples (M) that contain
the noise level average and the conservative noise le-
vel variation and understand the regression equations
for each context (µr(c, sr)).

5.�. ����n ��ntr�ller

Placing the microphone at a good place and lear-
ning the robot’s noise are two necessary steps tomake
the robot make less noise than the environment. With
those two steps done, it is possible to develop the mo-
tion controller, which is what the robot uses to know
what speed should use.

The way this motion controller works is based on
the algorithm presented in the previous section. Be-
fore starting, the robot must be idle, as to not pollute
the microphone data with its noise and require an ex-
tra element on the algorithm to �ilter its noise. The se-
lected speed (s) is �irst initiali�ed as the desired speed
(sr) and the search step (α) is set. The robot starts
by gathering the environment’s noise levels (δ) for 1
second with the microphone, which is then calcula-
ted the average value (µe) and considered the maxi-
mum acoustic noise the robot can produce. After that
second, a small cycle is performed. With the help of
the data gathered during the learning phase, it is es-
timated the average noise level (µr) and the conserva-
tive noise level variation (σr). If the environment noise
is lower than the average noise plus the conservative
noise level variation (µe < (µr + σr)), it is decre-
mented 0.1 to s and the cycle is repeated until either
µe > (µr + σr), where the best velocity is found, or S
is lower than α, where the robot is moving too slow to
be able to execute a task ef�iciently or in a reasonable
amount of time and it assumes it cannot hide its own
acoustic noise.

6. Experimental Results
6.1. Learning Phase

To better understand the different contexts, Fig. 9
shows the average noise values and expected noise
level variation that the robot made for each speed-
context pair. The �igure shows that, because the con-
crete �loor is the hardest �loor type, the robot produces
more acoustic noise than on the other contexts. Pre-
dictably, the carpet �loor, the softer �loor type, makes
the robot produce lesser acoustic noise than the other
contexts. As it is possible to see, up until 0.4 m/s there
is a higher variation between the noise values than
the higher velocities, so it makes sense to have two
different regression equations, as described in Equa-
tion 16. One of the equations represent the velocities
between 0 m/s and 0.4 m/s, whereas the other the
velocities between 0.4 m/s and 0.8 m/s.
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Fig. 8. �i�erent �ontexts tested� �op le�� �arpet floor� �op right� �iles floor� �o�om le�� �ement floor� �o�om right�
Wood floor

Fig. 9. Learning phase results showing the robot’s
a�erage noise le�el and �onser�a��e noise le�el
�aria�on for the di�erent �ontexts� �ontexts from top to
bo�om� �ement, �les, wood and �arpet� �he hori�ontal
axis represents the speed of the robot in m/s, and the
�er��al axis represents the a�erage noise of the robot�
�he �er��al lines at ea�h �elo�it� represents the
�onser�a��e noise le�el �aria�on

�.�. ����� ����������

To validate the motion controller, a simple yet ef-
fective experiment was performed. The robot was pla-
ced in all four contexts (tiles, cement, wood and car-
pet) idle. Then, a set of sound clips started playing.
Three different sound clips with two intensity levels
(high volume and low volume) were used. Since this
is a controlled experiment, the sounds were played
by speakers placed in the environment: (a) a sound
clip from a crowded area, to simulate an environment
where there are people inducing some background

noise; (b) a vacuum cleaner, to simulate an environ-
ment where there is a constant background noise, like
an air ventilation system; and (3) a jazz song to simu-
late an environment where the volume from the back-
ground noise is dynamic, meaning it oscillates its vo-
lume based on the song’s characteristics. While each
sound clips were playing, the motion controller’s al-
gorithm was executed to �ind the ideal velocity s. The
speed search step α was set to 0.05 and the desired
speed sr , to force the algorithm to search for the best
velocity, was set to a high value of 2.0 m/s. Table 1
shows the results obtained from that experience.

The table show that the predicted acoustic noise
the robot should produce is not higher than the en-
vironment’s background noise with similar values,
whichmeans that people nearby should not be distur-
bed by the robot’s noise. Notice that the noise is mea-
sured by the microphone on the robot, so the farther
away from the robot a personmay be, the less impact-
ful is the robot to that person.

�.�. �����g �i�� � ������ ��������
To further test the system, a second experiment

was conducted. This time, the robot was equipped
with a PIR sensor to detect the presence of a person
and it was performed on a tiled �loor. The sound clips
used in this experiment are the same as in the pre-
vious experiment (crowd sound, vacuum cleaner and
a jazz song), except this time, there were no volume
variations and all sound clips were producing similar
noise levels. The PIR installed is a Motion Sensor Mo-
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Tab. 1.

Ambient
sound

Floor
type

Env. back noise
(δ)

Pred. rob.
ind. noise (µr)

Noise
difference (µr − δ)

noise ration [%]
(1− µr/σ)

Jazz
High volume

concrete 16.61 16.59 -0.02 0.10%
tiles 16.63 16.62 -0.01 0.03%
wood 16.53 16.51 -0.02 0.15%
carpet 16.03 16.01 -0.02 0.10%

Jazz
Low volume

concrete 14.24 14.20 -0.04 0.30%
tiles 14.28 14.27 -0.01 0.05%
wood 13.81 13.76 -0.05 0.34%
carpet 12.81 12.79 -0.02 0.14%

Crowd
High volume

concrete 16.61 16.59 -0.02 0.11%
tiles 16.40 16.38 -0.02 0.14%
wood 16.04 16.02 -0.02 0.12%
carpet 15.94 15.93 -0.01 0.08%

Crowd
Low volume

concrete 15.64 15.59 -0.05 0.35%
tiles 13.91 13.84 -0.07 0.51%
wood 12.99 12.95 -0.04 0.28%
carpet 11.80 11.79 -0.01 0.09%

Vacuum cleaner
concrete 15.29 15.25 -0.04 0.27%
tiles 16.15 16.13 -0.02 0.13%
wood 15.51 15.50 -0.01 0.04%
carpet 14.75 14.74 -0.01 0.07%

dule IM120628009, which has a range of 7 m and a
�ield of view of 110 degrees, and was installed on the
front of the robot’s top compartment.

