
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  12,      N°  3      2018

20

Deep Reinforcement Learning Overview of the State of the Art

Youssef Fenjiro, Houda Benbrahim

Submitted: 5th October 2018; accepted: 16th November 2018

DOI: 10.14313/JAMRIS_3-2018/15

Abstract:
Artificial intelligence has made big steps forward with 
reinforcement learning (RL) in the last century, and with 
the advent of deep learning (DL) in the 90s, especially, 
the breakthrough of convolutional networks in computer 
vision field. The adoption of DL neural networks in RL, 
in the first decade of the 21 century, led to an end-to-
end framework allowing a great advance in human-level 
agents and autonomous systems, called deep reinforce-
ment learning (DRL). In this paper, we will go through the 
development Timeline of RL and DL technologies, describ-
ing the main improvements made in both fields. Then, we 
will dive into DRL and have an overview of the state-of-
the-art of this new and promising field, by browsing a set 
of algorithms (Value optimization, Policy optimization 
and Actor-Critic), then, giving an outline of current chal-
lenges and real-world applications, along with the hard-
ware and frameworks used. In the end, we will discuss 
some potential research directions in the field of deep RL, 
for which we have great expectations that will lead to 
a real human level of intelligence. 

Keywords: reinforcement learning, deep learning, 
convolutional network, recurrent network, deep 
reinforcement learning 

1. Introduction
Reinforcement learning [1], [2] is an AI sub-do-

main allowing agent to fulfill a given goal while max-
imizing a numerical reward signal. It was developed 
within three main threads. The first is the concept 
of learning by trial and error, discovered during re-
searches undertaken in psychology and neuroscience 
of animal learning. The second concept is the problem 
of optimal control developed in the 1950s using a dis-
crete stochastic version of the environment known as 
Markovian decision processes (MDP) and adopting 
a concept of a dynamical system’s state and optimal 
return function (Reward) and defining the “Bellman 
equation” to optimize the agent behavior over the time 
(Dynamic programming). The last concept concerns 
the temporal-difference methods, which become the 
mainstream, and was boosted by the actor-critic ar-
chitecture. This topic is detailed in the first section.

Deep Learning (DL) [3] is a machine learning 
sub-domain, based on the concept of artificial neural 
networks that imitates human brain while processing 

data and creating patterns for use in decision-making. 
DL enables automatic features engineering and end-
to-end learning through gradient descent and back-
propagation. There are many types of DL nets, which 
usage depend on their application and the nature of 
the problem being treated. For time sequences like 
speech recognition, natural language processing we 
use recurrent neural network. For extracting visual 
features, like image classification and object detec-
tion, we use convolutional neural network. For data 
pattern recognition like classification and segmen-
tation, we use feed-forward networks, and for some 
complex tasks like video processing, object tracking 
and image captioning, we use a combination of those 
nets. This topic is detailed in the second section.

The link between RL and DL technologies was 
made, while AI researchers were seeking to implement 
a single agent that can think and act autonomously in 
the real world, and get rid of any hand-engineered 
features. In fact, in 2015, Deepmind succeed to com-
bine RL, which is a decision-making framework and 
DL [4], which is a representation learning framework 
allowing visual features extraction, to create the first 
end-to-end artificial agent that achieves human-lev-
el performance in several and diverse domains. This 
new technology named deep reinforcement learning 
is used now, not only to play ATARI games, but also to 
design the next generation of intelligent self-driving 
cars like Google with Waymo, Uber, and Tesla.

In summary, this paper will give an outline of RL 
and DL technologies (in sections II and III respective-
ly), which are the basis of the deep RL. Section IV will 
focus on dissecting the different approaches and im-
provements that had a significant impact on building 
a human-level autonomous agents, by giving (a) an 
overview of state-of-the-art deep RL algorithms and 
achievements in recent years and (b) an outline of the 
current challenges of DRL and its applications in in-
dustry, and (c) an introduction to the latest toolkits 
and framework libraries that can be used to develop 
deep RL approaches.

Finally, we open a discussion related to deep RL 
and then inherently raise different directions for fu-
ture studies in the conclusion.

2. Preliminary: Reinforcement Learning 
In this section, we begin with an introduction to 

the fundamental concepts of reinforcement learning 
[1] like Markov decision process, Bellman equation, 
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• State-Value function V(s) (3) estimate how good 
(future rewards) it is, to be in a state s. V(s) under 
policy π is denoted Vπ(s): 
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 for all s ∈ S  (3)

• Action-value function Q(s,a) (4) how good (future 
rewards) it is to perform an action a in a state  
s. Q(s,a) under policy π is denoted :
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From the two relation above, we infer the Bellman 
equations that break RL problems into sub-problems 
by expressing an iterative relationship between the 
value of a state st and the values of its successor states 
st+1, with rt the expected reward from st to st+1 by fol-
lowing at, we have the equations (5): 
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We then infer the Bellman optimality equations 
(6) (7) for V and Q under the optimal policy as below:
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Optimal Value function = immediate reward r + 
discounted value of successors state γV(St+1).

The optimal policy can be found using two differ-
ent modes depending on:
• On-policy agent learns policy, and action is 

performed by the current policy instead of the 
greedy policy.

• Off-policy agent learns the optimal values (V,Q), 
and action is performed by the greedy policy (max 
operator in Bellman equation → Optimal policy).
In RL, there are two main types of algorithms:

• Model-based algorithms that use a model to 
predict the unobserved portion of the environment 
like Dynamic Programming, but they suffer 
from Bellman’s curse of dimensionality problem 
(use full-width backups), since knowing all the 
elements of the MDP is a tough task, especially 
when we have infinite states or almost.

• Model-free algorithms that skip learning a model 
and directly learn what action to do and when, by 
estimating the value function of a certain policy 
without a concrete model. The most known 

(5)

and exploration vs exploitation dilemma. Then we 
will review the main algorithms and methods devel-
oped that represent the key breakthroughs of con-
temporary RL, allowing autonomous human-level 
agents to reach the actual state-of-the-art DRL.

2.1. Reinforcement Learning and Markov 
Decision Process

Reinforcement Learning is an AI domain inspired 
by behaviorist psychology, it is based on a mechanism 
that learns through trial and error by interacting with 
a stochastic environment. It is built up on the con-
cept of Markov Decision Process MDP (see Fig. 1), 
a sequential decision-making problem based, defined 
by a 5-tuple: A set of states and actions (S,A), reward 
model R, state transition probability matrix P (from 
all states s to all their successor s’) and discounted 
factor γ ϵ [0,1], which allows to give more importance 
to recent rewards compared to future rewards. An en-
vironment is said to be MDP when the state S contains 
all information the agent needs to act optimally.

Fig. 1. Markov decision process

The state transitions of an MDP is memoryless, so, 
we say that it satisfies the Markov property (1). RL 
agents behave under this assumption, so the effects of 
an action taken in a state depend only on that state 
and not on the prior history: 
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If MDP is episodic, the state is reset after each 
episode of length T. Reward Rt defines what are the 
good and bad events for the agent, and Cumulative 
reward Gt (2) is the discounted sum of reward accu-
mulated throughout an episode of T steps:
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π is the policy function that maps each possible state s 
of the agent to its selective action a, π: S → p(A = a|S). 
The agent try to learn an optimal policy π* in order 
to take the best actions that maximize the cumulative 
reward Gt  [reinforcement feedback from the environ-
ment].

2.2. Reinforcement Learning and Bellman 
Equations

To find the optimal policy π* that achieves the 
maximum cumulative reward, RL algorithms involve 
estimating the following value functions:
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methods are Monte-Carlo, Temporal difference 
learning and its variants Q-learning and SARSA.

In this paper, we will focus on model-free RL.

2.3. The Exploration/Exploitation Dilemma
In real life, the best long-term strategy may involve 

short-term sacrifices to gather enough information so 
as to make the best overall decisions. For RL problems, 
to avoid being stuck in a local maximum, we have to 
balance between the two concurrent approaches Ex-
ploration and Exploitation (see Fig. 2):
• Exploit (using deterministic search): in this 

case, the search is deterministic and the RL agent 
chooses actions that he has already attempted 
in the past (from the history of trials) and which 
maximized the cumulative reward and proved to 
be the most efficient. 

• Explore (using non-deterministic search): to 
gather more information and discover such actions, 
it has to try actions (weighted by a probability of 
correctness) that it has not selected before, and 
so allow the exploration of the other possibilities, 
in order to make better action selections in the 
future.

Fig. 2. Exploitation vs Exploration

The most known approaches to exploration use 
the following action-selection strategies [5]:
• Greedy Approach: Agent is exploiting its current 

knowledge to choose at any time the action which 
he expects to provide the greatest reward. 

• ε-greedy Approach: forces the non-greedy 
actions to be tried (exploration) with no 
preference for nearly greedy ones or particularly 
uncertain (chooses equally among all actions). ε is 
the probability of exploration typically 5 or 10% 
(see Fig. 3).

Fig. 3. ε-greedy approach

• Softmax Approach: All the actions are ranked 
and weighted according to their values estimates, 
but the selection probability of Greedy actions is 
the highest. A random action is selected, by taking 
into account the weight of each action. In practice, 
we use an additional temperature parameter (τ) 
applied to Softmax, to lower the low probabilities 
and higher the high probabilities.

• Bayesian Approach: we add a probability 
distribution to the neural network weights by 
repeatedly sampling from a network with dropout 

[6]; thus, the distribution variance provides an 
estimate of the uncertainty of each action.

2.4. Monte-Carlo Learning
Monte Carlo method [1] relies on repeated ran-

dom sampling to obtain numerical results. By the 
law of large numbers, the expected value of a random 
variable can be approximated, by taking the sample 
mean of independent samples of the variable. 

MC methods are used in RL to solve episodic prob-
lems by averaging sample returns and learning di-
rectly from complete episodes of experience without 
bootstrapping. MC methods are insensitive to initial 
value since they learn only from complete sequences, 
the return is known only at the end of the episode and 
not before. 

MC is used for prediction by learning the state-val-
ue function Vπ(s) following a given policy π, and for 
control by estimating the policy using Generalized 
Policy Iteration GPI and the action-value function Q. 
The MC control algorithm starts with an arbitrary 
policy π and iterates between the two steps until con-
verging toward the optimal policy π*:
• Policy evaluation: use the current policy π to 

estimate Qπ or Vπ.
• Policy improvement: making a better policy π by 

deterministically choosing actions with maximal 
action-value: π(s) = arg maxa q(s,a).

2.5. Temporal-Difference Learning
Temporal-Difference Learning [1], [6] is mod-

el-free methods that act by deriving its information 
from experiences without having complete knowl-
edge of the environment. TD combines Monte Carlo 
methods, by learning directly from raw experience, 
with dynamic programming methods, by updating 
value function estimates through bootstrapping from 
its current estimate. 

