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Abstract�

Further results of research into parsable graph gram�
mars used for s�ntac�c pa�ern recogni�on �Pattern Re-
cognition� ��� ������� ������� ��� ������� ������� ���
����� ������� ��� ���� ������� ��� ��������� �������
Comput. Vision Graph. Image Process. ��� ���� �������
Computer-Aided Design ��� ������� ������� Theoret.
Comp. Sci. ���� ������� ������� Pattern Analysis Appli-
cations bf ��� ������� ������� are presented in the pa�
per� �he genera��e power of reduc�on�based parsable
ETPR graph grammars is in�es�gated� �he analog�
between the triad of CF - LL � LR string languages
and the triad of NLC - ETPL � ETPR graph langua�
ges is discussed�

Keywords� s�ntac�c pa�ern recogni�on� graph gram�
mar� parsing

�� ��trod�c�o�

Graph grammars are the strongest descrip-
tive�generative formalism in the theory of formal
languages and automata, if compared with string or
tree grammars. They are used for the synthesis of
formal representations in various important areas
of computer science such as: software engineering,
�syntactic� pattern recognition, database design, pro-
gramming languages and compiler design, computer
networks, distributed and concurrent computing,
logic programming, computer vision, IT systems for
chemistry and biology, arti�icial intelligence �natural
language processing, knowledge representation and
rule-based systems� ���, ��, ���. However, the use of
graph automata�parsers as tools for the analysis of
graph representations in these application areas is
strongly limited because the membership problem
for graph languages is PSPACE- or NP- complete.
Research into this problem has been undertaken
for �� years. The �irst graph automata were de�ined
in the ����s by Blum and Hewitt ���. For Pfaltz-
Rosenfeld web grammars generating node-labelled
graphs with embedding transformations that specify
inheriting edges by pointing out proper nodes of
right-hand side graphs ����, the web automata were
de�ined by Rosenfeld and Milgram ���� in ���� and
in ���� the web parser by Brayer ���. In ���� Franck
constructed the precedence relations-based syntax
analyzer, , is the number of nodes, ���� for
NLC-like grammars ���, ���� with restricted embed-
ding transformations. �Later, the complexity is stated
with respect to the number of nodes .� In the same

year Della Vigna and Ghezzi ��� proposed the parser,
, for grammars based on the Pratt model, in

which the embedding transformation is de�ined by
determining input �output� nodes of right-hand side
graphs which inherit the edges of left-hand sides ����.
The precedence relations-based parser, , was
constructed by Kaul ���� for NLC-like grammars. In
the early ����s, subclasses of graph grammars with
polynomial membership problem were studied by
Brandenburg ���, Slisenko ����, and Turan ����. Sub-
sequently, the parsing algorithm, , for expansive
graph grammars was formulated by Fu and Shi in
���� ����. In ���� the polynomial parsing algorithm
for boundary NLC languages was de�ined by Rozen-
berg and Welzl ����. During the �irst half of ����s
three parsing algorithms, , based on the analogy
to LL grammars ���, ��� were de�ined: for the re-
gular ETL subclass of edNLC languages ���,���, the
error-correcting parser ����, and for the context-free
ETPL subclass of edNLC languages ����. The �irst
�polynomial� parser for Habel-Kreowski�Bauderon-
Courcelle hyperedge replacement grammars, HR
grammars, ��, ��� was constructed by Lautemann
in ���� ����. The succeeding parsers for this class
of graph grammars were proposed by Vogler in
���� �the Cocke-Kasami-Younger-based parser�,

