
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

20

Deep Reinforcement Learning Overview of the State of the Art

Youssef Fenjiro, Houda Benbrahim

Submitted: 5th October 2018; accepted: 16th November 2018

DOI: 10.14313/JAMRIS_3-2018/15

Abstract:
Artificial intelligence has made big steps forward with
reinforcement learning (RL) in the last century, and with
the advent of deep learning (DL) in the 90s, especially,
the breakthrough of convolutional networks in computer
vision field. The adoption of DL neural networks in RL,
in the first decade of the 21 century, led to an end-to-
end framework allowing a great advance in human-level
agents and autonomous systems, called deep reinforce-
ment learning (DRL). In this paper, we will go through the
development Timeline of RL and DL technologies, describ-
ing the main improvements made in both fields. Then, we
will dive into DRL and have an overview of the state-of-
the-art of this new and promising field, by browsing a set
of algorithms (Value optimization, Policy optimization
and Actor-Critic), then, giving an outline of current chal-
lenges and real-world applications, along with the hard-
ware and frameworks used. In the end, we will discuss
some potential research directions in the field of deep RL,
for which we have great expectations that will lead to
a real human level of intelligence.

Keywords: reinforcement learning, deep learning,
convolutional network, recurrent network, deep
reinforcement learning

1. Introduction
Reinforcement learning [1], [2] is an AI sub-do-

main allowing agent to fulfill a given goal while max-
imizing a numerical reward signal. It was developed
within three main threads. The first is the concept
of learning by trial and error, discovered during re-
searches undertaken in psychology and neuroscience
of animal learning. The second concept is the problem
of optimal control developed in the 1950s using a dis-
crete stochastic version of the environment known as
Markovian decision processes (MDP) and adopting
a concept of a dynamical system’s state and optimal
return function (Reward) and defining the “Bellman
equation” to optimize the agent behavior over the time
(Dynamic programming). The last concept concerns
the temporal-difference methods, which become the
mainstream, and was boosted by the actor-critic ar-
chitecture. This topic is detailed in the first section.

Deep Learning (DL) [3] is a machine learning
sub-domain, based on the concept of artificial neural
networks that imitates human brain while processing

data and creating patterns for use in decision-making.
DL enables automatic features engineering and end-
to-end learning through gradient descent and back-
propagation. There are many types of DL nets, which
usage depend on their application and the nature of
the problem being treated. For time sequences like
speech recognition, natural language processing we
use recurrent neural network. For extracting visual
features, like image classification and object detec-
tion, we use convolutional neural network. For data
pattern recognition like classification and segmen-
tation, we use feed-forward networks, and for some
complex tasks like video processing, object tracking
and image captioning, we use a combination of those
nets. This topic is detailed in the second section.

The link between RL and DL technologies was
made, while AI researchers were seeking to implement
a single agent that can think and act autonomously in
the real world, and get rid of any hand-engineered
features. In fact, in 2015, Deepmind succeed to com-
bine RL, which is a decision-making framework and
DL [4], which is a representation learning framework
allowing visual features extraction, to create the first
end-to-end artificial agent that achieves human-lev-
el performance in several and diverse domains. This
new technology named deep reinforcement learning
is used now, not only to play ATARI games, but also to
design the next generation of intelligent self-driving
cars like Google with Waymo, Uber, and Tesla.

In summary, this paper will give an outline of RL
and DL technologies (in sections II and III respective-
ly), which are the basis of the deep RL. Section IV will
focus on dissecting the different approaches and im-
provements that had a significant impact on building
a human-level autonomous agents, by giving (a) an
overview of state-of-the-art deep RL algorithms and
achievements in recent years and (b) an outline of the
current challenges of DRL and its applications in in-
dustry, and (c) an introduction to the latest toolkits
and framework libraries that can be used to develop
deep RL approaches.

Finally, we open a discussion related to deep RL
and then inherently raise different directions for fu-
ture studies in the conclusion.

2. Preliminary: Reinforcement Learning
In this section, we begin with an introduction to

the fundamental concepts of reinforcement learning
[1] like Markov decision process, Bellman equation,

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

21Articles 21

• State-Value function V(s) (3) estimate how good
(future rewards) it is, to be in a state s. V(s) under
policy π is denoted Vπ(s):

 ()10
() (|) | ,k

t t t kk
V s E G S s E R S sπ π π γ∞

+ +=
= = = =∑

 for all s ∈ S (3)

• Action-value function Q(s,a) (4) how good (future
rewards) it is to perform an action a in a state
s. Q(s,a) under policy π is denoted :

 ()10

(,) (| ,)

| ,

t t t

k
t k tk

Q s a E G S s A a

E R S s

π π

π γ∞

+ +=

= = = =

=∑
 for all s ∈ S and a ∈ A (4)

From the two relation above, we infer the Bellman
equations that break RL problems into sub-problems
by expressing an iterative relationship between the
value of a state st and the values of its successor states
st+1, with rt the expected reward from st to st+1 by fol-
lowing at, we have the equations (5):

1

1

1 1
,

1 1 1
,

() (|) (, | ,)[. ()]

(,) (|)

(, | ,)[. (,)]

t t t

t

t t

t t t t t t t t t
a s r

t t t t
a

t t t t t t t
s r

V s a s P s r s a r V s

Q s a a s

P s r s a r Q s a

π π

π

π

π γ

π

γ

+

+

+ +

+ + +

= +

=

+

∑ ∑

∑

∑

We then infer the Bellman optimality equations
(6) (7) for V and Q under the optimal policy as below:

 1

*

1,

(s) max [()]
max (, | ,)[, ()]

t t t

t t

a t t t t t ts r

V V s
P s r s a r V s

π π

πγ
+

+

= =

+∑ (6)

1

*

1 1 1,

(s ,) max [(s ,)]
(, | ,)[, max (s ,)]

t

t t t t

t t t t t a t ts r

Q a Q a
P s r s a r Q a

π π

πγ
++ + +′

= =

+∑ (7)

Optimal Value function = immediate reward r +
discounted value of successors state γV(St+1).

The optimal policy can be found using two differ-
ent modes depending on:
• On-policy agent learns policy, and action is

performed by the current policy instead of the
greedy policy.

• Off-policy agent learns the optimal values (V,Q),
and action is performed by the greedy policy (max
operator in Bellman equation → Optimal policy).
In RL, there are two main types of algorithms:

• Model-based algorithms that use a model to
predict the unobserved portion of the environment
like Dynamic Programming, but they suffer
from Bellman’s curse of dimensionality problem
(use full-width backups), since knowing all the
elements of the MDP is a tough task, especially
when we have infinite states or almost.

• Model-free algorithms that skip learning a model
and directly learn what action to do and when, by
estimating the value function of a certain policy
without a concrete model. The most known

(5)

and exploration vs exploitation dilemma. Then we
will review the main algorithms and methods devel-
oped that represent the key breakthroughs of con-
temporary RL, allowing autonomous human-level
agents to reach the actual state-of-the-art DRL.

2.1. Reinforcement Learning and Markov
Decision Process

Reinforcement Learning is an AI domain inspired
by behaviorist psychology, it is based on a mechanism
that learns through trial and error by interacting with
a stochastic environment. It is built up on the con-
cept of Markov Decision Process MDP (see Fig. 1),
a sequential decision-making problem based, defined
by a 5-tuple: A set of states and actions (S,A), reward
model R, state transition probability matrix P (from
all states s to all their successor s’) and discounted
factor γ ϵ [0,1], which allows to give more importance
to recent rewards compared to future rewards. An en-
vironment is said to be MDP when the state S contains
all information the agent needs to act optimally.

Fig. 1. Markov decision process

The state transitions of an MDP is memoryless, so,
we say that it satisfies the Markov property (1). RL
agents behave under this assumption, so the effects of
an action taken in a state depend only on that state
and not on the prior history:

1 1 1 1 1

1

(| , , , , ...)
(| ,)

t t t t t t t t t

t t t t t

P S s S s A a S s A a
P S s S s A a

+ − − − −

+

′= = = = = =
′= = = (1)

If MDP is episodic, the state is reset after each
episode of length T. Reward Rt defines what are the
good and bad events for the agent, and Cumulative
reward Gt (2) is the discounted sum of reward accu-
mulated throughout an episode of T steps:

2
1 2 3

1 1 10

...t t t t
T k

t k t tk

G R R R

R R G

γ γ

γ γ
+ + +

+ + + +=

= + + + =

= +∑
(2)

π is the policy function that maps each possible state s
of the agent to its selective action a, π: S → p(A = a|S).
The agent try to learn an optimal policy π* in order
to take the best actions that maximize the cumulative
reward Gt [reinforcement feedback from the environ-
ment].

2.2. Reinforcement Learning and Bellman
Equations

To find the optimal policy π* that achieves the
maximum cumulative reward, RL algorithms involve
estimating the following value functions:

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

22 Articles22

methods are Monte-Carlo, Temporal difference
learning and its variants Q-learning and SARSA.

In this paper, we will focus on model-free RL.

2.3. The Exploration/Exploitation Dilemma
In real life, the best long-term strategy may involve

short-term sacrifices to gather enough information so
as to make the best overall decisions. For RL problems,
to avoid being stuck in a local maximum, we have to
balance between the two concurrent approaches Ex-
ploration and Exploitation (see Fig. 2):
• Exploit (using deterministic search): in this

case, the search is deterministic and the RL agent
chooses actions that he has already attempted
in the past (from the history of trials) and which
maximized the cumulative reward and proved to
be the most efficient.

• Explore (using non-deterministic search): to
gather more information and discover such actions,
it has to try actions (weighted by a probability of
correctness) that it has not selected before, and
so allow the exploration of the other possibilities,
in order to make better action selections in the
future.

Fig. 2. Exploitation vs Exploration

The most known approaches to exploration use
the following action-selection strategies [5]:
• Greedy Approach: Agent is exploiting its current

knowledge to choose at any time the action which
he expects to provide the greatest reward.

• ε-greedy Approach: forces the non-greedy
actions to be tried (exploration) with no
preference for nearly greedy ones or particularly
uncertain (chooses equally among all actions). ε is
the probability of exploration typically 5 or 10%
(see Fig. 3).

Fig. 3. ε-greedy approach

• Softmax Approach: All the actions are ranked
and weighted according to their values estimates,
but the selection probability of Greedy actions is
the highest. A random action is selected, by taking
into account the weight of each action. In practice,
we use an additional temperature parameter (τ)
applied to Softmax, to lower the low probabilities
and higher the high probabilities.

• Bayesian Approach: we add a probability
distribution to the neural network weights by
repeatedly sampling from a network with dropout

[6]; thus, the distribution variance provides an
estimate of the uncertainty of each action.

2.4. Monte-Carlo Learning
Monte Carlo method [1] relies on repeated ran-

dom sampling to obtain numerical results. By the
law of large numbers, the expected value of a random
variable can be approximated, by taking the sample
mean of independent samples of the variable.

MC methods are used in RL to solve episodic prob-
lems by averaging sample returns and learning di-
rectly from complete episodes of experience without
bootstrapping. MC methods are insensitive to initial
value since they learn only from complete sequences,
the return is known only at the end of the episode and
not before.