TD updates values using recent trends so as to 
capture the effect of a certain state. It learns online 
after every step from incomplete episodes of expe-
rience by sampling the environment according to 
a given policy and approximating its current estimate 
based on previously learned estimates. The general 
rule (8) can be summarized as follow: VNew ← VOld + 
StepSize* [Target − VOld]
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In TD learning, instead of computing the update 
every step, we can postpone it after N steps. The 
N-step return, in this case, is calculated as follows:
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N-Step TD formula becomes: 
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In TD learning, we also integrate a neurologic phe-
nomenon called eligibility trace (ET), This RL mech-
anism uses a short-term memory that stores the steps 
state-action history called traces. Those traces mark 
the state as eligible for learning, reinforcing the event 
that contributed to getting to the reward. It decays 
gradually over time if the given state is not enough 
visited. So, ET extends what the agent learned at t+1 
also to previous states, by tracking where he has been 
(prior states) and back-upping of reward for a longer 
period, so to reinforce the most visited states and ac-
celerate learning.

Eligibility traces [1] implement a memory trace 
that is usually an exponential function, with a decay 
parameter. The three most known Eligibility traces 
implementations are:
• Accumulating traces: accumulate each time the 

state is visited, then fades away gradually when 
the state is not visited.
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• Replacing traces: each time a state is visited, the 
trace is reset to 1, regardless to present or prior 
trace
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• Dutch traces: intermediate between accumulating 
and replacing traces, depending on the step-size 
parameter a
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et(s) is the eligibility trace function for state s and 
time t, On each step, it decays by γl for all non-visited 
states.

2.6. Q-learning
Q-learning [7] is an Off-Policy algorithm for 

TD-Learning control (MDP environment) used in re-
inforcement learning. The learned action-value func-
tion Q approximates directly the optimal action-value 
function Q*, regardless of the policy being followed. 
One-step Q-learning is defined by (9):
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Q-learning combined with eligibility trace become 
Q(l):
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With three known implementations of eligibility 
trace [1] for Q(λ): Watkins Q(λ) (10) [8], Peng Q(λ) 

which doesn’t distinct between exploratory and 
greedy actions and Naï�ve Q(λ) which is similar to 
Watkins’s method, except that the traces are not set 
to zero on exploratory actions.
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2.7. SARSA
SARSA (State–Action–Reward–State–Action)[9] is 

an on-Policy algorithm for TD-Learning control (MDP 
environment) used in the reinforcement learning, it 
learns an action-value function of [state, action] pairs 
that depends on the quintuple (st, at, rt, st+1, at+1).

What makes the difference with Q-Learning, is that 
with SARSA, the maximum reward for the next state 
is not necessarily used for updating the Q-values; in-
stead, a new action (& reward), is selected using the 
same policy that determined the original action:

 1 1 1
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t t t t
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SARSA combined with eligibility trace become 
SARSA(λ):

 1 1 1

( , ) ( , )
( , )[ ( , ) ( , )]

t t t t

t t t t t t

Q S A Q S A
e s a R Q S A Q S Aα γ+ + +

← +

+ −  (18)

In SARSA, the policy π is updated at each visit 
choosing the action with the highest state-action val-
ue argmaxaQ(st, at) making the policy greedy.

2.8. Actor-Critic
Actor-Critic (AC) algorithms were inspired by 

neuroscience and animal learning [10], it’s a hybrid 
control methods that combine the policy gradient 
method and the value function method together. The 
Actor-Critic algorithm (see Fig. 5) introduces a Crit-
ic that judges the actions of the actor. The Actor is 
the source of high variance and the critic provides 
low-variance feedback on the quality of the perfor-
mance, which balanced the equation. Adding the 
Critic component reduces variance and higher the 
likelihood of convergence of the policy gradient 
methods.

Fig. 5. Actor-Critic Algorithm steps

(16)
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AC methods are considered part of TD methods 
since the critic is an implementation of the TD(0) al-
gorithm and it is updated following the same rule:
• Actor: policy function, produces the action for 

a given input “current state” s of the environment
• Critic: value function, criticizes the actions made 

by the actor. Input information obtained through 
sensors (state estimation), and it receives 
rewards

2.9. RL limitations and Function approximator
In RL the value functions V(s) or Q(s,a) are rep-

resented by a state transition table (lookup table), 
where every state s, has an entry V(s) or every 
state-action pair (s,a) has an entry Q(s,a). When the 
Markov decision process is large, we will have too 
many states and actions to store in memory and it is 
too slow to learn the value of each state individually. 
For instance, in Computer Go, we use 106 parameters 
to learn about 10170 positions[11], [12].

Instead of having a lookup table with explicit val-
ues for all the (state, action) space, the idea is to use 
a function approximator like a neural network that 
will replace this lookup table. Therefore, we will es-
timate value functions with function approximation 
ˆ( , ) ( )V s w V sπ≈  or 1ˆ( ,a, )q s w q≈  where π indicate the 

neural network. The gain is that it allows generalizing 
from seen states to unseen states and reuse reinforce-
ment learning framework (MC, TD learning,…) to up-
date the weights w [13].

With the breakthrough made in deep learning in 
computer vision, we won’t be only using a Feed-for-
ward neural network to approximate the value func-
tions used in RL, but also a convolutional neural 
network that allows to get ride off hand-engineered 
visual features, and directly capture the environ-
ment visual state. Optionally, we can also use a recur-
rent neural network to keep in memory the relevant 
events during the agent life cycle, which can help to 
get an optimal experience.

3. Preliminary: Deep Learning 
Deep learning is a branch of machine learning 

based on deep (> 2 hidden layers) and wide (many 
input/hidden neurons) neural networks, that model 
high-level abstractions in data, based on an architec-
ture composed of multiple non-linear layers of neu-
rons. Each neuron of the hidden layers performs a lin-
ear combination of its inputs and applies a non-linear 

function (Relu, Softmax, Sigmoid, tanh, …) to the result, 
which allows neurons from the next layer to separate 
classes with a curve (hypercurve/hyperplane) and no 
more with a simple line (see Fig. 6), thus, hidden layers 
learn hierarchical features. The deeper the layers, the 
more complex the learned features are [14].

3.1. Backpropagation and Gradient Descent
Unlike machine learning where features are craft-

ed by hand, with deep learning, features are automat-
ically learned to be optimal for the task. To achieve the 
process of learning, DL uses cost/loss function like 
the mean square error MSE or Cross entropy CE (19):
• MSE Loss: 

 1
2

ˆ[ ( ) ( )]MSEL target y prediction y= −∑   (19)

• CE Loss: ˆ[ ( ) log( ( ))]CEL target y prediction y= ∗∑  

We use these losses to measure how well the neu-
ral network performs to map training examples to 
correct output (in the classification case), and then 
tweak his parameters (weights and biases) using 
backpropagation processes based on gradient de-
scent (GD) optimization methods [15] that finds the 
minimum error:
• Batch gradient descent: calculate gradient for 

the entire training dataset to update parameters 
• Stochastic gradient descent (SGD): calculate the 

gradients for each training sample xi of the dataset
• Mini-batch gradient decent: tradeoff of the two 

methods, mini-batch sizes range є [50, 256] (can 
vary).

3.2. Learning Rate
Learning rate is a hyper-parameter used by GD 

methods to control the adjustment rate of the net-
work’s weights with respect to the loss gradient. The 
learning speed is slow when the rate is low, but can 
diverge when the rate is too high, the most popular 
learning rates are:
• Momentum [16]: accelerates SGD convergence in 

the relevant direction while reducing oscillations, 
by adding a parameter γ (usually 0,9) of the 
updated vector of the previous step to the current 
update vector.

 Vt = γ.Vt-1 + η.∇θ L(θ, xi) and θ = θ − Vt  (20)

 where θ is the vector that represents the network’s 
parameters and L is the loss function

• Adagrad [17]: adapts the learning rate to the 
parameters, by making larger updates for 
infrequent parameters (small historical gradients) 
and smaller updates for frequent ones (bigger 
historical gradients).

 
1, , , 

, 
t i t i t i

t ii

g
G
ηθ θ+ = −
+

   

 
where

 

2

, ( )
it i i

i

g Lθ θ = ∇ ∑
 

(21)

∋

Fig. 6. neural network learns to separate classes with 
complex curves, thanks to the hierarchy of layers
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• RMSprop [18] (Root Mean Squared): is an 
adaptive learning rate method, an extension of 
Adagrad proposed by Geoffrey Hinton (γ = 0.9 , 
η = 0.01)
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• Adadelta [19]: is an improvement of Adagrad 
that prevent learning rate from convergence to 
zero with time. It restricts the accumulated past 
gradients to only a recent time window of fixed 
size. 
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• Adam [20] (Adaptive Moment Estimation): 
computes adaptive learning rates for each 
parameter. It keeps an exponentially decaying 
average of past gradients ( )1 1 11t t tm m gβ β−= + − , 
similar to momentum. It stores both exponentially 
decaying average of past gradients and squared 
gradients like Adadelta.
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3.3. Hyper-Parameters Optimization
For DL, Hyper-parameters include the number of 

layers, the size of each layer, nonlinearity functions, 
weights initialization, decay term, learning rate, loss 
function, and input batch size. Optimization is done by 
measuring performance on independent data set and 
choose the optimal ones that maximize this measure, 
Most known Optimization algorithms are Grid search, 
Random search [21], Bayesian optimization [22], Gra-
dient-based optimization [23], Genetic algorithms.

3.4. Neural Networks and Overfitting
Neural networks fight overfitting by applying com-

monly used approaches like validation data, data aug-
mentation or early stopping (during training phase), 
in addition, it uses two main methods that became 
widespread:
• Dropout method applied at every forward pass 

during the training process, by randomly dropping 
nodes and their connections from hidden or input 
layers (with the same probability), which prevent 

∋

∋

∋

∋

∋

the network from becoming sensitive to the 
weights of nodes and make it more robust.

• Regularization using batch normalization that 
normalizes the inputs of each layer before applying 
the activation function, in order to have a mean 
output activation of zero and standard deviation 
of one.

3.5. Neural Networks Main Types
In this section, we will give a brief outline of three 

types of DL used in DRL: feed-forward neural net-
work, convolutional neural network, and recurrent 
neural network, to introduce thereafter, in the next 
section, the deep reinforcement learning concepts.

3.5.1. Feed-forward Neural Network
A feedforward neural network [24] (Multilayer 

Perceptron) is a non-linear artificial neural network 
where the information moves in only one direction, 
it solves classification problems and is composed of 
three main parts: the input layer, N hidden layers, and 
an output layer. Each layer can contain a given num-
ber of neurons. Neurons of hidden & output layers use 
non-linear activation function, to distinguish data 
that is not linearly separable, for this purpose, we use 
mainly Relu or sigmoid functions. The learning is car-
ried out through minimization of the loss function, 
using cross-entropy or mean square error functions. 
An appropriate decaying learning rate is used to avoid 
local minima issues and backpropagation of the er-
ror to change connection weights using gradient 
descent algorithm (most of time Stochastic gradient 
descent or Mini-batch gradient descent) in a way to 
get the best fit values of those weights that will lead to 
an optimal error. 