, ����, by Seifert and Fischer in ���� �the
Earley-based parser�, , ����, by Mazanek and
Minas in ���� �a method based on polynomial graph
parser combinators� ����, and in ���� by Drewes,
Hoffmann and Minas for the predictively top-down
parsable subclass of HR grammars, , ���. Two
polynomial syntax analyzers for Feder plex grammars,
which generate graph-like structures �called plexes�
consisting of nodes with pre-de�ined attaching points
�called napes�, ���� were constructed independently
by Bunke and Haller ��� and by Peng, Yamamoto and
Aoki ���� in ����. For relational grammars; in which
the right-hand sides are structures de�ined with
relations between labelled objects and embedding
is performed in an analogous way - as with plex
attaching points; parsing algorithms were proposed
by Wittenburg, Weitzman and Talley in ���� �ex-
ponential� ���� and in ���� by Tucci, Vitiello and
Costagliola �polynomial� ����. In ���� Wills publis-
hed a paper on exponential Earley-based parsing for
attributed �low graph grammars ����, which can be
treated as plex grammars with attributes generating
directed acyclic graphs. The exponential parser for
layered graph grammars was constructed by Rekers
and Schürr in ���� ����. Layered graph grammars
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are context-sensitive grammars with decomposing
node and edge alphabets into more than two layers
�i.e. terminal and nonterminal layers� and imposing
a kind of lexicographical order on graphs based on
layers. The polynomial syntax analyzer for reserved
graph grammars, which are layered grammars with
reversed productions �to make parsing ef�icient�,
was de�ined by �hang, �hang and Cao in ���� ����.
The automata for Janssens-Rozenberg NCE graph
languages ���� were de�ined by Brandenburg and
Skodinis in ���� ���.

Graph grammars can be divided into two large fa-
milies according to the embedding mechanism: gram-
mars with connecting embedding �the set theoretic
approach, the algorithmic approach� and grammars
with gluing embedding �the algebraic approach� ����.
Within each of these families two standard classes
of graph grammars, which are interesting for de�i-
ning practical parsing algorithms, are distinguished
����. The grammars with connecting embedding are
VR �vertex replacement� grammars, mainly NCE-like
�Neighbourhood Controlled Embedding� grammars
���� and NLC-like �Node Label Controlled� grammars
���,���. The grammars with gluing embedding areHR
�hyperedge replacement� grammars ��, ���. Research
into de�ining the subclasses with polynomial mem-
bership problem of NLC-like grammars and their ap-
plications has been carried out for the last �� years.

The previously mentioned parsable ETPL
subclass of edNLC graph grammars has been success-
fully used for practical applications �see below�.
Moreover, the inference algorithm for ETPL graph
languages has been de�ined ���� and its descriptive
power was characterized ����. Nevertheless, in some
cases its power limitations have been revealed. These
limitations result from constraints imposed on the
de�inition of ETPL grammar in order to make it
parsable in a top-down manner. ETPL grammars
have been de�ined analogously to top-down parsable
�string� LL grammars ���, ���. It is also known
that Knuth�s reduction-based �bottom-up� parsable
�string� LR grammars ���� have a greater gene-
rative power than LL grammars. Therefore, the
reduction-based parsable ETPR subclass of edNLC
graph grammars has been de�ined ���, ���. Both
classes, i.e. ETPL and ETPR have been applied
successfully for scene analysis in robotics ����, soft-
ware allocation in distributed systems ����, CAD�CAM
integration ���, ���, reasoning in real-time expert
systems ��, ���, mesh re�inement ��inite element
method, FEM� in CAE systems ����, sign language
recognition ���,���, and computer vision ����. Howe-
ver, to date the formal properties of ETPR graph
grammars have not been presented.

The generative power of ETPR graph grammars
with polynomial membership problem is presented
and the analogies between parsable subfamilies of CF
string and edNLC graph languages are discussed in
this paper. The de�initions pertaining to edNLC graph
grammars are given in Section �. Notions of indexed
and reversely indexed edge-unambiguous graphs that

enable linear ordering on EDG graphs ���� to be in-
troduced are presented in Section �. The de�initi-
ons concerning edNLC graph languages with polyno-
mial membership problem are included in Section �.
The generative power of the reduction-based parsable
ETPR subclass of edNLC graph languages is investi-
gated in Section �. The discussion on the analogy be-
tween the triad of CF - LL - LR string languages
and the triad of NLC - ETPL - ETPR graph lan-
guages is presented in Section � and the �inal section
consists of concluding remarks.

�� Preliminaries

In this section the basic de�initions of EDG graph,
edNLC graph grammar and edNLC graph language are
introduced ���,���.

A directed node- and edge-labelled graph,
EDG graph, over and is a quintuple

,

where is a �inite� non-empty set of nodes,
is a �inite� non-empty set of node labels,
is a �inite� non-empty set of edge labels,
is a set of edges of the form , in which

, and
is a node-labelling function.

The family of the EDG graphs over and is deno-
ted by . The components of a graph
are sometimes denoted with .

Let , ,
and be EDG graphs. An

isomorphism from onto is a bijective function
from onto such that

We say that is isomorphic to , and denote it with
.