The robot starts by moving forward at a desired
speed sr=0.5 m/s until the PIR sensor detects a per-
son. �hen a person passes by the PIR �ield of view,
the robot stops and performs the algorithm of themo-
tion controller to �ind the ideal speed s and starts mo-
ving at that that speed. Since this is a controlled ex-
perience, the person appears always at approximately
1 m in front of the robot. This test is useful to under-
stand if the robot is capable of performing a task with
thismotion controller, where the objective is the robot
to stop when a person is nearby and adapt its velocity
as to not cause discomfort to that person. For example,
an autonomous vacuum cleaner could clean an house
roomslowerwhen a person is in the samedivision. Ta-
ble 2 shows the result obtained from this experience.

Similar to the previous experiment, the robot does
not producemore acoustic noise than the background
environment’s noise, with the average difference be-
tween the robot’s noise and the background’s noise
being1.24%, and shows that themotion controller can
be integrated into a more complex system to perform
different types of tasks.

7. Conclusion
Regardless of the robots activity, the acoustic noise

it induces in the environment can be uncomfortable
or annoying to people that might be in the same envi-
ronment. Therefore, it is necessary to limit the amount
of acoustic noise produced by the robot so it becomes
unobtrusive.

By setting a microphone on a robot, it is possible
to learn the amount of acoustic noise any robot makes
whilemoving at any speed in any context. In thiswork,
a systemwasdeveloped to enable different kinds of ro-
bots (big, small, aerial or grounded) to adapt theirmo-
tion when around humans by moving at a speed that
will not produce more acoustic noise than the already
present in the environment’s background, and conse-
quentially, not cause discomfort to people because of
the robot’s noise.

To that purpose, the robot needs to have a notion
of howmuch acoustic noise it produces. This is accom-
plishedbyhaving a learning phase in the different con-
texts where the robot is expected to perform its tasks.
This learning phase creates a relation between a tuple
(average and conservative variation of the noise level)
and the different speeds that the robot may use. This
is the only necessary task needed before being able to
use the developed system.

The developed system is a motion controller that,
at anymoment, allows the robot to adapt its speed to a
value that does not produce more acoustic noise than
the already existing in the environment. This allows
for a more acceptance of autonomous systems in our
society, because by not disturbing nearby people with
its noise, people can perform whatever they may be
doing regardless of robots nearby.

Although the results suggest that the proposed
method works in a set of disparate contexts, there are
some contexts where performing a task without cau-
sing some discomfort to humans nearby is almost im-
possible. Quiet places, like in a library, where there is
notmuch background noise, the robotmay not be able
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Tab. 2. Results from the second experiment, where the robot stops performing a task with the presence of a person and
adapts its �elocit� to not disturb the person� �he headers are, from le� to right� �mbient sound, predicted robot induced
noise, en�ironment back noise, robot selected speed, noise di�erence and noise ra�o

ambient
sound

pred. rob.
ind. noise (µr)

env.
back noise (δ)

robot selected
speed (s)

noise
difference (µr − δ)

noise ratio[%]
(1− µr/σ)

Vac. cleaner 0.395 14.89 14.57 -0.32 2.12%
Crowd 0.405 14.96 14.94 -0.02 0.13%
Jazz 0.395 14.79 14.57 -0.22 1.49%

to execute its tasks at a reasonable speed. In those si-
tuations, the robot or the user controlling it will have
that knowledge and may move at the lowest speed
possible or postpone the completion of the task until
there are no people nearby.

To test the proposed method, a couple of expe-
riments were performed. The �irst experience invol-
ved four different contexts (cement �loor, tiled �loor,
wooden �loor and carpet �loor) and three different
sound clips: Jazz song, crowd noise and a vacuum cle-
aner. Each sound clip had a different purpose. The jazz
song simulated an environment where there are va-
riation in the background’s noise volume, the crowd
noise simulated an environment with multiple people
nearby and the vacuum cleaner simulated an environ-
ment where there is a constant background noise. The
robotwas placed at each context and executed themo-
tion controller to �ind the highest speed it could move
to not make more acoustic noise than the background
noise. The experimental results showed that the pro-
posed method properly handled the various situati-
ons by selecting speeds that would allow the robot to
not produce more noise than the environment. It is
worth noting that the noise values are from the robot’s
perspective, meaning that a person hears the robot’s
noise more or less depending on the distance it has
from the robot.

To further validate this method, a second experi-
ment was performed. The robot, equipped with a PIR
sensor, was placed in only one context and the ob-
jective was to test the ability of the robot to select
a proper speed as soon as someone appeared in the
PIR’s �ield of view. The obtained results show that the
robotwas able to notmove at a speed thatwouldmake
it produce more noise than the environment’s back-
ground noise.

Despite the overall positive results, the proposed
method presents some limitations to be handled in fu-
turework. For example, the experimental resultswere
obtained with the robot performing simple forward
motions. Futurework needs to address amore diverse
set of motion primitives. Although tested in different
contexts, all were indoors with �lat terrains. Future
work should assess the system in a wider range of
environments (e.g., rough outdoor environments). It
would also be valuable to assess the system in robots
with differentmorphologies (e.g., small unmanned ae-
rial vehicles).
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