3.5.2. Convolutional Neural Network
Convolutional neural network (CNN, or ConvNet) 

[25], [26] is a class of deep feed-forward artificial neu-
ral network that has successfully been applied to ana-
lyzing visual imagery. CNN is used in supervised learn-
ing for classification and object recognition/detection 
purposes, in unsupervised learning for image com-
pression and image segmentation, and finally as visual 
features extractor in deep reinforcement learning. 

CNN is composed of four basic components :
• Convolutional layers: the layer is no more fully 

connected like in feed-forward nets, instead, it 
learns 2D square-shaped matrix of neurons called 
filters (or kernels, Eg. 9 neurons for a kernel of 
3×3 pixels), that scans the whole image searching 
for a pattern (localized feature), by applying 
effects such as blurring, sharpening, outlining, 
embossing, etc., to extract visual features. Each 
neuron of a kernel in the hidden layer will be 
connected to a small region (E.g. 3×3 pixels) of 
the input image (Ex. 200×200 pixels) given by the 
previous layer, called the local receptive field. 
Each kernel leverage these ideas :
– 2D Convolution: Convolution is an image 

processing operation that is a weighted 
multiplication between the image matrix 
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representation i with the kernel’s matrix (filter 
k of size Nk*Nk) to extract visual features from 
the image, by generating an output image iconv 
called feature map: 

  
1 1

0 0

,

( , )* ( , )

( )
k k

k k
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N N
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 Two additional parameters for 2D convolution: 
o Zero Padding: Put zeros on the image 

border to allow the convolutional output 
size to be the same as the input size image. 

o Strides: How many pixels the kernel 
window will slide at each step while 
scanning the image.

Fig. 7. Feature maps are the result of the convolution 
of two matrices (image and kernel)

– Parameter sharing: neurons of the same 
kernel share the same weights 

– Local connectivity: each input neuron in 
kernels only receives input from a small local 
group of the pixels in the input image called 
local receptive field by Cutting connections 
to the other pixels. input neurons represent 
overlapping receptive fields that form 
a complete map of visual space.

– Feature extraction: each kernel can detect 
just a single kind of localized feature. So, if we 
want to look for 10 different patterns we must 
have 10 kernels in the convolutional layer, each 
one looking for a particular pattern on the 
image.

– Hierarchical features learning: inspired by 
the organization of the animal visual cortex, 
multi-convolutional layers network allow to 
learn hierarchical visual features, the deeper 
is the layer, the more complex is the detected 
feature.

• Pooling layers: are used immediately after 
convolutional layers to shrink the output image 
using non-linear down-sampling and add to some 

amount of translation invariance. For instance, 
each unit of pooling layer summarizes a region 
of N×N neurons in the previous layer (ex. 3×3). 
There are several implementations of pooling like 
Average pooling which calculates the average value 
of the N×N matrix and Max-pooling (26) which is 
the most common and takes the max value of the 
N×N matrix and Mixed Pooling.

 max ( , )  , (( ax ,) m )pool x y region NxNi x y i x y− ∈=
  

(26)

 No learning takes place on the pooling layers. With 
back-propagation, only convolutional layers are 
concerned and we do not use pooling when we 
want to “learn” some object specific positions like 
in reinforcement learning.

• Fully connected layer: is a normal feed-forward 
network layer that makes the connection between 
each input dimension (pixel location) and each 
output class, mixes signals received from feature 
learning layers and decides on classification based 
on the whole image 

• Normalization layer: apply batch normalization 
[27] on input and hidden layers to rescale the 

input data ˆ ( )
( )

x E x
Var x

x −
= , which helps to avoid 

vanishing/exploding gradient descent problem 
and to have deeper a network.

3.5.3. CNN Improvements and CapsNet
The first functional Conv net was Lenet [28] im-

plemented by Yann Lecun in 2006. Then came the 
AlexNet [29] in 2012 a deeper and much wider ver-
sion (5 Convolutional + 3 Maxpooling + 3 Fully -con-
nected) of the LeNet, which integrate RELU (Rec-
tified Linear Unit) activation function and Reduce 
the over-fitting, by using a Dropout layer after every 
FC layer. In 2014 VGGNET [30] adapts more layers 
(16 Convolutional + 5 Maxpooling + 3 Fully -connect-
ed) and lower dimension for convolution filters are 
3×3 (instead of Instead of the 9×9 or 11×11 filters for 
AlexNet). 

In the same year, Google came out with GoogLeNet 
(22 Convolutional layers) [31], which reuses 1x1 con-
volutions, introduced by NiN [32] to perform dimen-
sionality reduction, and bring in the new concept of 
inception module (see Fig. 8), which allow CNN net-
work to use many kernels dimensions (5×5, 3×3, 1×1) 

Fig. 8. Inception module
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and pooling methods in the same layer and choosing 
itself the best filter through backpropagation process. 

In 2015, ResNets [33] launched by Microsoft al-
lows deeper neural networks (152 convolutional lay-
ers) by adding Identity connections to the traditional 
neural network, every two convolutional layers. The 
layers can start as the identity function and gradually 
transform to be more complex and more efficient. 

Even if CNN has made a great breakthrough in the 
computer vision domain, some drawbacks remain:
• Orientation and relative spatial relationships 

between hierarchical features are not important, 
for example, the two representations below are 
both faces. 

• Pooling layers don’t have learnable parameters 
that learn how to pool in a dynamic way, that 
predict which low-level features (ex. nose, eyes, 
mouth) would be routed to the higher level 
features (ex. face).

• Training needs a large amount of data to reach an 
acceptable accuracy. 
Capsule network [35] came as a solution to solve 

these problems with an architecture composed from 
an Encoder (1 Conv + 2 Capsule layers) and decoder 
(3 FC), and the use of two principles :
• Activity vector & Equivariance: neuron are 

replaced by capsules (a group of neurons) and 
activity vector for object detection with additional 
equivariant features (orientation, lighting, …). 
Changes in object position lead to changes in the 
orientation, without any change in vector length 
and probability.

• Dynamic routing: It replaces max pooling by 
adding an intermediate level a weight matrix Wij, 
that learns how to pool using dynamic routing of 
the capsule of layer N to the appropriate parent 
in the layer N+1, and encodes the relationship 
between the input features ui to get their predicted 
position relative to each other. The higher level 
capsules combine objects parts and encode their 
relative positions, so an object can be accurately 
detected not only from the presence of the parts 
but also their right locations.

Fig. 9. The two figures are the same for CNN

3.5.4. Recurrent Neural Network
RNN is a deep network that extracts temporal fea-

tures while processing sequences of inputs like text, 
audio or video. It’s used when we need history/con-
text to be able to provide the output based on previ-

ous inputs, like for video tracking, Image captioning, 
Speech-to-text, Translation, Stock forecasting, etc.

RNN neuron uses its internal memory to maintain 
information about the previous inputs and update the 
hidden states accordingly, which allows them to make 
predictions for every element of a sequence. 

RNN maintain a state vector st = g (xt ,xt-1, xt-2, …, 
x2; x1) that contains data features with the history of 
all previous input sequences.

RNN can be converted into a feedforward network 
by unfolding it over the time to many layers that share 
the same weights W:

  1( ) and ( )t t t ts Ux Ws o g Vsσ −= + =   (27)

xt: input at time t
st: hidden state at time t (memory of the network)
f: is an activation function (e.g, tanh() and ReLUs) 
U, V, W: network parameters (same across time)
g: activation function for the output layer (softmax)

Fig. 10. RNN Cell unfolded

RNNs can learn to use the past information when 
the context is small, as that gap grows, RNNs become 
unable to learn to connect the information, due to 
Vanishing and Exploding gradient problem.

LSTM (LONG SHORT-TERM MEMORY) [36], [37] is 
a variant of RNN, that came with a solution, by replac-
ing simple RNN node by a complex cell composed of 
4 layers, which allow to remove or add information 
to the cell state, judiciously regulated by three gates 
that conditionally decides what information to keep, 
what information to update, and what information to 
throw away:
• Input Gate: selectively update cell state values by 

adding information about the new input.
• Forget gate: forget irrelevant parts of previous 

states, depending on the relevance of the stored 
information.

• Output Gate: select information from the current 
cell state and show it out.

Fig. 11. RNN Cell vs LSTM Cell

3.5.5. Transfer Learning for Deep Learning
Transfer learning [38], [39] (TL) is the ability of 

a system to apply knowledge and skills learned in pre-
vious tasks to novel tasks in new domains. In DL, we 
reuse pre-trained models as a starting initialization for 
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new models to speed up training phase, which become 
a tuning phase where the new model is refined on the 
input-output pair data available for the new task. 

The TL process tends to work if the features are 
general and both original and target tasks are not too 
far. For CNN, in case training data of the new model is 
similar to pre-trained model data, so all CNN Layers 
are fixed and only the FC layers are trained, otherwise, 
only lower CNN Layers that contain basic features are 
fixed and higher CNN layers and FC layers are trained 
on the new model dataset.

3.6. Deep Learning Challenges
Even if Deep Learning has made great steps, it al-

ways requires large dataset, hence long training period 
and big clusters of CPUs and GPUs (graphics process-
ing units). Moreover, the learned features are often 
difficult to understand. In addition, we have to pay 
attention to overfitting, notably, when the number of 
parameters greatly exceeds the number of independ-
ent observations. Finally, DL is sensitive to what we call 
adversarial attacks, when small variations in the input 
data, leads to radically different outcomes, causing 
a lack of robustness and making them unstable.

4.  Deep Reinforcement Learning: Literature 
Review

As seen in paragraph III, traditional reinforcement 
learning use lookup table to store states and actions, 
which is too slow, since it learns the value of each state 
individually, and it is memory consuming, especially 
when we deal with large or infinite problems, and 
this is due to what Richard Bellman called the curse 
of dimensionality. The solution is to estimate value 
function using differentiable function approximators, 
trained using reinforcement learning algorithm.

By leveraging deep learning algorithms, especial-
ly, convolutional neural networks, it became possible 
for RL algorithm not only act but to be totally auton-
omous and learn to see and act, a new technology is 
born called Deep Reinforcement Learning (DRL) (see 
DL, RL and DRL Timeline Fig. 12). 

We have three main types of DRL algorithms:
• Value optimization: the algorithm optimizes the 

Value function V or Q, or the advantage function A.
• Policy optimization: the algorithm optimizes 

the policy directly function π(θ) representing the 
neural network.