MC is used for prediction by learning the state-val-
ue function Vπ(s) following a given policy π, and for
control by estimating the policy using Generalized
Policy Iteration GPI and the action-value function Q.
The MC control algorithm starts with an arbitrary
policy π and iterates between the two steps until con-
verging toward the optimal policy π*:
• Policy evaluation: use the current policy π to

estimate Qπ or Vπ.
• Policy improvement: making a better policy π by

deterministically choosing actions with maximal
action-value: π(s) = arg maxa q(s,a).

2.5. Temporal-Difference Learning
Temporal-Difference Learning [1], [6] is mod-

el-free methods that act by deriving its information
from experiences without having complete knowl-
edge of the environment. TD combines Monte Carlo
methods, by learning directly from raw experience,
with dynamic programming methods, by updating
value function estimates through bootstrapping from
its current estimate.

TD updates values using recent trends so as to
capture the effect of a certain state. It learns online
after every step from incomplete episodes of expe-
rience by sampling the environment according to
a given policy and approximating its current estimate
based on previously learned estimates. The general
rule (8) can be summarized as follow: VNew ← VOld +
StepSize* [Target − VOld]

1 1

TD target

TD Error

() () (() ()t t t t tV S V S R V S V Sα γ+ +← + + −




(8)

In TD learning, instead of computing the update
every step, we can postpone it after N steps. The
N-step return, in this case, is calculated as follows:

() 1

1 2 ... ()n n n
t t t t n t nG R R R V Rγ γ γ−

+ + + += + + + + (9)

N-Step TD formula becomes:

()() () [()]n

t t t tV S V S G V Sα← + − (10)

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

23Articles 23

In TD learning, we also integrate a neurologic phe-
nomenon called eligibility trace (ET), This RL mech-
anism uses a short-term memory that stores the steps
state-action history called traces. Those traces mark
the state as eligible for learning, reinforcing the event
that contributed to getting to the reward. It decays
gradually over time if the given state is not enough
visited. So, ET extends what the agent learned at t+1
also to previous states, by tracking where he has been
(prior states) and back-upping of reward for a longer
period, so to reinforce the most visited states and ac-
celerate learning.

Eligibility traces [1] implement a memory trace
that is usually an exponential function, with a decay
parameter. The three most known Eligibility traces
implementations are:
• Accumulating traces: accumulate each time the

state is visited, then fades away gradually when
the state is not visited.

1()
()

1()

if
1 if

t s t
t s

t s t

e s s
e

e s s

γλ

γλ
−

−

≠=  + =
 (11)

• Replacing traces: each time a state is visited, the
trace is reset to 1, regardless to present or prior
trace

1()
()

if
1 if
t s t

t s
t

e s s
e

s s

γλ − ≠= 
=

 (12)

• Dutch traces: intermediate between accumulating
and replacing traces, depending on the step-size
parameter a

1()
()

1()

if
(1) 1 if

t s t
t s

t s t

e s s
e

e s s

γλ

α γλ
−

−

≠=  − + =
(13)

et(s) is the eligibility trace function for state s and
time t, On each step, it decays by γl for all non-visited
states.

2.6. Q-learning
Q-learning [7] is an Off-Policy algorithm for

TD-Learning control (MDP environment) used in re-
inforcement learning. The learned action-value func-
tion Q approximates directly the optimal action-value
function Q*, regardless of the policy being followed.
One-step Q-learning is defined by (9):

1

1

(,) (,) {
[(,)] (,)}

t t t t t

a t t t

Q S A Q S A R
max Q S a Q S A

α
γ

+

+

← + +

− (14)

Q-learning combined with eligibility trace become
Q(l):

1

1

(,) (,) (,){
max [(,)] (,)}

t t t t t t

a t t t

Q S A Q S A e s a R
Q S a Q S A

α
γ

+

+

← + +

− (15)

With three known implementations of eligibility
trace [1] for Q(λ): Watkins Q(λ) (10) [8], Peng Q(λ)

which doesn’t distinct between exploratory and
greedy actions and Naï�ve Q(λ) which is similar to
Watkins’s method, except that the traces are not set
to zero on exploratory actions.

1

1

1 1

1 1

(,), if , ,
(,) 1, if (,) (,) and

(,)
(,) [(,)]

0, if (,) [(,)]

t t t

t t t
t

t t t a t t

t t t a t t

e s a s S s S a a
e s a s a S a

e s a
Q s a max Q s a

Q s a max Q s a

γλ
γλ

−

−

− −

− −

∀ ∈ ≠ ≠
 + ==  =
 ≠

2.7. SARSA
SARSA (State–Action–Reward–State–Action)[9] is

an on-Policy algorithm for TD-Learning control (MDP
environment) used in the reinforcement learning, it
learns an action-value function of [state, action] pairs
that depends on the quintuple (st, at, rt, st+1, at+1).

What makes the difference with Q-Learning, is that
with SARSA, the maximum reward for the next state
is not necessarily used for updating the Q-values; in-
stead, a new action (& reward), is selected using the
same policy that determined the original action:

 1 1 1

(,) (,)
[(,) (,)]

t t t t

t t t t t

Q S A Q S A
R Q S A Q S Aα γ+ + +

← +

+ − (17)

SARSA combined with eligibility trace become
SARSA(λ):

 1 1 1

(,) (,)
(,)[(,) (,)]

t t t t

t t t t t t

Q S A Q S A
e s a R Q S A Q S Aα γ+ + +

← +

+ − (18)

In SARSA, the policy π is updated at each visit
choosing the action with the highest state-action val-
ue argmaxaQ(st, at) making the policy greedy.

2.8. Actor-Critic
Actor-Critic (AC) algorithms were inspired by

neuroscience and animal learning [10], it’s a hybrid
control methods that combine the policy gradient
method and the value function method together. The
Actor-Critic algorithm (see Fig. 5) introduces a Crit-
ic that judges the actions of the actor. The Actor is
the source of high variance and the critic provides
low-variance feedback on the quality of the perfor-
mance, which balanced the equation. Adding the
Critic component reduces variance and higher the
likelihood of convergence of the policy gradient
methods.

Fig. 5. Actor-Critic Algorithm steps

(16)

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

24 Articles24

AC methods are considered part of TD methods
since the critic is an implementation of the TD(0) al-
gorithm and it is updated following the same rule:
• Actor: policy function, produces the action for

a given input “current state” s of the environment
• Critic: value function, criticizes the actions made

by the actor. Input information obtained through
sensors (state estimation), and it receives
rewards

2.9. RL limitations and Function approximator
In RL the value functions V(s) or Q(s,a) are rep-

resented by a state transition table (lookup table),
where every state s, has an entry V(s) or every
state-action pair (s,a) has an entry Q(s,a). When the
Markov decision process is large, we will have too
many states and actions to store in memory and it is
too slow to learn the value of each state individually.
For instance, in Computer Go, we use 106 parameters
to learn about 10170 positions[11], [12].

Instead of having a lookup table with explicit val-
ues for all the (state, action) space, the idea is to use
a function approximator like a neural network that
will replace this lookup table. Therefore, we will es-
timate value functions with function approximation
ˆ(,) ()V s w V sπ≈ or 1ˆ(,a,)q s w q≈ where π indicate the

neural network. The gain is that it allows generalizing
from seen states to unseen states and reuse reinforce-
ment learning framework (MC, TD learning,…) to up-
date the weights w [13].

With the breakthrough made in deep learning in
computer vision, we won’t be only using a Feed-for-
ward neural network to approximate the value func-
tions used in RL, but also a convolutional neural
network that allows to get ride off hand-engineered
visual features, and directly capture the environ-
ment visual state. Optionally, we can also use a recur-
rent neural network to keep in memory the relevant
events during the agent life cycle, which can help to
get an optimal experience.

3. Preliminary: Deep Learning
Deep learning is a branch of machine learning

based on deep (> 2 hidden layers) and wide (many
input/hidden neurons) neural networks, that model
high-level abstractions in data, based on an architec-
ture composed of multiple non-linear layers of neu-
rons. Each neuron of the hidden layers performs a lin-
ear combination of its inputs and applies a non-linear

function (Relu, Softmax, Sigmoid, tanh, …) to the result,
which allows neurons from the next layer to separate
classes with a curve (hypercurve/hyperplane) and no
more with a simple line (see Fig. 6), thus, hidden layers
learn hierarchical features. The deeper the layers, the
more complex the learned features are [14].

3.1. Backpropagation and Gradient Descent
Unlike machine learning where features are craft-

ed by hand, with deep learning, features are automat-
ically learned to be optimal for the task. To achieve the
process of learning, DL uses cost/loss function like
the mean square error MSE or Cross entropy CE (19):
• MSE Loss:

 1
2

ˆ[() ()]MSEL target y prediction y= −∑ (19)

• CE Loss: ˆ[() log(())]CEL target y prediction y= ∗∑

We use these losses to measure how well the neu-
ral network performs to map training examples to
correct output (in the classification case), and then
tweak his parameters (weights and biases) using
backpropagation processes based on gradient de-
scent (GD) optimization methods [15] that finds the
minimum error:
• Batch gradient descent: calculate gradient for

the entire training dataset to update parameters
• Stochastic gradient descent (SGD): calculate the

gradients for each training sample xi of the dataset
• Mini-batch gradient decent: tradeoff of the two

methods, mini-batch sizes range є [50, 256] (can
vary).

3.2. Learning Rate
Learning rate is a hyper-parameter used by GD

methods to control the adjustment rate of the net-
work’s weights with respect to the loss gradient. The
learning speed is slow when the rate is low, but can
diverge when the rate is too high, the most popular
learning rates are:
• Momentum [16]: accelerates SGD convergence in

the relevant direction while reducing oscillations,
by adding a parameter γ (usually 0,9) of the
updated vector of the previous step to the current
update vector.

 Vt = γ.Vt-1 + η.∇θ L(θ, xi) and θ = θ − Vt (20)

 where θ is the vector that represents the network’s
parameters and L is the loss function

• Adagrad [17]: adapts the learning rate to the
parameters, by making larger updates for
infrequent parameters (small historical gradients)
and smaller updates for frequent ones (bigger
historical gradients).

1, , ,

,
t i t i t i

t ii

g
G
ηθ θ+ = −
+

where

2

, ()
it i i

i

g Lθ θ = ∇ ∑

(21)

∋

Fig. 6. neural network learns to separate classes with
complex curves, thanks to the hierarchy of layers

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

25Articles 25

• RMSprop [18] (Root Mean Squared): is an
adaptive learning rate method, an extension of
Adagrad proposed by Geoffrey Hinton (γ = 0.9 ,
η = 0.01)

1, 2[]

t i t t

t

g
E g

ηθ θ+ = −
+

,

2 2 2

1[] [] (1)t t tE g E g gγ γ−= + − (22)

• Adadelta [19]: is an improvement of Adagrad
that prevent learning rate from convergence to
zero with time. It restricts the accumulated past
gradients to only a recent time window of fixed
size.

2

1 2
t

t t t

t

E
g

E g

θ
θ θ+

 ∆ + = −
  + 

,

2 2 2

1[] [] (1)t t tE g E g gγ γ−= + − ,

2 2 2

1[] [] (1)t t tE Eθ γ θ γ θ−∆ = ∆ + − ∆ (23)

• Adam [20] (Adaptive Moment Estimation):
computes adaptive learning rates for each
parameter. It keeps an exponentially decaying
average of past gradients ()1 1 11t t tm m gβ β−= + − ,
similar to momentum. It stores both exponentially
decaying average of past gradients and squared
gradients like Adadelta.