A graph is a �full� subgraph of iff
: and is the restriction

to of .

An edge-labelled directed Node Label
Controlled, edNLC, graph grammar is a quintuple

,

where is a �inite� non-empty set of node labels,
is a set of terminal node labels,

is a �inite� non-empty set of edge labels,
is a �inite set of productions of the form , in

which
is the embedding transformation,

is the starting graph called the axiom.

Let be an edNLC
graph grammar.
��� Let . Then directly derives in

, denoted by , if there exists a node
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Fig� �� �� ��amp�� �� a ��ri�a��� ���p i� a� edNLC graph grammar�

and a production in such that the following
holds.

�a� .
�b� There exists an isomorphism from onto the

graph in constructed as follows. Let be
a graph isomorphic to such that and

let be an isomorphism from onto . Then

where

,

if
if ,

or
and there exists an

edge such that

and there exists an

edge such that

and there exists an

edge such that

and there exists an

edge such that
.

��� By � wedenote the transitive and re�lexive clo-

sure of .
��� The language of , denoted , is the set

�

An example of a derivation step of an edNLC gram-
mar is shown in Fig. �.

The graph which will be transformed is shown
in Fig. �a., whereas the left-hand side and the

right-hand side of a production are shown in Fig. �b.
Let us assume that the embedding transformation is
de�ined as follows:

�i� ,

�ii� ,

�iii� .

The derivation step is performed in two parts.
During the �irst stage the node labelled with of
the graph �corresponding to the left-hand side of
the production� is removed, and the graph of the
right-hand side replaces the removed node. The trans-
formed graph obtained by removing the node �cf.

in De�inition �� and its ad�acent edges �cf.
or in De�inition ��

is called the rest graph. During the second stage, the
embedding transformation is used in order to connect
certain nodes of the right-hand side graph with the
rest graph. The item is interpreted as follows:
�� Each edge labelled with and coming the node

corresponding to the left-hand side of the pro-
duction, i.e. , shall be replaced by

�� the edge:

a� connecting the node of the graph of the right-
hand side of the production and labelled with

with the node of the rest graph and labelled
with ,

b� labelled with ,

c� and going from the node .
Thus the item of the embedding transformation ge-
nerates the edge of the graph , shown in Fig. �c, which
is labelled with and connects the nodes labelled
and on the basis of the edge of the graph label-
led and connecting the nodes labelled and �re-
direction and relabelling�. The item duplicates an
edge, and the item deletes an edge.
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Fig� �� An example of an IE graph �a� and an rIE graph �b��

In this paper edNLC productions are depicted ac-
cording to the diagrammatical convention used in ����
�see Fig. �d for the example production�. The left-hand
side is depicted with a box carrying its label in the up-
per left corner. The box contains the right-hand side
graph. The area outside the box represents the envi-
ronment of the right-hand side graph. The labelled ar-
rows pointing to�from the box to the outside specify
the domain of the embedding transformation. The la-
belled arrowswhich continue an outside arrow inside
the box specify the embedding of this �outside� edge.
Thus, the outside arrow can be re-established �with
possible redirection�relabelling�, duplicated �if conti-
nued by more than one arrow� or deleted �if not con-
tinued�.

�� edNLC Graph Languages with Polynomial
Membership Problem

As discussed in ����, there are two main reasons
for the problems with constructing ef�icient parsing
algorithms for graph languages �compared to the al-
gorithms for string and tree languages� the lack of or-
dering of the graph structure and the complexity of the
embedding transformation. Firstly, consider the orde-
ring problem.

Note that the main concept of a reduction-
based syntax analysis consists of analyzing the
sentence�structure in order to identify consecutive
subphrases�sub-structures �handles� that correspond
to right-hand sides of the productions. Once a handle
is identi�ied, it is consumed, i.e. it is reduced to the
left-hand side of the appropriate production. �In a
top-down parse, handles have to be identi�ied as well
in order to �ind the appropriate production to be ap-
plied.� In the case of a graph structure, this means to
look for a subgraph �a handle� that is isomorphic to a
given graph, i.e. resolving the subgraph isomorphism
problem, which is known to be NP-complete.