• Actor-critic incorporates the advantages of each 
of the above, by learning value function with 
Implicit policy:
– Policy gradient component “Actor” which 

calculates policy gradients 
– Value function component “Critic” that 

observes the performance of the actor and 
decides when the policy needs to be updated 
and which action should be preferred

In the following section, we will have an outline 
on the Value optimization and Actor-critic algorithms 
(see Fig. 13), and try to understand their mechanisms 
and functioning.

Fig. 12. DL, RL and DRL Timeline

Fig. 13. Deep Reinforcement Learning algorithms

4.1. Value Optimization Algorithms

4.1.1. Deep Q-Learning (DQN in detail)
Deep Q Learning [4] is the first application of 

Q-learning to deep learning, performed by Google 
DeepMind in 2015, it succeeded to play 2600 Atari 
games at expert human level. DQN is a concentrate of 
technologies that uses many tips and tricks:
• Tricky Architecture network: in the standard 

Q-learning algorithm, the input is composed of 
the state s and the action a, which will require 
a separate forward pass to compute Q-value Q(ai) 
of each action ai. Instead, we will use the state s as 
the only input, with as many outputs as possible 
actions ai. Therefore, the network will generate 
a Q-value probability for each available action, 
immediately with a single forward pass.

• The neural network as a function approximator: 
three convolutional layers to detect visual features 
and to learn a hierarchical representation of the 
state space + two fully connected layers to estimate 
Q values from images, pooling layers is not used in 
DQN because we want CNN to be sensitive to the 
location of objects in the image.

• 3D convolution: process a 2D convolution of the 
four frames of the input, then average them all.
Frame skipping [40] (see Fig. 14): as an initial 

input we have a video stream of 30 screenshots/s 
210×160×3 pixels of 128 colors, which we crop, shrink 
and turn into greyscale to have 84×84. But, process-
ing all the 30 image/s of the video stream is not really 
relevant and also needs more computation and time, 
so the trick is to take only 2 consecutive frames frame 
of each N frame and skip the others, and for these 2 
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frames we apply the component-wise maximum func-
tion to get 1 frame: FrCW (i,j)=max(Fr1(i,j), Fr2(i,j))

Fig. 14. image processing of the input video, before 
feeding the DQN

• Phi length parameter: to help the network to 
Detect the motion and catch speed information, we 
stack a number of frames “Phi length” of a history 
to produce the input of the DQN network, most of 
time Phi length = 4 or 5. 

• Target Network (see Fig. 15): at every training 
step, the DQN’s values must shift due to 
backpropagation that changes the network’s 
weights, but shifting constantly the set of values 
to adjust the network will destabilize it, which will 
fall into feedback loops between the target and 
estimated Q-values. The idea is to use a separate 
network to estimate the target-Q values that will 
be used to compute the loss for every action: 
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This target network has the same architecture as 
the function approximator but with fixed weights, 
every T steps (ex. 1000), weights from the Q network 
are copied to the target network, which provides 
more stability to the DQN. An improvement of this up-
date has been applied by using “soft” target updates 
[41], rather than directly copying weights, Target 
network weights slowly track the learned networks: 
θ ← τθ + (1 − τ )θ’ with τ << 1.
• Action Repetition: define the granularity at 

which agents can control gameplay, by repeatedly 
executing a chosen action A for a fixed number 
of time steps k (instead of every frame), the last 
action is repeated on skipped frames. Computing 
the action once every k time steps and hence 
operate at higher speeds, thus achieving real-time 
performance. Two modes can be used, Static frame 
skip rate where Action output from the network is 
repeated for a fixed number of frames regardless of 
the current state, and Dynamic Frame skip which 

is an improvement [42] of the first mode which 
makes the frame skip rate a dynamic learnable 
parameter, choose the number of times an action 
is to be repeated based on the current state.

• Clipping Rewards [–1, 1]: due to the high variance 
of score from game to game in ATARI, all positive 
rewards are fixed to 1 and all negative rewards 
to −1, leaving 0 rewards unchanged, this technic 
limits the scale of the error derivatives and makes 
it easier to use the same learning rate across 
multiple games, but the major drawback is that 
Agent doesn’t differentiate between rewards of 
different magnitude.

• Experience replay: DQN suffers from 2 main 
problems, the first is that in online learning, data 
are not i.i.d, samples frames arrive in the order, 
so they are highly correlated, which leads the 
network to overfitting and failure to generalize 
properly, the second concern Catastrophic 
interference [43] where Neural Network 
abruptly forgets what was previously learned 
when learning new things. To address those 
issues, instead of learning online, by updating 
Network from the last transition, we store agent 
experience (st,at,rt,st+1) in replay memory D, then 
we train our network on random mini-batch of 
transitions (s, a, r, s′) as input, which are sampled 
from the replay memory D. Experience replay 
break Similarity of subsequent training samples 
that might drive the network into a local minimum 
and solves the challenge of ‘data correlation’ and 
‘non-stationary data distributions.

• No-ops vs human starts: two modes are possible 
to initialize and populate the Experience replay 
memory: First, we have the no-ops mode, where 
actions are provided randomly at the beginning, 
until the Memory Replay is full enough to sample 
from it, and second, we have the human start mode, 
where actions are provided by a human user at the 
beginning (an expert), until the Memory Replay is 
full enough to sample from it. This last mode gives 
the network a more efficient initialization that 
helps to accelerate learning. 

• Actions Selection: for Exploration vs Exploitation 
dilemma, DQN uses ε-greedy Approach which forces 
the non-greedy actions to be tried (exploration) 
with no preference for nearly greedy or particularly 
uncertain ones (chooses equally among all actions). 
ε is the probability of exploration (typically 
5 or 10%). Most of the times ε decay through 
time, example: ( ). t

min max min e λε ε ε ε −= + − , where 
l controls the speed of decay.

Fig. 15. DQN global architecture
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4.1.2. GORILA
GoRiLa [44] is a General Reinforcement Learning 

architecture and a massively distributed and paral-
lelized version of the DQN algorithm, achieved by in-
troducing parallelization along three axes:
• Actors: Gorila supports Nact actors operating 

in parallel on Nact instantiations of the same 
environment. Each actor’s experience can be 
stored in local/global memory. 

• Learners: Gorila supports Nlearn concurrent 
learners sample experience from the local or 
global store. Learners apply RL (DQN) to a replica 
of Q-network to generate gradient gi that updates 
master Q-net

• Parameter server: Nparam master nodes Servers 
maintains a distributed Q-net(θ) splitted across the 
Nparam servers, they receive learner’s gradient & 
applies appropriate updates to the subset of θ and 
periodically sends an updated copy of the Q-net to 
each learner.

4.1.3. Deep Recurrent Q-Network(DQRN)
DQRN [45]: A DQN agent can only see its closest 

area. by augmenting DQN with Recurrent neural nets 
and replacing DQN’s last fully connected layer with 
recurrent LSTM layer of the same dimension, DRQN 
agent remembers the bigger picture and where things 
are, in fact, LSTM provides a selective memory of past 
game states allowing to improve the agent experience 
and efficiency. With this LSTM layer, the agent re-
ceives only one frame at once from the environment, 
and thanks to the hidden state of the LSTM, it can 
change its output depending on the temporal pattern 
of observations it receives.

4.1.4. Double DQN
Double DQN [46]: Being very noisy, DQN tends to 

overestimate action values as the training progress-
es. Due to the max term in the Bellman equation, the 
highest positive error is selected and this value is 
subsequently propagated further to other states. To 
overcome this issue, Double DQN uses two function 
approximators, Network QA and Network QB, one 
for selecting the best action and the other for calcu-
lating the value of this action; the two networks are 
symmetrically updated by switching their roles after 
each training step of the algorithm (see Fig. 16). By 
decoupling the maximizing action from its value, we 
can eliminate the maximization bias.

Fig. 16. Double DQN use 2 Networks QA and QB that 
switch their roles after each training step

4.1.5. Prioritized Experience Replay (PER)
PER [47]: Neuroscience has shown that the brain 

“replays” the past experience during awake resting 

or sleep, and more frequently sequences which are 
linked to the reward and to unexpected transition that 
have largest TD-error which have the highest oppor-
tunity of learning progress. PER increase the replay 
probability of transitions with the highest |TD-er-
rors|, by changing the sampling distribution, and then 
store experience in priority queue ranked using the 
criterion TD-error.

4.1.6. Dueling DQN
Dueling DQN [48]: the goal is to produce sep-

arate estimations of state value V(s) which shows 
how good it is to be in any given state and advantage 
A(s,a), which shows much better it is, taking a certain 
action a in a state s, than was expected on average 
(see Fig.17). To achieve it, we use a single Q-net with 
2 streams V and A (see Fig. 18). This decomposition 
allows a more robust estimate of state value by de-
coupling it from the necessity of being attached to 
specific actions. Dueling reuse also the Double DQN 
and PER principles.

Fig. 17. The relation between the Action-value Q(s,a), 
the state value V(s) and the Advantage A(s,a)

Fig. 18. Dueling DQN architecture

4.1.7. Noisy Nets for Exploration
Noisy Nets for Exploration [49]: for tackling Ex-

ploration/Exploitation dilemma in RL, there are two 
most commonly used ways, either we introduce a de-
caying randomness in the choice of the action (ex. Ep-
silon greedy), or we punish our model for being too 
certain in its actions (ex. Softmax with temperature 
parameter τ), this 2 methods have their drawbacks, 
since they need to be adjusted to the environment and 
don’t take into account the current situation agent is 
experiencing. Noisy Nets came with a 3rd approach, 
by introducing a Gaussian noise function (σ,μ) that 
perturbs the last (fully-connected) layers of the net-
work, with 2 ways:
• Independent Gaussian Noise: every weight of 

noisy layer is independent and has its own µ and 
σ, learned by the model.

• Factorised Gaussian Noise: we multiply 2 noise 
vectors, which respectively have the length of the 
input and output of the noisy layer, the result is 
used as a random matrix, which is added to the 
weights.
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4.1.8. Rainbow
RAINBOW [50] is made by combining the following 

Improvements in Deep Reinforcement Learning, Dou-
ble Q-learning, Prioritized replay, Dueling networks, 
Multi-step learning, Distributional RL and Noisy Nets. 
A ranking based on the degree of influence that has 
been made, by removing elements one by one from 
Rainbow. Experience shows that Prioritized replay 
and multi-step learning were the two most crucial 
components of Rainbow. Removing either component 
caused a large drop in performance. Then comes, the 
distributional Q-learning ranked immediately below, 
but have no influence on early learning stage. In the 
third place, we have Noisy nets and dueling network 
and double Q-learning that haven’t much significant 
impact on the whole model.