2

1 2
t

t t t

t

E
g

E g

θ
θ θ+

 ∆ + = −
  + 

,

2 2 2

1[] [] (1)t t tE g E g gγ γ−= + − ,

2 2 2

1[] [] (1)t t tE Eθ γ θ γ θ−∆ = ∆ + − ∆ (24)

3.3. Hyper-Parameters Optimization
For DL, Hyper-parameters include the number of

layers, the size of each layer, nonlinearity functions,
weights initialization, decay term, learning rate, loss
function, and input batch size. Optimization is done by
measuring performance on independent data set and
choose the optimal ones that maximize this measure,
Most known Optimization algorithms are Grid search,
Random search [21], Bayesian optimization [22], Gra-
dient-based optimization [23], Genetic algorithms.

3.4. Neural Networks and Overfitting
Neural networks fight overfitting by applying com-

monly used approaches like validation data, data aug-
mentation or early stopping (during training phase),
in addition, it uses two main methods that became
widespread:
• Dropout method applied at every forward pass

during the training process, by randomly dropping
nodes and their connections from hidden or input
layers (with the same probability), which prevent

∋

∋

∋

∋

∋

the network from becoming sensitive to the
weights of nodes and make it more robust.

• Regularization using batch normalization that
normalizes the inputs of each layer before applying
the activation function, in order to have a mean
output activation of zero and standard deviation
of one.

3.5. Neural Networks Main Types
In this section, we will give a brief outline of three

types of DL used in DRL: feed-forward neural net-
work, convolutional neural network, and recurrent
neural network, to introduce thereafter, in the next
section, the deep reinforcement learning concepts.

3.5.1. Feed-forward Neural Network
A feedforward neural network [24] (Multilayer

Perceptron) is a non-linear artificial neural network
where the information moves in only one direction,
it solves classification problems and is composed of
three main parts: the input layer, N hidden layers, and
an output layer. Each layer can contain a given num-
ber of neurons. Neurons of hidden & output layers use
non-linear activation function, to distinguish data
that is not linearly separable, for this purpose, we use
mainly Relu or sigmoid functions. The learning is car-
ried out through minimization of the loss function,
using cross-entropy or mean square error functions.
An appropriate decaying learning rate is used to avoid
local minima issues and backpropagation of the er-
ror to change connection weights using gradient
descent algorithm (most of time Stochastic gradient
descent or Mini-batch gradient descent) in a way to
get the best fit values of those weights that will lead to
an optimal error.

3.5.2. Convolutional Neural Network
Convolutional neural network (CNN, or ConvNet)

[25], [26] is a class of deep feed-forward artificial neu-
ral network that has successfully been applied to ana-
lyzing visual imagery. CNN is used in supervised learn-
ing for classification and object recognition/detection
purposes, in unsupervised learning for image com-
pression and image segmentation, and finally as visual
features extractor in deep reinforcement learning.

CNN is composed of four basic components :
• Convolutional layers: the layer is no more fully

connected like in feed-forward nets, instead, it
learns 2D square-shaped matrix of neurons called
filters (or kernels, Eg. 9 neurons for a kernel of
3×3 pixels), that scans the whole image searching
for a pattern (localized feature), by applying
effects such as blurring, sharpening, outlining,
embossing, etc., to extract visual features. Each
neuron of a kernel in the hidden layer will be
connected to a small region (E.g. 3×3 pixels) of
the input image (Ex. 200×200 pixels) given by the
previous layer, called the local receptive field.
Each kernel leverage these ideas :
– 2D Convolution: Convolution is an image

processing operation that is a weighted
multiplication between the image matrix

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

26 Articles26

representation i with the kernel’s matrix (filter
k of size Nk*Nk) to extract visual features from
the image, by generating an output image iconv
called feature map:

1 1

0 0

,

(,)* (,)

()
k k

k k

conv
N N

k k k kx y

i x y

i x x y y k x y− −

= =

=

− −∑ ∑
(25)

 Two additional parameters for 2D convolution:
o Zero Padding: Put zeros on the image

border to allow the convolutional output
size to be the same as the input size image.

o Strides: How many pixels the kernel
window will slide at each step while
scanning the image.

Fig. 7. Feature maps are the result of the convolution
of two matrices (image and kernel)

– Parameter sharing: neurons of the same
kernel share the same weights

– Local connectivity: each input neuron in
kernels only receives input from a small local
group of the pixels in the input image called
local receptive field by Cutting connections
to the other pixels. input neurons represent
overlapping receptive fields that form
a complete map of visual space.

– Feature extraction: each kernel can detect
just a single kind of localized feature. So, if we
want to look for 10 different patterns we must
have 10 kernels in the convolutional layer, each
one looking for a particular pattern on the
image.

– Hierarchical features learning: inspired by
the organization of the animal visual cortex,
multi-convolutional layers network allow to
learn hierarchical visual features, the deeper
is the layer, the more complex is the detected
feature.

• Pooling layers: are used immediately after
convolutional layers to shrink the output image
using non-linear down-sampling and add to some

amount of translation invariance. For instance,
each unit of pooling layer summarizes a region
of N×N neurons in the previous layer (ex. 3×3).
There are several implementations of pooling like
Average pooling which calculates the average value
of the N×N matrix and Max-pooling (26) which is
the most common and takes the max value of the
N×N matrix and Mixed Pooling.

 max (,) , ((ax ,) m)pool x y region NxNi x y i x y− ∈=

(26)

 No learning takes place on the pooling layers. With
back-propagation, only convolutional layers are
concerned and we do not use pooling when we
want to “learn” some object specific positions like
in reinforcement learning.

• Fully connected layer: is a normal feed-forward
network layer that makes the connection between
each input dimension (pixel location) and each
output class, mixes signals received from feature
learning layers and decides on classification based
on the whole image

• Normalization layer: apply batch normalization
[27] on input and hidden layers to rescale the

input data ˆ ()
()

x E x
Var x

x −
= , which helps to avoid

vanishing/exploding gradient descent problem
and to have deeper a network.

3.5.3. CNN Improvements and CapsNet
The first functional Conv net was Lenet [28] im-

plemented by Yann Lecun in 2006. Then came the
AlexNet [29] in 2012 a deeper and much wider ver-
sion (5 Convolutional + 3 Maxpooling + 3 Fully -con-
nected) of the LeNet, which integrate RELU (Rec-
tified Linear Unit) activation function and Reduce
the over-fitting, by using a Dropout layer after every
FC layer. In 2014 VGGNET [30] adapts more layers
(16 Convolutional + 5 Maxpooling + 3 Fully -connect-
ed) and lower dimension for convolution filters are
3×3 (instead of Instead of the 9×9 or 11×11 filters for
AlexNet).

In the same year, Google came out with GoogLeNet
(22 Convolutional layers) [31], which reuses 1x1 con-
volutions, introduced by NiN [32] to perform dimen-
sionality reduction, and bring in the new concept of
inception module (see Fig. 8), which allow CNN net-
work to use many kernels dimensions (5×5, 3×3, 1×1)

Fig. 8. Inception module

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

27Articles 27

and pooling methods in the same layer and choosing
itself the best filter through backpropagation process.

In 2015, ResNets [33] launched by Microsoft al-
lows deeper neural networks (152 convolutional lay-
ers) by adding Identity connections to the traditional
neural network, every two convolutional layers. The
layers can start as the identity function and gradually
transform to be more complex and more efficient.

Even if CNN has made a great breakthrough in the
computer vision domain, some drawbacks remain:
• Orientation and relative spatial relationships

between hierarchical features are not important,
for example, the two representations below are
both faces.

• Pooling layers don’t have learnable parameters
that learn how to pool in a dynamic way, that
predict which low-level features (ex. nose, eyes,
mouth) would be routed to the higher level
features (ex. face).

• Training needs a large amount of data to reach an
acceptable accuracy.
Capsule network [35] came as a solution to solve

these problems with an architecture composed from
an Encoder (1 Conv + 2 Capsule layers) and decoder
(3 FC), and the use of two principles :
• Activity vector & Equivariance: neuron are

replaced by capsules (a group of neurons) and
activity vector for object detection with additional
equivariant features (orientation, lighting, …).
Changes in object position lead to changes in the
orientation, without any change in vector length
and probability.

• Dynamic routing: It replaces max pooling by
adding an intermediate level a weight matrix Wij,
that learns how to pool using dynamic routing of
the capsule of layer N to the appropriate parent
in the layer N+1, and encodes the relationship
between the input features ui to get their predicted
position relative to each other. The higher level
capsules combine objects parts and encode their
relative positions, so an object can be accurately
detected not only from the presence of the parts
but also their right locations.

Fig. 9. The two figures are the same for CNN

3.5.4. Recurrent Neural Network
RNN is a deep network that extracts temporal fea-

tures while processing sequences of inputs like text,
audio or video. It’s used when we need history/con-
text to be able to provide the output based on previ-

ous inputs, like for video tracking, Image captioning,
Speech-to-text, Translation, Stock forecasting, etc.

RNN neuron uses its internal memory to maintain
information about the previous inputs and update the
hidden states accordingly, which allows them to make
predictions for every element of a sequence.

RNN maintain a state vector st = g (xt ,xt-1, xt-2, …,
x2; x1) that contains data features with the history of
all previous input sequences.

RNN can be converted into a feedforward network
by unfolding it over the time to many layers that share
the same weights W:

 1() and ()t t t ts Ux Ws o g Vsσ −= + = (27)

xt: input at time t
st: hidden state at time t (memory of the network)
f: is an activation function (e.g, tanh() and ReLUs)
U, V, W: network parameters (same across time)
g: activation function for the output layer (softmax)

Fig. 10. RNN Cell unfolded

RNNs can learn to use the past information when
the context is small, as that gap grows, RNNs become
unable to learn to connect the information, due to
Vanishing and Exploding gradient problem.

LSTM (LONG SHORT-TERM MEMORY) [36], [37] is
a variant of RNN, that came with a solution, by replac-
ing simple RNN node by a complex cell composed of
4 layers, which allow to remove or add information
to the cell state, judiciously regulated by three gates
that conditionally decides what information to keep,
what information to update, and what information to
throw away:
• Input Gate: selectively update cell state values by

adding information about the new input.
• Forget gate: forget irrelevant parts of previous

states, depending on the relevance of the stored
information.

• Output Gate: select information from the current
cell state and show it out.

Fig. 11. RNN Cell vs LSTM Cell

3.5.5. Transfer Learning for Deep Learning
Transfer learning [38], [39] (TL) is the ability of

a system to apply knowledge and skills learned in pre-
vious tasks to novel tasks in new domains. In DL, we
reuse pre-trained models as a starting initialization for

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

28 Articles28

new models to speed up training phase, which become
a tuning phase where the new model is refined on the
input-output pair data available for the new task.

The TL process tends to work if the features are
general and both original and target tasks are not too
far. For CNN, in case training data of the new model is
similar to pre-trained model data, so all CNN Layers
are fixed and only the FC layers are trained, otherwise,
only lower CNN Layers that contain basic features are
fixed and higher CNN layers and FC layers are trained
on the new model dataset.

3.6. Deep Learning Challenges
Even if Deep Learning has made great steps, it al-

ways requires large dataset, hence long training period
and big clusters of CPUs and GPUs (graphics process-
ing units). Moreover, the learned features are often
difficult to understand. In addition, we have to pay
attention to overfitting, notably, when the number of
parameters greatly exceeds the number of independ-
ent observations. Finally, DL is sensitive to what we call
adversarial attacks, when small variations in the input
data, leads to radically different outcomes, causing
a lack of robustness and making them unstable.

4. Deep Reinforcement Learning: Literature
Review

As seen in paragraph III, traditional reinforcement
learning use lookup table to store states and actions,
which is too slow, since it learns the value of each state
individually, and it is memory consuming, especially
when we deal with large or infinite problems, and
this is due to what Richard Bellman called the curse
of dimensionality. The solution is to estimate value
function using differentiable function approximators,
trained using reinforcement learning algorithm.

By leveraging deep learning algorithms, especial-
ly, convolutional neural networks, it became possible
for RL algorithm not only act but to be totally auton-
omous and learn to see and act, a new technology is
born called Deep Reinforcement Learning (DRL) (see
DL, RL and DRL Timeline Fig. 12).

We have three main types of DRL algorithms:
• Value optimization: the algorithm optimizes the

Value function V or Q, or the advantage function A.
• Policy optimization: the algorithm optimizes

the policy directly function π(θ) representing the
neural network.

• Actor-critic incorporates the advantages of each
of the above, by learning value function with
Implicit policy:
– Policy gradient component “Actor” which

calculates policy gradients
– Value function component “Critic” that

observes the performance of the actor and
decides when the policy needs to be updated
and which action should be preferred

In the following section, we will have an outline
on the Value optimization and Actor-critic algorithms
(see Fig. 13), and try to understand their mechanisms
and functioning.

Fig. 12. DL, RL and DRL Timeline

Fig. 13. Deep Reinforcement Learning algorithms

4.1. Value Optimization Algorithms

4.1.1. Deep Q-Learning (DQN in detail)
Deep Q Learning [4] is the first application of

Q-learning to deep learning, performed by Google
DeepMind in 2015, it succeeded to play 2600 Atari
games at expert human level. DQN is a concentrate of
technologies that uses many tips and tricks:
• Tricky Architecture network: in the standard

Q-learning algorithm, the input is composed of
the state s and the action a, which will require
a separate forward pass to compute Q-value Q(ai)
of each action ai. Instead, we will use the state s as
the only input, with as many outputs as possible
actions ai. Therefore, the network will generate
a Q-value probability for each available action,
immediately with a single forward pass.

• The neural network as a function approximator:
three convolutional layers to detect visual features
and to learn a hierarchical representation of the
state space + two fully connected layers to estimate
Q values from images, pooling layers is not used in
DQN because we want CNN to be sensitive to the
location of objects in the image.

• 3D convolution: process a 2D convolution of the
four frames of the input, then average them all.
Frame skipping [40] (see Fig. 14): as an initial

input we have a video stream of 30 screenshots/s
210×160×3 pixels of 128 colors, which we crop, shrink
and turn into greyscale to have 84×84. But, process-
ing all the 30 image/s of the video stream is not really
relevant and also needs more computation and time,
so the trick is to take only 2 consecutive frames frame
of each N frame and skip the others, and for these 2

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

29Articles 29

frames we apply the component-wise maximum func-
tion to get 1 frame: FrCW (i,j)=max(Fr1(i,j), Fr2(i,j))

Fig. 14. image processing of the input video, before
feeding the DQN

• Phi length parameter: to help the network to
Detect the motion and catch speed information, we
stack a number of frames “Phi length” of a history
to produce the input of the DQN network, most of
time Phi length = 4 or 5.

• Target Network (see Fig. 15): at every training
step, the DQN’s values must shift due to
backpropagation that changes the network’s
weights, but shifting constantly the set of values
to adjust the network will destabilize it, which will
fall into feedback loops between the target and
estimated Q-values. The idea is to use a separate
network to estimate the target-Q values that will
be used to compute the loss for every action:

1

1

(,) (,) {
 [max (,) (] ,)}

t t t t t

a t t t

Q S A Q S A R
Q S a Q S A

α
γ

+

+ −

← + +

2

1 1
1 { max [(,)] (,)}
2MSE t a t t tL R Q S a Q S Aγ+ += + −

(28)

This target network has the same architecture as
the function approximator but with fixed weights,
every T steps (ex. 1000), weights from the Q network
are copied to the target network, which provides
more stability to the DQN. An improvement of this up-
date has been applied by using “soft” target updates
[41], rather than directly copying weights, Target
network weights slowly track the learned networks:
θ ← τθ + (1 − τ)θ’ with τ << 1.
• Action Repetition: define the granularity at

which agents can control gameplay, by repeatedly
executing a chosen action A for a fixed number
of time steps k (instead of every frame), the last
action is repeated on skipped frames. Computing
the action once every k time steps and hence
operate at higher speeds, thus achieving real-time
performance. Two modes can be used, Static frame
skip rate where Action output from the network is
repeated for a fixed number of frames regardless of
the current state, and Dynamic Frame skip which

is an improvement [42] of the first mode which
makes the frame skip rate a dynamic learnable
parameter, choose the number of times an action
is to be repeated based on the current state.

• Clipping Rewards [–1, 1]: due to the high variance
of score from game to game in ATARI, all positive
rewards are fixed to 1 and all negative rewards
to −1, leaving 0 rewards unchanged, this technic
limits the scale of the error derivatives and makes
it easier to use the same learning rate across
multiple games, but the major drawback is that
Agent doesn’t differentiate between rewards of
different magnitude.

• Experience replay: DQN suffers from 2 main
problems, the first is that in online learning, data
are not i.i.d, samples frames arrive in the order,
so they are highly correlated, which leads the
network to overfitting and failure to generalize
properly, the second concern Catastrophic
interference [43] where Neural Network
abruptly forgets what was previously learned
when learning new things. To address those
issues, instead of learning online, by updating
Network from the last transition, we store agent
experience (st,at,rt,st+1) in replay memory D, then
we train our network on random mini-batch of
transitions (s, a, r, s′) as input, which are sampled
from the replay memory D. Experience replay
break Similarity of subsequent training samples
that might drive the network into a local minimum
and solves the challenge of ‘data correlation’ and
‘non-stationary data distributions.

• No-ops vs human starts: two modes are possible
to initialize and populate the Experience replay
memory: First, we have the no-ops mode, where
actions are provided randomly at the beginning,
until the Memory Replay is full enough to sample
from it, and second, we have the human start mode,
where actions are provided by a human user at the
beginning (an expert), until the Memory Replay is
full enough to sample from it. This last mode gives
the network a more efficient initialization that
helps to accelerate learning.

• Actions Selection: for Exploration vs Exploitation
dilemma, DQN uses ε-greedy Approach which forces
the non-greedy actions to be tried (exploration)
with no preference for nearly greedy or particularly
uncertain ones (chooses equally among all actions).
ε is the probability of exploration (typically
5 or 10%). Most of the times ε decay through
time, example: (). t

min max min e λε ε ε ε −= + − , where
l controls the speed of decay.

Fig. 15. DQN global architecture

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

30 Articles30

4.1.2. GORILA
GoRiLa [44] is a General Reinforcement Learning

architecture and a massively distributed and paral-
lelized version of the DQN algorithm, achieved by in-
troducing parallelization along three axes:
• Actors: Gorila supports Nact actors operating

in parallel on Nact instantiations of the same
environment. Each actor’s experience can be
stored in local/global memory.

• Learners: Gorila supports Nlearn concurrent
learners sample experience from the local or
global store. Learners apply RL (DQN) to a replica
of Q-network to generate gradient gi that updates
master Q-net

• Parameter server: Nparam master nodes Servers
maintains a distributed Q-net(θ) splitted across the
Nparam servers, they receive learner’s gradient &
applies appropriate updates to the subset of θ and
periodically sends an updated copy of the Q-net to
each learner.

4.1.3. Deep Recurrent Q-Network(DQRN)
DQRN [45]: A DQN agent can only see its closest

area. by augmenting DQN with Recurrent neural nets
and replacing DQN’s last fully connected layer with
recurrent LSTM layer of the same dimension, DRQN
agent remembers the bigger picture and where things
are, in fact, LSTM provides a selective memory of past
game states allowing to improve the agent experience
and efficiency. With this LSTM layer, the agent re-
ceives only one frame at once from the environment,
and thanks to the hidden state of the LSTM, it can
change its output depending on the temporal pattern
of observations it receives.

4.1.4. Double DQN
Double DQN [46]: Being very noisy, DQN tends to

overestimate action values as the training progress-
es. Due to the max term in the Bellman equation, the
highest positive error is selected and this value is
subsequently propagated further to other states. To
overcome this issue, Double DQN uses two function
approximators, Network QA and Network QB, one
for selecting the best action and the other for calcu-
lating the value of this action; the two networks are
symmetrically updated by switching their roles after
each training step of the algorithm (see Fig. 16). By
decoupling the maximizing action from its value, we
can eliminate the maximization bias.

Fig. 16. Double DQN use 2 Networks QA and QB that
switch their roles after each training step

4.1.5. Prioritized Experience Replay (PER)
PER [47]: Neuroscience has shown that the brain

“replays” the past experience during awake resting

or sleep, and more frequently sequences which are
linked to the reward and to unexpected transition that
have largest TD-error which have the highest oppor-
tunity of learning progress. PER increase the replay
probability of transitions with the highest |TD-er-
rors|, by changing the sampling distribution, and then
store experience in priority queue ranked using the
criterion TD-error.

4.1.6. Dueling DQN
Dueling DQN [48]: the goal is to produce sep-

arate estimations of state value V(s) which shows
how good it is to be in any given state and advantage
A(s,a), which shows much better it is, taking a certain
action a in a state s, than was expected on average
(see Fig.17). To achieve it, we use a single Q-net with
2 streams V and A (see Fig. 18). This decomposition
allows a more robust estimate of state value by de-
coupling it from the necessity of being attached to
specific actions. Dueling reuse also the Double DQN
and PER principles.

Fig. 17. The relation between the Action-value Q(s,a),
the state value V(s) and the Advantage A(s,a)

Fig. 18. Dueling DQN architecture

4.1.7. Noisy Nets for Exploration
Noisy Nets for Exploration [49]: for tackling Ex-

ploration/Exploitation dilemma in RL, there are two
most commonly used ways, either we introduce a de-
caying randomness in the choice of the action (ex. Ep-
silon greedy), or we punish our model for being too
certain in its actions (ex. Softmax with temperature
parameter τ), this 2 methods have their drawbacks,
since they need to be adjusted to the environment and
don’t take into account the current situation agent is
experiencing. Noisy Nets came with a 3rd approach,
by introducing a Gaussian noise function (σ,μ) that
perturbs the last (fully-connected) layers of the net-
work, with 2 ways:
• Independent Gaussian Noise: every weight of

noisy layer is independent and has its own µ and
σ, learned by the model.