 Prioritized replay > Multistep >> Distributional   
 > Noisy Nets >> dueling net > double DQN 

4.2.  Policy Optimization Algorithms 
(Actor-Critic)

Policy optimization is RL techniques that aim to 
optimize a parameterized policies π(θ), represent-
ed by a neural network, with respect to the expected 
return by using 1st or 2nd order optimization meth-
ods.

For Neural networks, gradient descent methods 
applied to the loss function, based on first order ap-
proximation, and used to update weights through 
backpropagation, reached their limits in term of per-
formance. Optimization methods using Newton meth-
ods with second-order Taylor polynomial as a better 
approximation of the loss function and adopting var-
ious approximation of the Hessian H are explored as 
an alternative for more improvements (28):
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where B is an approximation of the hessian.
However, the calculation of the Hessian approxi-

mation (Generalized Gauss-Newton matrix, Fisher 
information matrix, Hessian-free, …) remain complex 
and time-consuming, especially for high dimension 
space environment.

The use of second-order optimizers like with Nat-
ural gradient descent algorithm, significantly reduces 
the number of iterations, with the high-quality curva-
ture matrices, it passes from ~102 iterations, instead 
of 104 iterations with SGD (stochastic gradient de-
scent). 

In the following section, we will have an overview 
of seven algorithms, of which five are first order: A3C, 
UNREAL, DDPG, PPO and ACER and two are second 
order: TRPO and ACKTR. 

4.2.1. Advantage Asynchronous Actor-Critic Agents (A3C)
Advantage Asynchronous Actor-Critic Agents 

(A3C) [51] is a DRL algorithm that relies on the fol-
lowing principles: 

• Asynchronous: by reusing Gorila parallelization 
and running multiple agents in parallel (see 
Fig. 19), each with its own copy of the environment, 
so their experiences are diverse, independent and 
not correlated, as result, we don’t need experience 
replay memory anymore.

Fig. 19. A3C network architecture

• Generalized Advantage Estimation GAE [52]: 
by reusing Duel DQN principal, since we won’t be 
determining the Q values directly in A3C, we use 
the discounted returns R as an estimate of Q(s,a) to 
allow us to generate an estimate of the advantage: 
R = r + γV(s’) ~ Q(s,a) à A(s,a) = Q(s,a) – V(s)= r 
+ γV(s’) – V(s), and using GAE to reduce variance, 
by taking exponentially weighted average λ:
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• Exploration: H is the entropy of the policy π is 
used as a mean of to improving exploration, 
by encouraging the model to be conservative 
regarding its sureness of the correct action: 
Hentropy(π) = -Σ(P(x) log(P(x)). H is the entropy 
of the policy π, which reflect the spread of action 
probabilities, the entropy will be high when we 
have similar probabilities, and will be low when 
we have a single action with a large probability.

•  Actor-critic: Each agent is sharing two networks: 
the Critic Net evaluates the present states using 
the value function V(s), while the Actor Net 
evaluates the possible values in the present state 
to make decisions using π(s). The global loss 
includes 2 parts: the value loss related to the 
predictions of the critic and the policy loss (which 
include H entropy) related to the predictions of 
the actor. The policy loss then combine the 2 loss 
in the Global Loss, with Lvalue is set to 50% to make 
policy learning faster than value learning:

 Hentropy(π) = -Σ(P(x) log(P(x)), Lvalue = Σ(R – V(s))²   
 and Lpolicy = -log(π(a|s)) * A(s) – β*H(π)  

 1
2global value policyL L L= −  = 0.5 * Σ(R — V(s))² 

  – log(π(a | s)) * A(s) - β*H(π(a | s))  (30)

These two losses will be backpropagated into the 
neural network, and then reduced with an optimizer 
through stochastic gradient descent.
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4.2.2.  Umsupervised Reinforcement and Auxiliary 
Learning (UNREAL)

UNSUPERVISED Reinforcement and AUXILIARY 
Learning (UNREAL) [53]: the idea is to augment the 
on-policy A3C with off-policy auxiliary tasks to learn 
a better representation without influencing directly 
the main policy control. These tasks share the same 
network parameters [CNN, FC, LSTM], but with differ-
ent outputs.

The network is composed of 4 modules of which 
A3C is the main one:
• A3C Module: is the main on-policy module that 

feeds the Experience replay memory, from which 
the auxiliary tasks get their inputs. 

• Pixel Control Module: it learns how your actions 
affect what you will see rather than just prediction, 
to change different parts of the screen, and how to 
control the environment. It’s based on the idea that 
changes in the perceptual stream often correspond 
to important events in an environment. Auxiliary 
policies Qaux produced using Deconvolutional 
[54] neural network (which was used first for 
image segmentation), are trained to maximize the 
change in pixel intensity of different regions of 

input. Auxiliary control loss
 

( )c
PC Q

c

L L=∑
 

• Reward Prediction Module: learn to predict 
future reward based on rewarding histories. 
Auxiliary reward prediction loss LRP is optimized 
from rebalanced replay data.

• Value Function Replay: predicts the n-step return 
from the current state to promote faster value 
iteration. Replayed value loss LVR is optimized 
from replayed data. A global loss function:

   3UNREAL A C VR VR PC PC RP RPL L L L Lλ λ λ= + + +   (30) 

With lVR, lPC, lRP are weighting terms on the indi-
vidual loss components.

Fig. 20. UNREAL network architecture

4.2.3. Deep Deterministic Policy Gradients (DDPG)
DDPG (Deep Deterministic Policy Gradients) 

[41] is an actor-critic, off-policy gradient RL algo-
rithm for continuous action space. It uses two neu-
ral networks, one for the critic and one for the actor 
which compute action predictions for the current 

state and minimize separately their two losses LActor 
and LCritic and follow Estimates a deterministic tar-
get policy. DDGP re-use DQN tricks:
• Experience replay buffer to solve the issue 

related to correlated data 
• Target Network, make copies (Q’,µ’) of the Actor 

and Critic networks (Q,µ)and soft updates to enable 
training stability: . (1 ) andQ Q Q µθ τ θ τ θ θ′ ′ ′← + −  

. (1 ) with 1µ µτ θ τ θ τ′← + − 

• Exploration by adding noise to actor actions 
Exploration( ) ( )t t ts s Nθµ µ= + . 

Even if DDPG has shown good performance but it 
needs to tweak the step size manually, so as to fall into 
the right range (too small → slow – too large → over-
whelmed by the noise, bad performance).

Fig. 21. DDPG network architecture

4.2.4. ACER (Actor-Critic with Experience Replay)
ACER [55]: is a model-free, off-policy, Asynchro-

nous multi-agent, continuous control algorithm with 
actor-critic architecture. It is the off-policy counter-
part of the A3C, with the addition of Experience re-
play memory. ACER uses the Retrace(λ) [56], which 
is an off-policy, Multi-step, value-based RL algorithm 
that reweights samples with a truncated importance 

sampling coefficient 
( | )

1,
( | )

s s
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mate Qπ, and thus, ensure low variance and safe ef-
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4.2.5. TRPO (Trust Region Policy Optimization)
TRPO [57] is a model-free, on-policy, continuous 

control algorithm that works for both discrete and 
continuous action space with actor-critic architec-
ture. TRPO doesn’t support including noise (e.g.drop-
out) or parameter sharing (between policy and value 
function, or auxiliary tasks). TRPO use natural gradi-
ent algorithm [58] to choose automatically the right 
step to apply for updating the policy network, which 
was done manually in DDPG.

TRPO uses an objective function 
0 0, , 0

(( ( ) , ))
old

t
old s a t tt

E A s aθ θ πη π η π γ∞

… =
 = +  ∑

0 0, , 0
(( ( ) , ))

old

t
old s a t tt

E A s aθ θ πη π η π γ∞

… =
 = +  ∑ , which is the expected re-

turn of policy π in terms of the advantage Aπ over the 
old policy πold, and with MM algorithm principle, 
TRPO create and try to maximize a surrogate function 
L(π) which is a local first order approximation of η(πθ) 
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with an importance sampling term 
( )
( )
|
|old
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θ

π
π

to re-
duce variance.

The objective function is optimized when the sur-
rogate function is optimized.
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Maximize L(πθ) under :
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So that the approximation remains valid and also 
avoid dramatic decrease in performance due to large 
changes from the previous policy, TRPO limits the size 
of the update step of the policy network’s parameters, 
by applying KL divergence constraint, that measures 
the average distance between output distribution of 
the old policy network oldθπ  and new policy network 

θπ . KL constrain keep the step size within a “trust 
region” defined by δ, and allows modifying network 
parameters unequally, each one changes according 
to how much it affects the net output distribution re-
garding the KL constrain. So, KL divergence between 
the two networks will be as high as the difference be-
tween the outputs probabilities.

  

( ) ( )

( ) ( )

( )

 , ,

log

old

old

old

KLMaximize L under Dθ θ θπ π π

π δ
 
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∑
  

(34)

By using the 2nd order Taylor series approxima-

tion for the KL divergence : , )
2

( 1 T
KLD θ θ θπ π θ θ+∆ ≈ ∆ ∆F , 

with F, is the fisher information matrix (FIM) as the 
Hessian, and the 1st order Taylor series of L(πθ) is 

( ) ( ) ( ). ( )old old oldL L Lθ θ θ θ θ≈ + − ∇ . So we a have a con-
strained problem to optimize, and then we turning it 
to an unconstrained one using Lagrangian multipliers 
method:

 ( ( . ( )))old old oldL Lθ θ θ θ+ − ∇  and   
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2

T
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(35)

To minimize the quadratic function, we use con-
jugate gradient algorithm (CG) that allows to approx-
imately solve the equation without forming the full 
FIM matrix, followed by a line search.
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TRPO resolved the step size problem but suffers 
from its extremely complicated computation and im-
plementation, especially with FIM and CG. 

4.2.6. PPO & PPO2 (Proximal Policy Optimization)
PPO & PPO2 [59] get rid of the computations in 

TRPO created by KL divergence constraint during the 
optimization process, as it proposes a new surrogate 
objective function LCLIP(θ) by clipping the probability 
ratio rt(θ), which removes the incentive for moving rt 
outside of the interval [1 − ε, 1 + ε], it modifies TRPO’s 
objective function by adding a penalty that sanction 
large policy updates : 
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PPO switch between sampling data from the poli-
cy and performing several epochs of optimization on 
the sampled data, while optimizing the policy.

PPO2 is the GPU-enabled implementation of PPO 
that runs roughly 3X faster than the original version 
of PPO.

4.2.7. ACKTR (Kronecker-Factored Approximation)
ACKTR [60] uses Natural gradient with K-FAC 

applied on the whole network (convolution layers 
and fully connected layers) [61], [62], which is a so-
phisticated approximation to the Fisher information 
matrix used in TRPO, to optimize both the actor and 
the critic. Combined with A2C architecture, where the 
two networks, Actor and Critic, share lower-layer rep-
resentations but have distinct output layers to avoid 
instability during the training.
• Actor: use natural gradient with KL divergence 

constrain to update the network within a trusted 
region, adopting the same approach of TRPO with 
Fisher matrix, conjugate gradient, and line search. 
The K-FAC.

• Critic: least-squares loss using Gauss-Newton 
second-order approximation, the Gauss-Newton 
matrix G = E[JT J] where J is the Jacobian of the 
loss, is a positive semi-definite approximation of 
the Hessian and is equivalent to the Fisher matrix 
which allows applying K-FAC to the critic as well.
A correction is used for the inaccuracies of the lo-

cal quadratic approximation of the objective, by add-
ing (λ + η)I a Tikhonov damping term to the curvature 
matrix FIM, before multiplying −∇L by its inverse, 
which corresponds to imposing a spherical trust-re-
gion on the update.

Be a hidden layer k : si = Wiai–1, and ai = fact(si) fish-
er matrix for this layer under the approximation that 
activations and derivative are independent : 

(37)
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With 1 Cov( ), covk k
La
s−

∂ Ω = Γ =  ∂ 
, in Kronecker 

vectorized form 1k k kF −= ⊗Ω Γ . In practice, a two dif-
ferent Tikhonov damping terms are added to the Kro-
necker factors Wk–1 and Gk:

 ] [′ ′ ′ = + ⊗ + = ⊗ k k i k i k k1 +1F I IΩ α Γ β Ω Γ
   

(39)

Under the approximation that layers are inde-
pendent:
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4.3. DRL challenges 

4.3.1. Credit assignment & Feedback Sparsity 
Reinforcement learning gives good results in many 

use cases and applications, but it often fails in areas 
where the feedback is sparse. 

Conceiving a reward function is a delicate task and 
generally, sparse discrete reward function is easier to 
define (e.g. get +1 if you win the game, else 0). How-
ever, sparse rewards also slow down learning, since 
the agent needs to take many actions before getting 
any reward, which is known as the credit assignment 
problem.

To speed up reinforcement learning algorithms 
and avoid spending a lot of time in areas, that likely 
won’t help agent to achieve the assigned goal, it is 
usually mandatory to craft a continuous reward func-
tion, by shaping it smartly, depending on the environ-
ment and the goal to reach. Instead of having a sparse 
step function, we have a smooth continuous gradient 
function, which gives the agent information about the 
closeness to the goal.

Reward shaping is done by replacing the original 
reward function R of an MDP M={S, A, P, γ, R} by R’ 
of transformed MDP M’={S, A, P, γ, R}, where R’=R+F 
with function F(s,a,s’): SxAxS → |R. To determine the 
right shape of the reward function F(s,a,s’), there are 
two relevant methods:
• Craft function reward manually [63], [64] like in 

Robotic, where F become usually, a function of 
distance and time.

• Use inverse reinforcement learning [65] by 
deriving a reward function (and the goals to 

achieve) from observed expert behavior (like 
using imitation learning to find the right policy) as 
in supervised learning (see Fig. 22).

Fig. 22. Inverse reinforcement learning process

Shaping reward must take into account the fact 
that positive rewards encourage to keep going to 
accumulate reward and avoid terminals unless they 
yield very high reward, while negative rewards push 
the agent to reach a terminal state as soon as possible 
to avoid accumulating penalties. If the staged reward 
function is becoming large and complex, this is a good 
sign you should consider using concept networks in-
stead.

4.3.2. Slow learning
DRL has well-performed in ATARI games and other 

real world tasks, but the pace of learning remain very 
slow, for instance, humans after 15 minutes tend to 
outperform DDQN after 115 hours. Many attempts has 
been made and are still made to bridge this gap, like 
the one-shot imitation learning [66], [67], whose goal 
is to learn in supervised mode, from very few demon-
strations of any given task, and to be able to generalize 
to new situations of the same task, by learning to em-
bed a higher-level representation of the goal without 
using absolute task and use transfer learning to com-
municate the higher level task, without retraining the 
model from scratch, another attempt has been made 
using Model-Agnostic Meta-Learning [68] where the 
agent called meta-learner trains the model or learner 
on a training set of large number of different tasks, so 
as to learn the common features representations of all 
the tasks, then, for a new task, the model with its prior 
experience provided by a good initialization (weights 
transfer) of its parameters, will be fine-tuned using 
the small amount of the new training data brought by 
that task with fewer number of gradient steps while 
avoiding overfitting that may happen when using 
a small dataset.

4.3.3. Complex Task 
An important issue in RL is the learning abili-

ty to solve complex tasks, the main approach is us-
ing the principle of “divide and conquer”, by using 
meta-learning principle, the goal is decomposed to 
a long chain of sub-goals, and learns to accomplish 
those sub-goals and recompose them, to define the 
overall solution. Many solutions have been proposed 
in that sense like:
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• Hierarchical Deep Reinforcement Learning [69] 
or H-DQN where meta-controller learns the 
optimal goal policy and provides it to the controller 
that learns the optimal action policy or sub-policy. 
The meta-controller works at a slower pace than 
the controller and receives external feedback 
from the environment and provides incremental 
feedback for the controller.

• Concept network [70] where concepts are distinct 
aspects of a task that can be trained separately, and 
then combined using a selector concept (or meta-
controller) to compose the complete solution.

4.3.4. Generalization and Meta-Learning
Current AI systems excel at mastering a single skill 

with lower versatility level, the challenge is to general-
ize over unseen instructions and over longer sequences 
of instructions. For the last two years, a lot of research 
has been made on the meta-learning topic, whose goal 
is to make a model that better generalize. In optimiza-
tion, we have the example of DeepArchitect [71] that 
allow to automatically choose the architecture and hy-
perparameters for complex spaces, in meta-learning 
we have the deep meta-reinforcement learning (RL²) 
that has been developed independently by Deepmind 
[72] and Openai [73], whose key ingredient in a Me-
ta-RL system is a Recurrent Neural Network (RNN). 
The RNN-based agent is trained in supervised mode, to 
learn meta-policy that allows to exploit the structure of 
the problem dynamically and learn to solve new prob-
lems without retraining the model, but only by adjust-
ing its hidden state instead of using backpropagation.

4.3.5. Variance & Biases Trade-off
In traditional supervised learning we have:

• Biased model generalizes well, but doesn’t fit the 
data perfectly (under-fitting)

• high-variance model fits the training data 
perfectly but doesn’t generalize well for new data 
(overfitting)
In RL, bias and variance measures show how close 

the reinforcement signal sticks to the true reward 
structure of the environment:
• Bias: refers to good stability with inaccuracy for 

the value estimate. 
• Variance: refers to good accuracy with instability 

(noisy) for the value estimate. 
Assigning credit to an RL agent acting in an en-

vironment can be done with different approaches, 
each with different amounts of variance or bias, for 
example:
• High-Variance Monte-Carlo Estimate: policies 

we are learning are stochastic because of a certain 
level of noise. This stochasticity leads to variance 
in the rewards received in any given trajectory

• High-Bias Temporal Difference Estimate: By 
relying on a value estimate instead of a Monte-
Carlo rollout the stochasticity in the reward signal 
is reduced since the value estimate is relatively 
stable over time. However, we fall in another issue 
since the signal became biased, due to the fact 

that our estimate is never completely accurate. 
In addition, for DQN, Q-estimates are computed 
using the target network which is an old copy of 
the network, providing an older Q-estimates, with 
a very specific kind of bias.
There is a number of approaches that attempt to 

mitigate the negative effect of too much bias or too 
much variance in the reward signal:
• Advantage Learning (reduced variance): Actor-

Critic methods are used to provide a lower variance 
reward signal to update the actor. Aπ(st,at) = 
Qπ(st,at) -Vπ(st), indicates how much better the 
agent actually performed than was expected on 
average, with Q(s, a) Monte-Carlo sampled reward 
signal, and V(s) parameterized value estimate. 
The high variance of the actor is balanced by 
the low-variance feedback on the quality of the 
performance supplied by the critic.

• Generalized Advantage Estimate: allows to 
balance between pure TD learning (bootstrapping 
method that add bias) and pure Monte-Carlo 
sampling (that add variance) by using a parameter 
λ. To produce better performance by trading off 
the bias of V(s) with the variance of the trajectory, 
we choose λ ϵ [0.9, 0.999].
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• Value-Function Bootstrapping & Time Horizon: 
Bootstrapping allows estimation of the Value-
Function distribution using sampling methods. 
To make a compromise between Monte Carlo 
that uses all the episode steps for estimation and 
single-step TD methods that bootstrap, we act on 
the trajectories length to propagate the reward 
signal in a more efficient way. Time horizon 
corresponds to the number of steps of experience 
we collect before adding it to the experience buffer, 
it must be large enough to catch all the relevant 
behaviors within a sequence of an agent’s actions. 
When the time horizon threshold is reached 
before the end of an episode, a value estimate is 
used to predict the expected total reward from the 
agent’s current state. So, long time horizon leads 
to a less biased, but higher variance estimate and 
short time horizon leads to more biased, but less 
varied estimate. In cases where there are frequent 
rewards within an episode or episodes are 
extremely large, a smaller time horizon is more 
adapted. 

4.3.6.  Partial Observability Markov Decision Process 
(POMDP)

In Full MDP case, the agent has access to all the 
information about the environment it might need in 
order to take an optimal action, but real world prob-
lems do not meet this standard. Environments that 
present themselves in a limited way to the RL agent 
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are referred to as Partially Observable Markov Deci-
sion Processes (POMDPs) [74]. In a POMDP, the agent 
receives information that is spatially and temporally 
limited, so it partially describes the current state St, 
therefore, it is replaced by the observation Ot. The 
agent then attempts to predict what it has not sensed, 
by using other available information. 

The main trick used to deal with POMDP is to 
augment the DRL net with an RNN/LSTM layers [45] 
that we position between Convolutional layers and 
fully connected layers, to keep in memory a history 
of the visual features that compensate for the lack of 
information. The Markov property is broken since the 
agent is no more memoryless.

4.4. DRL & RL Applications in the Industry 
In the industry, DRL applications are diverse [75], 

depending on the purpose of the use, it can be split 
into three categories, first usage is for control like in 
robotics, Factory automation, and Smart grids, then 
second usage is for optimization like Supply chain, 
Demand forecasting, Warehouse operations opti-
mization (picking), and finally for monitoring and 
maintenance like Quality control, Fault detection and 
isolation and Predictive maintenance. DRL lifecycle 
is composed of two phases, training phase, where 
we use a rough simulation that run fast and when it 
reaches the accuracy threshold desired, we switch to 
a higher fidelity simulation and retrain the model un-
til it gets the targeted accuracy. For the deployment 
phase, the trained model is used in ground truth and 
tuned on physical equipment in the real world. 