• Factorised Gaussian Noise: we multiply 2 noise
vectors, which respectively have the length of the
input and output of the noisy layer, the result is
used as a random matrix, which is added to the
weights.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

31Articles 31

4.1.8. Rainbow
RAINBOW [50] is made by combining the following

Improvements in Deep Reinforcement Learning, Dou-
ble Q-learning, Prioritized replay, Dueling networks,
Multi-step learning, Distributional RL and Noisy Nets.
A ranking based on the degree of influence that has
been made, by removing elements one by one from
Rainbow. Experience shows that Prioritized replay
and multi-step learning were the two most crucial
components of Rainbow. Removing either component
caused a large drop in performance. Then comes, the
distributional Q-learning ranked immediately below,
but have no influence on early learning stage. In the
third place, we have Noisy nets and dueling network
and double Q-learning that haven’t much significant
impact on the whole model.

 Prioritized replay > Multistep >> Distributional
 > Noisy Nets >> dueling net > double DQN

4.2. Policy Optimization Algorithms
(Actor-Critic)

Policy optimization is RL techniques that aim to
optimize a parameterized policies π(θ), represent-
ed by a neural network, with respect to the expected
return by using 1st or 2nd order optimization meth-
ods.

For Neural networks, gradient descent methods
applied to the loss function, based on first order ap-
proximation, and used to update weights through
backpropagation, reached their limits in term of per-
formance. Optimization methods using Newton meth-
ods with second-order Taylor polynomial as a better
approximation of the loss function and adopting var-
ious approximation of the Hessian H are explored as
an alternative for more improvements (28):

1() () () ()
2

T T
k k k kL B L Lθ δ δ θ δ θ δ θ+ = +∇ +

(28)

where B is an approximation of the hessian.
However, the calculation of the Hessian approxi-

mation (Generalized Gauss-Newton matrix, Fisher
information matrix, Hessian-free, …) remain complex
and time-consuming, especially for high dimension
space environment.

The use of second-order optimizers like with Nat-
ural gradient descent algorithm, significantly reduces
the number of iterations, with the high-quality curva-
ture matrices, it passes from ~102 iterations, instead
of 104 iterations with SGD (stochastic gradient de-
scent).

In the following section, we will have an overview
of seven algorithms, of which five are first order: A3C,
UNREAL, DDPG, PPO and ACER and two are second
order: TRPO and ACKTR.

4.2.1. Advantage Asynchronous Actor-Critic Agents (A3C)
Advantage Asynchronous Actor-Critic Agents

(A3C) [51] is a DRL algorithm that relies on the fol-
lowing principles:

• Asynchronous: by reusing Gorila parallelization
and running multiple agents in parallel (see
Fig. 19), each with its own copy of the environment,
so their experiences are diverse, independent and
not correlated, as result, we don’t need experience
replay memory anymore.

Fig. 19. A3C network architecture

• Generalized Advantage Estimation GAE [52]:
by reusing Duel DQN principal, since we won’t be
determining the Q values directly in A3C, we use
the discounted returns R as an estimate of Q(s,a) to
allow us to generate an estimate of the advantage:
R = r + γV(s’) ~ Q(s,a) à A(s,a) = Q(s,a) – V(s)= r
+ γV(s’) – V(s), and using GAE to reduce variance,
by taking exponentially weighted average λ:

()

1

0

ˆ () ()
n

k n
t k t n t

k

n
t r V s V sA γ γ

−

+ +
=

= + −∑

and

2(1) (2) ()ˆ ˆ ˆˆ ˆn

t t tA A Aλ λ= + + + …= +t ttA Aλ λδ γλ +1 (29)

• Exploration: H is the entropy of the policy π is
used as a mean of to improving exploration,
by encouraging the model to be conservative
regarding its sureness of the correct action:
Hentropy(π) = -Σ(P(x) log(P(x)). H is the entropy
of the policy π, which reflect the spread of action
probabilities, the entropy will be high when we
have similar probabilities, and will be low when
we have a single action with a large probability.

• Actor-critic: Each agent is sharing two networks:
the Critic Net evaluates the present states using
the value function V(s), while the Actor Net
evaluates the possible values in the present state
to make decisions using π(s). The global loss
includes 2 parts: the value loss related to the
predictions of the critic and the policy loss (which
include H entropy) related to the predictions of
the actor. The policy loss then combine the 2 loss
in the Global Loss, with Lvalue is set to 50% to make
policy learning faster than value learning:

 Hentropy(π) = -Σ(P(x) log(P(x)), Lvalue = Σ(R – V(s))²
 and Lpolicy = -log(π(a|s)) * A(s) – β*H(π)

 1
2global value policyL L L= − = 0.5 * Σ(R — V(s))²

 – log(π(a | s)) * A(s) - β*H(π(a | s)) (30)

These two losses will be backpropagated into the
neural network, and then reduced with an optimizer
through stochastic gradient descent.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

32 Articles32

4.2.2. Umsupervised Reinforcement and Auxiliary
Learning (UNREAL)

UNSUPERVISED Reinforcement and AUXILIARY
Learning (UNREAL) [53]: the idea is to augment the
on-policy A3C with off-policy auxiliary tasks to learn
a better representation without influencing directly
the main policy control. These tasks share the same
network parameters [CNN, FC, LSTM], but with differ-
ent outputs.

The network is composed of 4 modules of which
A3C is the main one:
• A3C Module: is the main on-policy module that

feeds the Experience replay memory, from which
the auxiliary tasks get their inputs.

• Pixel Control Module: it learns how your actions
affect what you will see rather than just prediction,
to change different parts of the screen, and how to
control the environment. It’s based on the idea that
changes in the perceptual stream often correspond
to important events in an environment. Auxiliary
policies Qaux produced using Deconvolutional
[54] neural network (which was used first for
image segmentation), are trained to maximize the
change in pixel intensity of different regions of

input. Auxiliary control loss

()c
PC Q

c

L L=∑

• Reward Prediction Module: learn to predict
future reward based on rewarding histories.
Auxiliary reward prediction loss LRP is optimized
from rebalanced replay data.

• Value Function Replay: predicts the n-step return
from the current state to promote faster value
iteration. Replayed value loss LVR is optimized
from replayed data. A global loss function:

 3UNREAL A C VR VR PC PC RP RPL L L L Lλ λ λ= + + + (30)

With lVR, lPC, lRP are weighting terms on the indi-
vidual loss components.

Fig. 20. UNREAL network architecture

4.2.3. Deep Deterministic Policy Gradients (DDPG)
DDPG (Deep Deterministic Policy Gradients)

[41] is an actor-critic, off-policy gradient RL algo-
rithm for continuous action space. It uses two neu-
ral networks, one for the critic and one for the actor
which compute action predictions for the current

state and minimize separately their two losses LActor
and LCritic and follow Estimates a deterministic tar-
get policy. DDGP re-use DQN tricks:
• Experience replay buffer to solve the issue

related to correlated data
• Target Network, make copies (Q’,µ’) of the Actor

and Critic networks (Q,µ)and soft updates to enable
training stability: . (1) andQ Q Q µθ τ θ τ θ θ′ ′ ′← + −

. (1) with 1µ µτ θ τ θ τ′← + − 

• Exploration by adding noise to actor actions
Exploration() ()t t ts s Nθµ µ= + .

Even if DDPG has shown good performance but it
needs to tweak the step size manually, so as to fall into
the right range (too small → slow – too large → over-
whelmed by the noise, bad performance).

Fig. 21. DDPG network architecture

4.2.4. ACER (Actor-Critic with Experience Replay)
ACER [55]: is a model-free, off-policy, Asynchro-

nous multi-agent, continuous control algorithm with
actor-critic architecture. It is the off-policy counter-
part of the A3C, with the addition of Experience re-
play memory. ACER uses the Retrace(λ) [56], which
is an off-policy, Multi-step, value-based RL algorithm
that reweights samples with a truncated importance

sampling coefficient
(|)

1,
(|)

s s
s

s s

a x
C min

a x
π

λ
µ

 
=  

 
 to esti-

mate Qπ, and thus, ensure low variance and safe ef-
ficient updates :

 ()()

1

0 1

1

() ()

)
)

()

, ,

(|

(

,
(|

,. ,)

k k

t k s s
k t s t

k s s

t k t k t t

Q x a Q x a

a x
a x

r E Q x Q x aπ

π
α γ λ

µ

γ

+

≥ ≤ ≤

+

= +

 
× 

 
+ −

∏∑ min 1

(31)

4.2.5. TRPO (Trust Region Policy Optimization)
TRPO [57] is a model-free, on-policy, continuous

control algorithm that works for both discrete and
continuous action space with actor-critic architec-
ture. TRPO doesn’t support including noise (e.g.drop-
out) or parameter sharing (between policy and value
function, or auxiliary tasks). TRPO use natural gradi-
ent algorithm [58] to choose automatically the right
step to apply for updating the policy network, which
was done manually in DDPG.

TRPO uses an objective function
0 0, , 0

((() ,))
old

t
old s a t tt

E A s aθ θ πη π η π γ∞

… =
 = +  ∑

0 0, , 0
((() ,))

old

t
old s a t tt

E A s aθ θ πη π η π γ∞

… =
 = +  ∑ , which is the expected re-

turn of policy π in terms of the advantage Aπ over the
old policy πold, and with MM algorithm principle,
TRPO create and try to maximize a surrogate function
L(π) which is a local first order approximation of η(πθ)

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

33Articles 33

with an importance sampling term
()
()
|
|old

s a
s a

θ

θ

π
π

to re-
duce variance.

The objective function is optimized when the sur-
rogate function is optimized.

|
() (|)

|
()
()

old

old
old

s a
L E A s a

s a
θπθ

θ π
θ

π
π

π
 

=  
 

 ()| ()|
old old

Lθ θ θ θ θ θπ η π∇ =∇
(32)

Maximize L(πθ) under :

() (), log()

()
old

old oldKL θ θ θπ π π δ
 

= ≤  
 

∑

 (33)

So that the approximation remains valid and also
avoid dramatic decrease in performance due to large
changes from the previous policy, TRPO limits the size
of the update step of the policy network’s parameters,
by applying KL divergence constraint, that measures
the average distance between output distribution of
the old policy network oldθπ and new policy network

θπ . KL constrain keep the step size within a “trust
region” defined by δ, and allows modifying network
parameters unequally, each one changes according
to how much it affects the net output distribution re-
garding the KL constrain. So, KL divergence between
the two networks will be as high as the difference be-
tween the outputs probabilities.

() ()

() ()

()

 , ,

log

old

old

old

KLMaximize L under Dθ θ θπ π π

π δ
 

≤  
 

∑

(34)

By using the 2nd order Taylor series approxima-

tion for the KL divergence : ,)
2

(1 T
KLD θ θ θπ π θ θ+∆ ≈ ∆ ∆F ,

with F, is the fisher information matrix (FIM) as the
Hessian, and the 1st order Taylor series of L(πθ) is

() () (). ()old old oldL L Lθ θ θ θ θ≈ + − ∇ . So we a have a con-
strained problem to optimize, and then we turning it
to an unconstrained one using Lagrangian multipliers
method:

 ((. ()))old old oldL Lθ θ θ θ+ − ∇ and

)(

2
)1 (T

old oldθ θ θ θ δ− − ≤F

1() (). () () ()
2

T
old old oldL Lθ θ θ θ λ θ θ θ θ+ − ∇ + − −F

(35)

To minimize the quadratic function, we use con-
jugate gradient algorithm (CG) that allows to approx-
imately solve the equation without forming the full
FIM matrix, followed by a line search.