Fig. 23. The development cycle of DRL in the industry

Below some simulators used for RL/DRL in indus-
try, see table 1 below:

Table 1. Most known RL/DRL simulators

Self-Drive-Fly
Mechanic & 

Electric
Robots & Drones

TORCS/Speed 
Dreams 

DeepDrive 
Udacity Simulator 

Unreal Engine 
simulator  

Unity XVEHICLE  
FlightGear 

AirSim

Matlab 
Simulink 

Sinumerik 
Wolfram 

SystemModeler 
OpenModelica

Gazebo 
MuJoCo  

RobotStudio  
RobotExpert 

Ardupilot  
NVIDIA Robotics 

simulator

Self-Drive-Fly
Mechanic & 

Electric
Robots & Drones

Logistics
Medical & 
Chemistry

Security &
Networking

Anylogistix 
Simutrans 
OpenTTD 

RinSim 
MovSim

CHEMCAD 
ParmEd 

PharmaCalc 
SOFA 

SimTK 
ArtiSynth 
SimCyp

VIRL
NeSSI2

NS3
CupCarbon

INET
Conflict 

Simulation 
Laboratory

4.6. Deep RL Hardware 
Neural network tasks like preprocessing input 

data, training the model, storing the trained model 
and deploying it, require intense hardware resource, 
and above all, training task is by far the most time 
and effort consuming, with the multiple forward and 
backward passes that are essentially matrices mul-
tiplications. The number of these operations can ex-
plode with a large network, for instance, VGG16 [30] 
a CNN of 16 hidden layers has ~140 million parame-
ters (weights & biases). 

To reduce the time of training, we can parallelize 
these computations. Thus, we often have the reflex to 
think about the CPU, however, the latter has few cores 
(e.g. 24 cores for INTEL E7-8890 v4) with a huge and 
a complex instruction set that handles every single 
operation (Calculation, memory fetching, IO, inter-
rupts, …). But the GPU contains by far, much more 
cores (e.g. 5120 for Nvidia Titan V and 4096 for AMD 
Radeon Vega 64), each of these cores has simpler in-
struction set and is specialized and optimized to do 
more calculation. In addition, Nvidia and AMD sim-
plify the usage of GPU [76] for deep learning frame-
works, by releasing and supporting high-level lan-
guages Cuda and OpenCL supported and included in 
these frameworks, helping researchers to write more 
efficient programs for their algorithms.

Since GPUs [77] are optimized for video games 
and not deep learning, they have some downsides like 
its higher power draw. Here is 2 alternatives to GPU, 
The first is FPGA which stands for Field programmed 
gate array, it’s a highly configurable processor that al-
lows tweaking the chip’s function at the lowest level, 
it can be tailored specifically for deep nets applica-
tion, so it consumes much less power than GPU, but 
they need highly specialized engineer to be config-
ured. The second is called ASIC (Application-Specif-
ic Integrated Circuit) that is custom-designed chips 
optimized for deep learning, for instance, those made 
by Google named TPU (tensor processor unit), and 
the Nervana Engine built by Intel. To summarize, 
in terms of performance and power efficiency we 
have: ASICs >> FPGA > GPU >> CPU.

4.7. Deep RL Frameworks
General framework libraries that can be used to 

develop deep RL algorithms are Gym and Universe of 
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OpenAI, DeepMind Lab of Google, Project Malmo of 
Microsoft. Regarding the Deep Learning frameworks, 
we have the most known ones mentioned in the fol-
lowing table: 

Table 2. Most known RL/DRL simulators

Dev Tools Supporters Pros Cons

Tens or 
flow

Google, Uber Community, 
ressources, 
documentation, 
CNN++, 
TensorBoard for 
visualization. Good 
for huge network

Slowness

Keras Goosle, Kassle Community, 
documentation, 
compatibility with 
tensorflow, CNTK 
and Theano as hish 
level API.

Caffe2 Facebook, 
Twitter

Fast 
implementation 
and execution

RRN&GAN

Torch 
PyTorch

Facebook, 
Twitter, Nvidia

Community, 
documentation, 
Fast 
implementation & 
execution, CNN++.

CNTK Microsoft RNN++ and NLP community 
support

Paddle Baidu community 
support

Deep
Learnings

JAVA 
Community

Use of Java, 
massively 
distributed

MXNet AMAZON, 
Microsoft

CNN++, massively 
distributed

NLP

Xeon INTEL 
(Nervana)

Fast execution community 
support

Power AI IBM Compatibily with 
IBM Watson

community 
support

5. CONCLUSION
Since the birth of Artificial Intelligence in the 50s, 

researchers in AI, machine learning, cognitive science, 
and neuroscience have wanted to build systems that 
learn, think and act like humans. Deep reinforcement 
learning has made great steps towards the creation of 
artificial general intelligence (AGI) systems that can 
interact and learn from the environment, which lever-
age three main points: 
• Great idea and concepts: many of them were 

discussed in this paper like prioritized replay 
memory, Multi-step learning, reward shaping, 
imitation learning, meta-learning/generalization, 
Natural gradient with K-FAC. 

• High-level libraries/API (Keras, Tensorflow, 
Pytorch) and simulation environment (Openai 
gym, Universe and Mujoco) that provide excellent 
testbeds for RL agents and simplify development 
and research.

• Powerful hardware (GPU & TPU) and high-level 
frameworks (Cuda & OpenCL) make it possible to 
achieve a significant gain in time and efforts. 
However, DRL algorithms still suffer from the 

same drawbacks inherited from deep learning, so 
we still suffer from long training time, slow learn-
ing pace, catastrophic forgetting (of old tasks when 
training on new tasks), opacity of Black-box algo-
rithms (since the chain of reasons for the action 
choice is not humanly-comprehensible). In addition 
to this, we have RL drawbacks like credit assignment 
problem, reward sparsity, variance and bias trade-
off, complex task management, complexity of me-
ta-learning mechanisms and partial observability of 
the environment. 

All these weak points are opportunities for im-
provement, and great challenges to overcome, which 
open widely the field of research for new ideas and 
breakthroughs that will one day lead to realizing 
the dream of seeing a perfectly autonomous and hu-
man-like intelligence in the real world.

AUTHORS
Youssef Fenjiro* – National School of Computer 
Scien ce and Systems Analysis (ENSIAS), Mohammed 
V University, Rabat, Morocco.
Email: fenjiro@gmail.com.

Houda Benbrahim – National School of Computer 
Science and Systems Analysis (ENSIAS), Mohammed 
V University, Rabat, Morocco
Email: benbrahimh@hotmail.com.

*Corresponding author

REFERENCES
 [1] “Sutton & Barto Book: Reinforcement Learning: 

An Introduction.” Available at: http://incomple-
teideas.net/book/the-book-2nd.html

 [2] Stuart J. Russell, Peter Norvig, Artificial Intelli-
gence: A Modern Approach, 3rd edition. ISBN-
13: 978-0136042594

 [3] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning”, 
Nature, vol. 521, no. 7553, May 2015, pp. 436–
444. 

 DOI: 10.1038/nature14539.
 [4] V. Mnih et al., “Human-level control through 

deep reinforcement learning”, Nature, vol. 518, 
no. 7540, pp. 529–533, Feb. 2015. 

 DOI: 10.1038/nature14236.
 [5] A. D. Tijsma, M. M. Drugan, M. A. Wiering, “Com-

paring exploration strategies for Q-learning in 
random stochastic mazes”. In: 2016 IEEE Sym-
posium Series on Computational Intelligence 
(SSCI), Athens, Greece, 2016, pp. 1–8. 

 DOI: 10.1109/SSCI.2016.7849366.
 [6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sut-

skever, and R. R. Salakhutdinov, “Improving 
neural networks by preventing co-adaptation of 
feature detectors,” Jul. 2012. ArXiv:1207.0580 
[Cs]. 



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  12,      N°  3      2018

38 Articles38

 [7] R. Sutton, “Learning to Predict by the Method of 
Temporal Differences,” Mach. Learn., vol. 3, pp. 
9–44, Aug. 1988. 

 DOI: 10.1007/BF00115009
 [8] K. M. Gupta, “Performance Comparison of 

Sarsa(λ) and Watkin’s Q(λ) Algorithms,” p. 8. 
Available at: https://pdfs.semanticscholar.
org/ccdc/3327f4da824825bb990ffb693ce-
af7dc89f6.pdf.

 [9] G. A. Rummery, M. Niranjan, “On-Line Q-Lear-
ning Using Connectionist Systems,” 1994, Cite-
Seer.

[10] Yuji Takahashi, Geoffrey Schoenbaum, Yael Niv, 
“Silencing the Critics: understanding the ef-
fects of cocaine sensitization on dorsolateral 
and ventral striatum in the context of an Actor/
Critic model”, Front. Neurosci., 15 July 2008, 
pp. 86–99. 

 DOI: 10.3389/neuro.01.014.2008l
[11] D. Silver et al., “Mastering the game of Go with 

deep neural networks and tree search”, Nature, 
vol. 529, no. 7587, pp. 484–489, Jan. 2016. 

 DOI: 10.1038/nature16961
[12] S. Hölldobler, S. Möhle, A. Tigunova, “Lessons Le-

arned from AlphaGo,” p. 10. S. H �olldobler, A. Ma-
likov, C. Wernhard (eds.): YSIP2 – Proceedings 
of the Second Young Scientist’s International 
Workshop on Trends in Information Proces-
sing, Dombai, Russian Federation, May 16–20, 
2017, published at http://ceur-ws.org.

[13] David Silver, Deepmind, “UCL Course on RL” 
[14] Luis Serrano, A friendly introduction to Deep 

Learning and Neural Networks. https://www.
youtube.com/watch?v=BR9h47Jtqyw

[15] S. Ruder, “An overview of gradient descent opti-
mization algorithms,” arXiv:1609.04747 [cs], 
Sep. 2016.

[16] N. Qian, “On the momentum term in gradient 
descent learning algorithms,” Neural Netw., vol. 
12, no. 1, pp. 145–151, Jan. 1999. 

 DOI: 10.1016/S0893-6080(98)00116-6.
[17] J. Duchi, E. Hazan, Y. Singer, “Adaptive Subgra-

dient Methods for Online Learning and Sto-
chastic Optimization”, JMLR, vol. 12(Jul), 2011, 
pp. 2121−2159. 

[18] “Rmsprop: Divide the gradient by a running 
average of its recent magnitude – Optimization: 
How to make the learning go faster,” Coursera. 

[19] M. D. Zeiler, “ADADELTA: An Adaptive Learning 
Rate Method,” ArXiv1212.5701 Cs, Dec. 2012. 

[20] D. P. Kingma, J. Ba, “Adam: A Method for Sto-
chastic Optimization,” ArXiv1412.6980 Cs, Dec. 
2014. 