11() 0 () ()old old oldL Lθ λ θ θ θ θ θ

λ
−∇ + ∆ = ⇒ = − ∇F F

11 () . ()

oldnew old old Lθ θ θθ θ θ π
λ

−= + ∇F

(36)

TRPO resolved the step size problem but suffers
from its extremely complicated computation and im-
plementation, especially with FIM and CG.

4.2.6. PPO & PPO2 (Proximal Policy Optimization)
PPO & PPO2 [59] get rid of the computations in

TRPO created by KL divergence constraint during the
optimization process, as it proposes a new surrogate
objective function LCLIP(θ) by clipping the probability
ratio rt(θ), which removes the incentive for moving rt
outside of the interval [1 − ε, 1 + ε], it modifies TRPO’s
objective function by adding a penalty that sanction
large policy updates :

min(, [,1 ,1]ˆ ˆ ,

|
wit

() () ()

()
()

h
|

CLIP
t t t t t

t t

old t t

A AL E r clip r

a s
r

a sθ

θ
π

θ

θ θ θ ε ε

π
π

 = − + 

=

PPO switch between sampling data from the poli-
cy and performing several epochs of optimization on
the sampled data, while optimizing the policy.

PPO2 is the GPU-enabled implementation of PPO
that runs roughly 3X faster than the original version
of PPO.

4.2.7. ACKTR (Kronecker-Factored Approximation)
ACKTR [60] uses Natural gradient with K-FAC

applied on the whole network (convolution layers
and fully connected layers) [61], [62], which is a so-
phisticated approximation to the Fisher information
matrix used in TRPO, to optimize both the actor and
the critic. Combined with A2C architecture, where the
two networks, Actor and Critic, share lower-layer rep-
resentations but have distinct output layers to avoid
instability during the training.
• Actor: use natural gradient with KL divergence

constrain to update the network within a trusted
region, adopting the same approach of TRPO with
Fisher matrix, conjugate gradient, and line search.
The K-FAC.

• Critic: least-squares loss using Gauss-Newton
second-order approximation, the Gauss-Newton
matrix G = E[JT J] where J is the Jacobian of the
loss, is a positive semi-definite approximation of
the Hessian and is equivalent to the Fisher matrix
which allows applying K-FAC to the critic as well.
A correction is used for the inaccuracies of the lo-

cal quadratic approximation of the objective, by add-
ing (λ + η)I a Tikhonov damping term to the curvature
matrix FIM, before multiplying −∇L by its inverse,
which corresponds to imposing a spherical trust-re-
gion on the update.

Be a hidden layer k : si = Wiai–1, and ai = fact(si) fish-
er matrix for this layer under the approximation that
activations and derivative are independent :

(37)

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

34 Articles34

()(), ,

() () ([][])

j ji j i j
ij i j i i

T T
j j s s

i i

L L L LF E E a a
w w s s

L LE a a E E aa E L L
s s

′′ ′
′ ′ ′

′
′

   ∂ ∂ ∂ ∂
= = ≈    ∂ ∂ ∂ ∂  
 ∂ ∂

= ⊗ ∇ ∇ ∂ ∂ 
(38)

With 1 Cov(), covk k
La
s−

∂ Ω = Γ =  ∂ 
, in Kronecker

vectorized form 1k k kF −= ⊗Ω Γ . In practice, a two dif-
ferent Tikhonov damping terms are added to the Kro-
necker factors Wk–1 and Gk:

] [′ ′ ′ = + ⊗ + = ⊗ k k i k i k k1 +1F I IΩ α Γ β Ω Γ

(39)

Under the approximation that layers are inde-
pendent:

0 1

1

0 0
0 0
0 0

Net

L L

F

−

′ ′⊗ 
 = … 
 ′ ′⊗ 

Ω Γ

Ω Γ

1

1 1
1 0

1

1 1
1)

]

[

()

](

[

L

W

Net

L W L

vec L

F L
vec L

− −

−

− −
−

′ ′ ∇
 

∇ = … 
 ′ ′ ∇ 

Γ Ω

Γ Ω

 (40)

4.3. DRL challenges

4.3.1. Credit assignment & Feedback Sparsity
Reinforcement learning gives good results in many

use cases and applications, but it often fails in areas
where the feedback is sparse.

Conceiving a reward function is a delicate task and
generally, sparse discrete reward function is easier to
define (e.g. get +1 if you win the game, else 0). How-
ever, sparse rewards also slow down learning, since
the agent needs to take many actions before getting
any reward, which is known as the credit assignment
problem.

To speed up reinforcement learning algorithms
and avoid spending a lot of time in areas, that likely
won’t help agent to achieve the assigned goal, it is
usually mandatory to craft a continuous reward func-
tion, by shaping it smartly, depending on the environ-
ment and the goal to reach. Instead of having a sparse
step function, we have a smooth continuous gradient
function, which gives the agent information about the
closeness to the goal.

Reward shaping is done by replacing the original
reward function R of an MDP M={S, A, P, γ, R} by R’
of transformed MDP M’={S, A, P, γ, R}, where R’=R+F
with function F(s,a,s’): SxAxS → |R. To determine the
right shape of the reward function F(s,a,s’), there are
two relevant methods:
• Craft function reward manually [63], [64] like in

Robotic, where F become usually, a function of
distance and time.

• Use inverse reinforcement learning [65] by
deriving a reward function (and the goals to

achieve) from observed expert behavior (like
using imitation learning to find the right policy) as
in supervised learning (see Fig. 22).

Fig. 22. Inverse reinforcement learning process

Shaping reward must take into account the fact
that positive rewards encourage to keep going to
accumulate reward and avoid terminals unless they
yield very high reward, while negative rewards push
the agent to reach a terminal state as soon as possible
to avoid accumulating penalties. If the staged reward
function is becoming large and complex, this is a good
sign you should consider using concept networks in-
stead.

4.3.2. Slow learning
DRL has well-performed in ATARI games and other

real world tasks, but the pace of learning remain very
slow, for instance, humans after 15 minutes tend to
outperform DDQN after 115 hours. Many attempts has
been made and are still made to bridge this gap, like
the one-shot imitation learning [66], [67], whose goal
is to learn in supervised mode, from very few demon-
strations of any given task, and to be able to generalize
to new situations of the same task, by learning to em-
bed a higher-level representation of the goal without
using absolute task and use transfer learning to com-
municate the higher level task, without retraining the
model from scratch, another attempt has been made
using Model-Agnostic Meta-Learning [68] where the
agent called meta-learner trains the model or learner
on a training set of large number of different tasks, so
as to learn the common features representations of all
the tasks, then, for a new task, the model with its prior
experience provided by a good initialization (weights
transfer) of its parameters, will be fine-tuned using
the small amount of the new training data brought by
that task with fewer number of gradient steps while
avoiding overfitting that may happen when using
a small dataset.

4.3.3. Complex Task
An important issue in RL is the learning abili-

ty to solve complex tasks, the main approach is us-
ing the principle of “divide and conquer”, by using
meta-learning principle, the goal is decomposed to
a long chain of sub-goals, and learns to accomplish
those sub-goals and recompose them, to define the
overall solution. Many solutions have been proposed
in that sense like:

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

35Articles 35

• Hierarchical Deep Reinforcement Learning [69]
or H-DQN where meta-controller learns the
optimal goal policy and provides it to the controller
that learns the optimal action policy or sub-policy.
The meta-controller works at a slower pace than
the controller and receives external feedback
from the environment and provides incremental
feedback for the controller.

• Concept network [70] where concepts are distinct
aspects of a task that can be trained separately, and
then combined using a selector concept (or meta-
controller) to compose the complete solution.

4.3.4. Generalization and Meta-Learning
Current AI systems excel at mastering a single skill

with lower versatility level, the challenge is to general-
ize over unseen instructions and over longer sequences
of instructions. For the last two years, a lot of research
has been made on the meta-learning topic, whose goal
is to make a model that better generalize. In optimiza-
tion, we have the example of DeepArchitect [71] that
allow to automatically choose the architecture and hy-
perparameters for complex spaces, in meta-learning
we have the deep meta-reinforcement learning (RL²)
that has been developed independently by Deepmind
[72] and Openai [73], whose key ingredient in a Me-
ta-RL system is a Recurrent Neural Network (RNN).
The RNN-based agent is trained in supervised mode, to
learn meta-policy that allows to exploit the structure of
the problem dynamically and learn to solve new prob-
lems without retraining the model, but only by adjust-
ing its hidden state instead of using backpropagation.

4.3.5. Variance & Biases Trade-off
In traditional supervised learning we have:

• Biased model generalizes well, but doesn’t fit the
data perfectly (under-fitting)

• high-variance model fits the training data
perfectly but doesn’t generalize well for new data
(overfitting)
In RL, bias and variance measures show how close

the reinforcement signal sticks to the true reward
structure of the environment:
• Bias: refers to good stability with inaccuracy for

the value estimate.
• Variance: refers to good accuracy with instability

(noisy) for the value estimate.
Assigning credit to an RL agent acting in an en-

vironment can be done with different approaches,
each with different amounts of variance or bias, for
example:
• High-Variance Monte-Carlo Estimate: policies

we are learning are stochastic because of a certain
level of noise. This stochasticity leads to variance
in the rewards received in any given trajectory

• High-Bias Temporal Difference Estimate: By
relying on a value estimate instead of a Monte-
Carlo rollout the stochasticity in the reward signal
is reduced since the value estimate is relatively
stable over time. However, we fall in another issue
since the signal became biased, due to the fact

that our estimate is never completely accurate.
In addition, for DQN, Q-estimates are computed
using the target network which is an old copy of
the network, providing an older Q-estimates, with
a very specific kind of bias.
There is a number of approaches that attempt to

mitigate the negative effect of too much bias or too
much variance in the reward signal:
• Advantage Learning (reduced variance): Actor-

Critic methods are used to provide a lower variance
reward signal to update the actor. Aπ(st,at) =
Qπ(st,at) -Vπ(st), indicates how much better the
agent actually performed than was expected on
average, with Q(s, a) Monte-Carlo sampled reward
signal, and V(s) parameterized value estimate.
The high variance of the actor is balanced by
the low-variance feedback on the quality of the
performance supplied by the critic.

• Generalized Advantage Estimate: allows to
balance between pure TD learning (bootstrapping
method that add bias) and pure Monte-Carlo
sampling (that add variance) by using a parameter
λ. To produce better performance by trading off
the bias of V(s) with the variance of the trajectory,
we choose λ ϵ [0.9, 0.999].

10

0

()

0 :

ˆ

ˆ

ˆ:

ˆ

1

k
t t k t tk

t t

k
t t kk

GA

A

E

GA

A

E

A

A

λ λ

λ

λ

γλ δ δ γλ

λ δ

λ γ δ

∞

+ +=

∞

+=

= = + ⇒

 = = ⇒⇒ 
= = ⇒

∑

∑
TD Learning

MC Sampling

(41)

• Value-Function Bootstrapping & Time Horizon:
Bootstrapping allows estimation of the Value-
Function distribution using sampling methods.
To make a compromise between Monte Carlo
that uses all the episode steps for estimation and
single-step TD methods that bootstrap, we act on
the trajectories length to propagate the reward
signal in a more efficient way. Time horizon
corresponds to the number of steps of experience
we collect before adding it to the experience buffer,
it must be large enough to catch all the relevant
behaviors within a sequence of an agent’s actions.
When the time horizon threshold is reached
before the end of an episode, a value estimate is
used to predict the expected total reward from the
agent’s current state. So, long time horizon leads
to a less biased, but higher variance estimate and
short time horizon leads to more biased, but less
varied estimate. In cases where there are frequent
rewards within an episode or episodes are
extremely large, a smaller time horizon is more
adapted.

4.3.6. Partial Observability Markov Decision Process
(POMDP)

In Full MDP case, the agent has access to all the
information about the environment it might need in
order to take an optimal action, but real world prob-
lems do not meet this standard. Environments that
present themselves in a limited way to the RL agent

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

36 Articles36

are referred to as Partially Observable Markov Deci-
sion Processes (POMDPs) [74]. In a POMDP, the agent
receives information that is spatially and temporally
limited, so it partially describes the current state St,
therefore, it is replaced by the observation Ot. The
agent then attempts to predict what it has not sensed,
by using other available information.

The main trick used to deal with POMDP is to
augment the DRL net with an RNN/LSTM layers [45]
that we position between Convolutional layers and
fully connected layers, to keep in memory a history
of the visual features that compensate for the lack of
information. The Markov property is broken since the
agent is no more memoryless.

4.4. DRL & RL Applications in the Industry
In the industry, DRL applications are diverse [75],

depending on the purpose of the use, it can be split
into three categories, first usage is for control like in
robotics, Factory automation, and Smart grids, then
second usage is for optimization like Supply chain,
Demand forecasting, Warehouse operations opti-
mization (picking), and finally for monitoring and
maintenance like Quality control, Fault detection and
isolation and Predictive maintenance. DRL lifecycle
is composed of two phases, training phase, where
we use a rough simulation that run fast and when it
reaches the accuracy threshold desired, we switch to
a higher fidelity simulation and retrain the model un-
til it gets the targeted accuracy. For the deployment
phase, the trained model is used in ground truth and
tuned on physical equipment in the real world.

Fig. 23. The development cycle of DRL in the industry

Below some simulators used for RL/DRL in indus-
try, see table 1 below:

Table 1. Most known RL/DRL simulators

Self-Drive-Fly
Mechanic &

Electric
Robots & Drones

TORCS/Speed
Dreams

DeepDrive
Udacity Simulator

Unreal Engine
simulator

Unity XVEHICLE
FlightGear

AirSim

Matlab
Simulink

Sinumerik
Wolfram

SystemModeler
OpenModelica

Gazebo
MuJoCo

RobotStudio
RobotExpert

Ardupilot
NVIDIA Robotics

simulator

Self-Drive-Fly
Mechanic &

Electric
Robots & Drones

Logistics
Medical &
Chemistry

Security &
Networking

Anylogistix
Simutrans
OpenTTD

RinSim
MovSim

CHEMCAD
ParmEd

PharmaCalc
SOFA

SimTK
ArtiSynth
SimCyp

VIRL
NeSSI2

NS3
CupCarbon

INET
Conflict

Simulation
Laboratory

4.6. Deep RL Hardware
Neural network tasks like preprocessing input

data, training the model, storing the trained model
and deploying it, require intense hardware resource,
and above all, training task is by far the most time
and effort consuming, with the multiple forward and
backward passes that are essentially matrices mul-
tiplications. The number of these operations can ex-
plode with a large network, for instance, VGG16 [30]
a CNN of 16 hidden layers has ~140 million parame-
ters (weights & biases).

To reduce the time of training, we can parallelize
these computations. Thus, we often have the reflex to
think about the CPU, however, the latter has few cores
(e.g. 24 cores for INTEL E7-8890 v4) with a huge and
a complex instruction set that handles every single
operation (Calculation, memory fetching, IO, inter-
rupts, …). But the GPU contains by far, much more
cores (e.g. 5120 for Nvidia Titan V and 4096 for AMD
Radeon Vega 64), each of these cores has simpler in-
struction set and is specialized and optimized to do
more calculation. In addition, Nvidia and AMD sim-
plify the usage of GPU [76] for deep learning frame-
works, by releasing and supporting high-level lan-
guages Cuda and OpenCL supported and included in
these frameworks, helping researchers to write more
efficient programs for their algorithms.

Since GPUs [77] are optimized for video games
and not deep learning, they have some downsides like
its higher power draw. Here is 2 alternatives to GPU,
The first is FPGA which stands for Field programmed
gate array, it’s a highly configurable processor that al-
lows tweaking the chip’s function at the lowest level,
it can be tailored specifically for deep nets applica-
tion, so it consumes much less power than GPU, but
they need highly specialized engineer to be config-
ured. The second is called ASIC (Application-Specif-
ic Integrated Circuit) that is custom-designed chips
optimized for deep learning, for instance, those made
by Google named TPU (tensor processor unit), and
the Nervana Engine built by Intel. To summarize,
in terms of performance and power efficiency we
have: ASICs >> FPGA > GPU >> CPU.

4.7. Deep RL Frameworks
General framework libraries that can be used to

develop deep RL algorithms are Gym and Universe of

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

37Articles 37

OpenAI, DeepMind Lab of Google, Project Malmo of
Microsoft. Regarding the Deep Learning frameworks,
we have the most known ones mentioned in the fol-
lowing table:

Table 2. Most known RL/DRL simulators

Dev Tools Supporters Pros Cons

Tens or
flow

Google, Uber Community,
ressources,
documentation,
CNN++,
TensorBoard for
visualization. Good
for huge network

Slowness

Keras Goosle, Kassle Community,
documentation,
compatibility with
tensorflow, CNTK
and Theano as hish
level API.

Caffe2 Facebook,
Twitter

Fast
implementation
and execution

RRN&GAN

Torch
PyTorch

Facebook,
Twitter, Nvidia

Community,
documentation,
Fast
implementation &
execution, CNN++.

CNTK Microsoft RNN++ and NLP community
support

Paddle Baidu community
support

Deep
Learnings

JAVA
Community

Use of Java,
massively
distributed

MXNet AMAZON,
Microsoft

CNN++, massively
distributed

NLP

Xeon INTEL
(Nervana)

Fast execution community
support

Power AI IBM Compatibily with
IBM Watson

community
support

5. CONCLUSION
Since the birth of Artificial Intelligence in the 50s,

researchers in AI, machine learning, cognitive science,
and neuroscience have wanted to build systems that
learn, think and act like humans. Deep reinforcement
learning has made great steps towards the creation of
artificial general intelligence (AGI) systems that can
interact and learn from the environment, which lever-
age three main points:
• Great idea and concepts: many of them were

discussed in this paper like prioritized replay
memory, Multi-step learning, reward shaping,
imitation learning, meta-learning/generalization,
Natural gradient with K-FAC.

• High-level libraries/API (Keras, Tensorflow,
Pytorch) and simulation environment (Openai
gym, Universe and Mujoco) that provide excellent
testbeds for RL agents and simplify development
and research.

• Powerful hardware (GPU & TPU) and high-level
frameworks (Cuda & OpenCL) make it possible to
achieve a significant gain in time and efforts.
However, DRL algorithms still suffer from the

same drawbacks inherited from deep learning, so
we still suffer from long training time, slow learn-
ing pace, catastrophic forgetting (of old tasks when
training on new tasks), opacity of Black-box algo-
rithms (since the chain of reasons for the action
choice is not humanly-comprehensible). In addition
to this, we have RL drawbacks like credit assignment
problem, reward sparsity, variance and bias trade-
off, complex task management, complexity of me-
ta-learning mechanisms and partial observability of
the environment.

All these weak points are opportunities for im-
provement, and great challenges to overcome, which
open widely the field of research for new ideas and
breakthroughs that will one day lead to realizing
the dream of seeing a perfectly autonomous and hu-
man-like intelligence in the real world.

AUTHORS
Youssef Fenjiro* – National School of Computer
Scien ce and Systems Analysis (ENSIAS), Mohammed
V University, Rabat, Morocco.
Email: fenjiro@gmail.com.

Houda Benbrahim – National School of Computer
Science and Systems Analysis (ENSIAS), Mohammed
V University, Rabat, Morocco
Email: benbrahimh@hotmail.com.

*Corresponding author

REFERENCES
 [1] “Sutton & Barto Book: Reinforcement Learning:

An Introduction.” Available at: http://incomple-
teideas.net/book/the-book-2nd.html

 [2] Stuart J. Russell, Peter Norvig, Artificial Intelli-
gence: A Modern Approach, 3rd edition. ISBN-
13: 978-0136042594

 [3] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning”,
Nature, vol. 521, no. 7553, May 2015, pp. 436–
444.

 DOI: 10.1038/nature14539.
 [4] V. Mnih et al., “Human-level control through

deep reinforcement learning”, Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015.

 DOI: 10.1038/nature14236.
 [5] A. D. Tijsma, M. M. Drugan, M. A. Wiering, “Com-

paring exploration strategies for Q-learning in
random stochastic mazes”. In: 2016 IEEE Sym-
posium Series on Computational Intelligence
(SSCI), Athens, Greece, 2016, pp. 1–8.

 DOI: 10.1109/SSCI.2016.7849366.
 [6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sut-

skever, and R. R. Salakhutdinov, “Improving
neural networks by preventing co-adaptation of
feature detectors,” Jul. 2012. ArXiv:1207.0580
[Cs].

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

38 Articles38

 [7] R. Sutton, “Learning to Predict by the Method of
Temporal Differences,” Mach. Learn., vol. 3, pp.
9–44, Aug. 1988.

 DOI: 10.1007/BF00115009
 [8] K. M. Gupta, “Performance Comparison of

Sarsa(λ) and Watkin’s Q(λ) Algorithms,” p. 8.
Available at: https://pdfs.semanticscholar.
org/ccdc/3327f4da824825bb990ffb693ce-
af7dc89f6.pdf.

 [9] G. A. Rummery, M. Niranjan, “On-Line Q-Lear-
ning Using Connectionist Systems,” 1994, Cite-
Seer.

[10] Yuji Takahashi, Geoffrey Schoenbaum, Yael Niv,
“Silencing the Critics: understanding the ef-
fects of cocaine sensitization on dorsolateral
and ventral striatum in the context of an Actor/
Critic model”, Front. Neurosci., 15 July 2008,
pp. 86–99.

 DOI: 10.3389/neuro.01.014.2008l
[11] D. Silver et al., “Mastering the game of Go with

deep neural networks and tree search”, Nature,
vol. 529, no. 7587, pp. 484–489, Jan. 2016.

 DOI: 10.1038/nature16961
[12] S. Hölldobler, S. Möhle, A. Tigunova, “Lessons Le-

arned from AlphaGo,” p. 10. S. H �olldobler, A. Ma-
likov, C. Wernhard (eds.): YSIP2 – Proceedings
of the Second Young Scientist’s International
Workshop on Trends in Information Proces-
sing, Dombai, Russian Federation, May 16–20,
2017, published at http://ceur-ws.org.

[13] David Silver, Deepmind, “UCL Course on RL”
[14] Luis Serrano, A friendly introduction to Deep

Learning and Neural Networks. https://www.
youtube.com/watch?v=BR9h47Jtqyw

[15] S. Ruder, “An overview of gradient descent opti-
mization algorithms,” arXiv:1609.04747 [cs],
Sep. 2016.

[16] N. Qian, “On the momentum term in gradient
descent learning algorithms,” Neural Netw., vol.
12, no. 1, pp. 145–151, Jan. 1999.