[21] J. Bergstra and Y. Bengio, “Random Search for 
Hyper-parameter Optimization”, J. Mach. Le-
arn. Res., vol. 13, pp. 281–305, Feb. 2012. ISSN: 
1532-4435

[22] J. Snoek, H. Larochelle, R. P. Adams, “Prac-
tical Bayesian Optimization of Machine Le-
arning Algorithms”, p. 9. https://arxiv.org/
pdf/1206.2944.pdf

[23]  Yoshua Bengio, “Gradient-Based Optimization 
of Hyperparameters.” 

 DOI: 10.1162/089976600300015187. 
[24] M. Sazli, “A brief review of feed-forward neural 

networks”, Commun. Fac. Sci. Univ. Ank., vol. 50, 
pp. 11–17, Jan. 2006. 

 DOI: 10.1501/0003168.

[25] Salman Khan, Hossein Rahmani, Syed Afaq 
Ali Shah, A Guide to Convolutional Neural Ne-
tworks for Computer Vision. 

 DOI: 10.2200/S00822ED1V01Y201712COV015
[26] Hamed Habibi Aghdam, Elnaz Jahani Hera-

vi, Guide to Convolutional Neural Networks 
A Practical Application to Traffic-Sign Detection 
and Classification, Springer 2017.

[27] S. Ioffe, C. Szegedy, “Batch Normalization: Ac-
celerating Deep Network Training by Reducing 
Internal Covariate Shift,” ArXiv1502.03167 Cs, 
Feb. 2015. 

[28] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, “Gra-
dient-Based Learning Applied to Document Re-
cognition”. In: Proceedings of the IEEE, 1998, 
pp. 2278–2324. DOI: 10.1109/5.726791.

[29] A. Krizhevsky, I. Sutskever, G. E. Hinton, “Ima-
geNet Classification with Deep Convolutio-
nal Neural Networks”. In: Advances in Neural 
Information Processing Systems, 25, 2012, 
pp. 1097–1105. 

 DOI: 10.1145/3065386.
[30] K. Simonyan, A. Zisserman, “Very Deep Convolu-

tional Networks for Large-Scale Image Recogni-
tion,” ArXiv1409.1556 Cs, Sep. 2014.

[31] C. Szegedy et al., “Going Deeper with Convolu-
tions,” ArXiv1409.4842 Cs, Sep. 2014. 

 DOI: 10.1109/CVPR.2015.7298594.
[32] M. Lin, Q. Chen, S. Yan, “Network In Network,” 

ArXiv1312.4400 Cs, Dec. 2013.
[33] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Le-

arning for Image Recognition,” ArXiv151203385 
Cs, Dec. 2015. 

 DOI: 10.1109/CVPR.2016.90.
[34] G. Huang, Z. Liu, L. van der Maaten, K. Q. Wein-

berger, “Densely Connected Convolutional Net-
works,” ArXiv1608.06993 Cs, Aug. 2016.

[35] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic 
Routing Between Capsules,” ArXiv1710.09829 
Cs, Oct. 2017.

[36] S. Hochreiter and J. Schmidhuber, “Long 
Short-term Memory,” Neural Comput., vol. 9, 
pp. 1735–80, Dec. 1997. 

 DOI: 10.1162/neco.1997.9.8.1735
[37] “Understanding LSTM Networks”. Colah’s blog. 

27/08/2015. https://colah.github.io/post-
s/2015-08-Understanding-LSTMs/.

[38] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, “How 
transferable are features in deep neural ne-
tworks?,” ArXiv1411.1792 Cs, Nov. 2014.

[39] N. Becherer, J. Pecarina, S. Nykl, K. Hopkinson, 
“Improving optimization of convolutional neu-
ral networks through parameter fine-tuning”, 
Neural Comput. Appl., pp. 1–11, Nov. 2017. 

 DOI: 10.1007/s00521-017-3285-0.
[40] “Frame Skipping and Pre-Processing for Deep 

Q-Nets on Atari 2600 Games”, Daniel Take-
shi blog, 25/11/2016 https://danieltakeshi.
github.io/2016/11/25/frame-skipping-and-
preprocessing-for-deep-q-networks-on-atari-
2600-games/.

[41] T. P. Lillicrap et al., “Continuous control with deep 
reinforcement learning,” ArXiv1509.02971 Cs 
Stat, Sep. 2015.

[42] A. S. Lakshminarayanan, S. Sharma, B. Ravin-
dran, “Dynamic Frame skip Deep Q Network,” 
ArXiv1605.05365 Cs, May 2016.



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  12,      N°  3       2018

39Articles 39

[43] S. Lewandowsky, S.-C. Li, Catastrophic inter-
ference in neural networks: Causes, solutions, 
and data, Dec. 1995. 

 DOI: 10.1016/B978-012208930-5/50011-8
[44] A. Nair et al., “Massively Parallel Me-

thods for Deep Reinforcement Learning”, 
ArXiv1507.04296 Cs, Jul. 2015.

[45] M. Hausknecht, P. Stone, “Deep Recurrent 
Q-Learning for Partially Observable MDPs,” 
ArXiv1507.06527 Cs, Jul. 2015.

[46] H. van Hasselt, A. Guez, D. Silver, “Deep Rein-
forcement Learning with Double Q-learning,” 
ArXiv1509.06461 Cs, Sep. 2015.

[47] T. Schaul, J. Quan, I. Antonoglou, D. Silver, “Prio-
ritized Experience Replay,” ArXiv1511.05952 
Cs, Nov. 2015.

[48] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, 
M. Lanctot, N. de Freitas, “Dueling Network Ar-
chitectures for Deep Reinforcement Learning”, 
ArXiv1511.06581 Cs, Nov. 2015.

[49] M. Fortunato et al., “Noisy Networks for Explo-
ration,” ArXiv1706.10295 Cs Stat, Jun. 2017.

[50] M. Hessel et al., “Rainbow: Combining Impro-
vements in Deep Reinforcement Learning,” 
ArXiv1710.02298 Cs, Oct. 2017.

[51] V. Mnih et al., “Asynchronous Methods for Deep 
Reinforcement Learning,” ArXiv1602.01783 Cs, 
Feb. 2016.

[52] J. Schulman, P. Moritz, S. Levine, M. Jordan, 
P. Abbeel, “High-Dimensional Continuous Con-
trol Using Generalized Advantage Estimation,” 
ArXiv1506.02438 Cs, Jun. 2015.

[53] M. Jaderberg et al., “Reinforcement Lear-
ning with Unsupervised Auxiliary Tasks,” 
ArXiv1611.05397 Cs, Nov. 2016.

[54] H. Noh, S. Hong, B. Han, “Learning Deconvo-
lution Network for Semantic Segmentation”, 
ArXiv1505.04366 Cs, May 2015. 

 DOI: 10.1109/ICCV.2015.178.
[55] Z. Wang et al., “Sample Efficient Actor-Critic 

with Experience Replay”, ArXiv1611.01224 Cs, 
Nov. 2016.

[56] R. Munos, T. Stepleton, A. Harutyunyan, 
M. G. Bellemare, “Safe and Efficient Off-Policy 
Reinforcement Learning”, ArXiv1606.02647 Cs 
Stat, Jun. 2016.

[57] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, 
P. Abbeel, “Trust Region Policy Optimization,” 
ArXiv1502.05477 Cs, Feb. 2015.

[58] S. M. Kakade, “A Natural Policy Gradient,” p. 8. 
https://papers.nips.cc/paper/2073-a-natural-
-policy-gradient.pdf

[59] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, 
O. Klimov, “Proximal Policy Optimization Algori-
thms,” ArXiv1707.06347 Cs, Jul. 2017.

[60] Y. Wu, E. Mansimov, S. Liao, R. Grosse, Ba, “Scala-
ble trust-region method for deep reinforcement 
learning using Kronecker-factored approxima-
tion,” ArXiv1708.05144 Cs, Aug. 2017.

[61] J. Martens, R. Grosse, “Optimizing Neural Ne-
tworks with Kronecker-factored Approxima-
te Curvature,” ArXiv1503.05671 Cs Stat, Mar. 
2015.

[62] R. Grosse, J. Martens, “A Kronecker-factored 
approximate Fisher matrix for convolution lay-
ers,” ArXiv1602.01407 Cs Stat, Feb. 2016.

[63] Bonsai “Writing Great Reward Functions” Youtu-
be https://www.youtube.com/watch?v=0R3Pn-
JEisqk

[64] X. Guo, “Deep Learning and Reward Design for 
Reinforcement Learning,” p. 117.

[65] A. Y. Ng, S. Russell, “Algorithms for Inverse Re-
inforcement Learning”. In: ICML 2000 Proc. 
Seventeenth Int. Conf. Mach. Learn., May 2000. 
ISBN:1-55860-707-2

[66] Y. Duan et al., “One-Shot Imitation Learning,” 
ArXiv1703.07326 Cs, Mar. 2017.

[67] “CS 294 Deep Reinforcement Learning, Fall 
2017”, Course. 

[68] C. Finn, P. Abbeel, S. Levine, “Model-Agnostic 
Meta-Learning for Fast Adaptation of Deep Ne-
tworks,” ArXiv1703.03400 Cs, Mar. 2017.

[69] D. Kulkarni, R. Narasimhan, “Hierarchical Deep 
Reinforcement Learning: Integrating Tem-
poral Abstraction and Intrinsic Motivation.” 
arXiv:1604.06057 Cs. 

[70] A. Gudimella et al., “Deep Reinforcement Lear-
ning for Dexterous Manipulation with Concept 
Networks,” ArXiv1709.06977 Cs, Sep. 2017.

[71] R. Negrinho and G. Gordon, “DeepArchitect: Au-
tomatically Designing and Training Deep Archi-
tectures,” ArXiv1704.08792 Cs Stat, Apr. 2017.

[72] J. X. Wang et al., “Learning to reinforcement le-
arn”, ArXiv1611.05763 Cs Stat, Nov. 2016.

[73] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sut-
skever, P. Abbeel, “RL$^2$: Fast Reinforcement 
Learning via Slow Reinforcement Learning,” 
ArXiv1611.02779 Cs Stat, Nov. 2016.

[74] M. T. J. Spaan, “Partially Observable Markov De-
cision Processes,” Reinf. Learn., p. 27. 

 DOI: 10.1007/978-3-642-27645-3_12 
[75] Bonsai, M. Hammond, Deep Reinforcement Le-

arning in the Enterprise: Bridging the Gap from 
Games to Industry”, Youtube. https://www.
youtube.com/watch?v=GOsUHlr4DKE

[76] Emine Cengil, Ahmet Çinar, “A GPU-based co-
nvolutional neural network approach for image 
classification”. 

 DOI: 10.1109/IDAP.2017.8090194 
[77] “Why are GPUs necessary for training Deep 

Learning models?”, Analytics Vidhya, 18-May-
2017.