 DOI: 10.1016/S0893-6080(98)00116-6.
[17] J. Duchi, E. Hazan, Y. Singer, “Adaptive Subgra-

dient Methods for Online Learning and Sto-
chastic Optimization”, JMLR, vol. 12(Jul), 2011,
pp. 2121−2159.

[18] “Rmsprop: Divide the gradient by a running
average of its recent magnitude – Optimization:
How to make the learning go faster,” Coursera.

[19] M. D. Zeiler, “ADADELTA: An Adaptive Learning
Rate Method,” ArXiv1212.5701 Cs, Dec. 2012.

[20] D. P. Kingma, J. Ba, “Adam: A Method for Sto-
chastic Optimization,” ArXiv1412.6980 Cs, Dec.
2014.

[21] J. Bergstra and Y. Bengio, “Random Search for
Hyper-parameter Optimization”, J. Mach. Le-
arn. Res., vol. 13, pp. 281–305, Feb. 2012. ISSN:
1532-4435

[22] J. Snoek, H. Larochelle, R. P. Adams, “Prac-
tical Bayesian Optimization of Machine Le-
arning Algorithms”, p. 9. https://arxiv.org/
pdf/1206.2944.pdf

[23] Yoshua Bengio, “Gradient-Based Optimization
of Hyperparameters.”

 DOI: 10.1162/089976600300015187.
[24] M. Sazli, “A brief review of feed-forward neural

networks”, Commun. Fac. Sci. Univ. Ank., vol. 50,
pp. 11–17, Jan. 2006.

 DOI: 10.1501/0003168.

[25] Salman Khan, Hossein Rahmani, Syed Afaq
Ali Shah, A Guide to Convolutional Neural Ne-
tworks for Computer Vision.

 DOI: 10.2200/S00822ED1V01Y201712COV015
[26] Hamed Habibi Aghdam, Elnaz Jahani Hera-

vi, Guide to Convolutional Neural Networks
A Practical Application to Traffic-Sign Detection
and Classification, Springer 2017.

[27] S. Ioffe, C. Szegedy, “Batch Normalization: Ac-
celerating Deep Network Training by Reducing
Internal Covariate Shift,” ArXiv1502.03167 Cs,
Feb. 2015.

[28] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, “Gra-
dient-Based Learning Applied to Document Re-
cognition”. In: Proceedings of the IEEE, 1998,
pp. 2278–2324. DOI: 10.1109/5.726791.

[29] A. Krizhevsky, I. Sutskever, G. E. Hinton, “Ima-
geNet Classification with Deep Convolutio-
nal Neural Networks”. In: Advances in Neural
Information Processing Systems, 25, 2012,
pp. 1097–1105.

 DOI: 10.1145/3065386.
[30] K. Simonyan, A. Zisserman, “Very Deep Convolu-

tional Networks for Large-Scale Image Recogni-
tion,” ArXiv1409.1556 Cs, Sep. 2014.

[31] C. Szegedy et al., “Going Deeper with Convolu-
tions,” ArXiv1409.4842 Cs, Sep. 2014.

 DOI: 10.1109/CVPR.2015.7298594.
[32] M. Lin, Q. Chen, S. Yan, “Network In Network,”

ArXiv1312.4400 Cs, Dec. 2013.
[33] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Le-

arning for Image Recognition,” ArXiv151203385
Cs, Dec. 2015.

 DOI: 10.1109/CVPR.2016.90.
[34] G. Huang, Z. Liu, L. van der Maaten, K. Q. Wein-

berger, “Densely Connected Convolutional Net-
works,” ArXiv1608.06993 Cs, Aug. 2016.

[35] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic
Routing Between Capsules,” ArXiv1710.09829
Cs, Oct. 2017.

[36] S. Hochreiter and J. Schmidhuber, “Long
Short-term Memory,” Neural Comput., vol. 9,
pp. 1735–80, Dec. 1997.

 DOI: 10.1162/neco.1997.9.8.1735
[37] “Understanding LSTM Networks”. Colah’s blog.

27/08/2015. https://colah.github.io/post-
s/2015-08-Understanding-LSTMs/.

[38] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, “How
transferable are features in deep neural ne-
tworks?,” ArXiv1411.1792 Cs, Nov. 2014.

[39] N. Becherer, J. Pecarina, S. Nykl, K. Hopkinson,
“Improving optimization of convolutional neu-
ral networks through parameter fine-tuning”,
Neural Comput. Appl., pp. 1–11, Nov. 2017.

 DOI: 10.1007/s00521-017-3285-0.
[40] “Frame Skipping and Pre-Processing for Deep

Q-Nets on Atari 2600 Games”, Daniel Take-
shi blog, 25/11/2016 https://danieltakeshi.
github.io/2016/11/25/frame-skipping-and-
preprocessing-for-deep-q-networks-on-atari-
2600-games/.

[41] T. P. Lillicrap et al., “Continuous control with deep
reinforcement learning,” ArXiv1509.02971 Cs
Stat, Sep. 2015.

[42] A. S. Lakshminarayanan, S. Sharma, B. Ravin-
dran, “Dynamic Frame skip Deep Q Network,”
ArXiv1605.05365 Cs, May 2016.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

39Articles 39

[43] S. Lewandowsky, S.-C. Li, Catastrophic inter-
ference in neural networks: Causes, solutions,
and data, Dec. 1995.

 DOI: 10.1016/B978-012208930-5/50011-8
[44] A. Nair et al., “Massively Parallel Me-

thods for Deep Reinforcement Learning”,
ArXiv1507.04296 Cs, Jul. 2015.

[45] M. Hausknecht, P. Stone, “Deep Recurrent
Q-Learning for Partially Observable MDPs,”
ArXiv1507.06527 Cs, Jul. 2015.

[46] H. van Hasselt, A. Guez, D. Silver, “Deep Rein-
forcement Learning with Double Q-learning,”
ArXiv1509.06461 Cs, Sep. 2015.

[47] T. Schaul, J. Quan, I. Antonoglou, D. Silver, “Prio-
ritized Experience Replay,” ArXiv1511.05952
Cs, Nov. 2015.

[48] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt,
M. Lanctot, N. de Freitas, “Dueling Network Ar-
chitectures for Deep Reinforcement Learning”,
ArXiv1511.06581 Cs, Nov. 2015.

[49] M. Fortunato et al., “Noisy Networks for Explo-
ration,” ArXiv1706.10295 Cs Stat, Jun. 2017.

[50] M. Hessel et al., “Rainbow: Combining Impro-
vements in Deep Reinforcement Learning,”
ArXiv1710.02298 Cs, Oct. 2017.

[51] V. Mnih et al., “Asynchronous Methods for Deep
Reinforcement Learning,” ArXiv1602.01783 Cs,
Feb. 2016.

[52] J. Schulman, P. Moritz, S. Levine, M. Jordan,
P. Abbeel, “High-Dimensional Continuous Con-
trol Using Generalized Advantage Estimation,”
ArXiv1506.02438 Cs, Jun. 2015.

[53] M. Jaderberg et al., “Reinforcement Lear-
ning with Unsupervised Auxiliary Tasks,”
ArXiv1611.05397 Cs, Nov. 2016.

[54] H. Noh, S. Hong, B. Han, “Learning Deconvo-
lution Network for Semantic Segmentation”,
ArXiv1505.04366 Cs, May 2015.

 DOI: 10.1109/ICCV.2015.178.
[55] Z. Wang et al., “Sample Efficient Actor-Critic

with Experience Replay”, ArXiv1611.01224 Cs,
Nov. 2016.

[56] R. Munos, T. Stepleton, A. Harutyunyan,
M. G. Bellemare, “Safe and Efficient Off-Policy
Reinforcement Learning”, ArXiv1606.02647 Cs
Stat, Jun. 2016.

[57] J. Schulman, S. Levine, P. Moritz, M. I. Jordan,
P. Abbeel, “Trust Region Policy Optimization,”
ArXiv1502.05477 Cs, Feb. 2015.

[58] S. M. Kakade, “A Natural Policy Gradient,” p. 8.
https://papers.nips.cc/paper/2073-a-natural-
-policy-gradient.pdf

[59] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
O. Klimov, “Proximal Policy Optimization Algori-
thms,” ArXiv1707.06347 Cs, Jul. 2017.

[60] Y. Wu, E. Mansimov, S. Liao, R. Grosse, Ba, “Scala-
ble trust-region method for deep reinforcement
learning using Kronecker-factored approxima-
tion,” ArXiv1708.05144 Cs, Aug. 2017.

[61] J. Martens, R. Grosse, “Optimizing Neural Ne-
tworks with Kronecker-factored Approxima-
te Curvature,” ArXiv1503.05671 Cs Stat, Mar.
2015.

[62] R. Grosse, J. Martens, “A Kronecker-factored
approximate Fisher matrix for convolution lay-
ers,” ArXiv1602.01407 Cs Stat, Feb. 2016.

[63] Bonsai “Writing Great Reward Functions” Youtu-
be https://www.youtube.com/watch?v=0R3Pn-
JEisqk

[64] X. Guo, “Deep Learning and Reward Design for
Reinforcement Learning,” p. 117.

[65] A. Y. Ng, S. Russell, “Algorithms for Inverse Re-
inforcement Learning”. In: ICML 2000 Proc.
Seventeenth Int. Conf. Mach. Learn., May 2000.
ISBN:1-55860-707-2

[66] Y. Duan et al., “One-Shot Imitation Learning,”
ArXiv1703.07326 Cs, Mar. 2017.

[67] “CS 294 Deep Reinforcement Learning, Fall
2017”, Course.

[68] C. Finn, P. Abbeel, S. Levine, “Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Ne-
tworks,” ArXiv1703.03400 Cs, Mar. 2017.

[69] D. Kulkarni, R. Narasimhan, “Hierarchical Deep
Reinforcement Learning: Integrating Tem-
poral Abstraction and Intrinsic Motivation.”
arXiv:1604.06057 Cs.

[70] A. Gudimella et al., “Deep Reinforcement Lear-
ning for Dexterous Manipulation with Concept
Networks,” ArXiv1709.06977 Cs, Sep. 2017.

[71] R. Negrinho and G. Gordon, “DeepArchitect: Au-
tomatically Designing and Training Deep Archi-
tectures,” ArXiv1704.08792 Cs Stat, Apr. 2017.

[72] J. X. Wang et al., “Learning to reinforcement le-
arn”, ArXiv1611.05763 Cs Stat, Nov. 2016.

[73] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sut-
skever, P. Abbeel, “RL2: Fast Reinforcement
Learning via Slow Reinforcement Learning,”
ArXiv1611.02779 Cs Stat, Nov. 2016.

[74] M. T. J. Spaan, “Partially Observable Markov De-
cision Processes,” Reinf. Learn., p. 27.

 DOI: 10.1007/978-3-642-27645-3_12
[75] Bonsai, M. Hammond, Deep Reinforcement Le-

arning in the Enterprise: Bridging the Gap from
Games to Industry”, Youtube. https://www.
youtube.com/watch?v=GOsUHlr4DKE

[76] Emine Cengil, Ahmet Çinar, “A GPU-based co-
nvolutional neural network approach for image
classification”.

 DOI: 10.1109/IDAP.2017.8090194
[77] “Why are GPUs necessary for training Deep

Learning models?”, Analytics Vidhya, 18-May-
2017.