To resolve this problem we have introduced
two subclasses of EDG graphs called indexed edge-
unambiguous graphs, IE graphs ���, ��� and reverse
indexed edge-unambiguous graphs, rIE graphs ���� in
which a linear order on a set of nodes is de�ined. A
transformation of an EDG graph into an �r�IE graph

can be performed, if the former is an interpreted graph
����, i.e. it represents some real-world structure�.

Now, let us introduce the way of indexing
graph nodes, which has been used for de�ining
the top-down parsable ETPL graph gram-
mars ����. Let be an EDG
graph, . We de�ine a set of indices
Ind for . is called an indexed graph
if indices of Ind have been ascribed to nodes of with
a bijective function.

Let be an EDG graph over and . An
indexed edge-unambiguous graph, IE graph, over and
de�ined on the basis of the graph is an EDG graph

which is isomorphic to up to the
direction of the edges�, such that the following condi-
tions are ful�illed.
�. contains a directed spanning tree such that no-
des of have been indexeddue to the Level Order Tree
Traversal �LOTT��.
�. Nodes of are indexed in the sameway as nodes of
.
�. Every edge in is directed from the node having a
smaller index to the node having a greater index.

The family of all the IE graphs over and is
denoted by .

An example of an IE graph is shown in Fig. �a.
The indices are ascribed to the graph nodes according
to LOTT. The edges of the spanning tree are thicke-
ned.

The way of indexing nodes according to LOTT
is convenient if one uses a top-down parsing
scheme ����. In this paper reduction-based �bottom-
up� parsable ETPR graph grammars are characteri-
zed. The graphs generated by these grammars should
be indexed according to a scheme that allows one
to apply a reduction-based parsing scheme, i.e. the
parser produces the rightmost derivation in reverse.
�As it is made for Knuth�s �string� LR parsers ����.�
Thus, we have to de�ine a new traversal scheme for
the tree spanned on an EDG graph. Such a scheme has
been introduced in ����. It is analogous to the LOTT
�BFS� scheme, however it uses a LIFO queue �i.e. a
stack� instead of a FIFO queue. We call it the Reverse
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Fig� �� An example of an ETPL�k��ETPR�k� graph grammar

Level Order Tree Traversal �RLOTT�. Now reversely
indexed edge-unambiguous graphs can be de�ined.

Let be an EDG graph over and . A
reversely indexed edge-unambiguous graph, rIE graph,
over and de�ined on the basis of the graph is an
EDG graph which is isomorphic to
up to the direction of the edges, such that the follo-

wing conditions are ful�illed.
�. contains a directed spanning tree such that no-
des of have been indexed due to the Reverse Level
Order Tree Traversal �RLOTT�.
�. Nodes of are indexed in the sameway as nodes of
.

�. Every edge in is directed from the node having a
smaller index to the node having a greater index.

The family of all the rIE graphs over and is
denoted by .

An example of an rIE graph is shown in Fig. �b.
The indices are ascribed to the graph nodes according
to RLOTT. The edges of the spanning tree are thic-
kened.

Let us introduce the notion of node level. We say
that a node of the IE �rIE� graph is on level , if is
on level of the spanning tree� constructed as in
�e�inition � ��e�inition ��.

We de�ine the string-like graph representation of
IE �rIE� graphs as in ����. �This form of representation

was originally de�ined for graphs in ����.�

Let be the node of an IE �rIE�
graph . A characteristic description
of is the quadruple ,
where is the label of the node , i.e. ,
is the out-degree of �the out-degree of the node
designates the number of edges going out from this
node�, is the string of node indices to which
edges going out from come �in increasing order�,

is the string of edge labels ordered in such
a way that the edge having the label comes into the
node having the index .

For example,

is the characteristic description of the node indexed
with in the graph shown in Fig. �a.

Let be an IE �rIE�
graph, where is the set of nodes in-
dexed such that is indexed with ,
is the characteristic description of the node . The
string is called the characteristic descrip-
tion of the graph .

Assuming a way of indexing of the graph from
Fig. �a as it has been de�ined above, we obtain the fol-
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lowing characteristic description of this graph.

Now, the formal properties of the ETPR
reduction-based parsable subclass of edNLC lan-
guages can be presented. As this subclass will be
compared with the ETPL top-down parsable
subclass of edNLC languages� in the next section,
de�initions for both classes must be introduced.
Fortunately, most corresponding notions for both
classes differ only slightly, so they may be formalized
by single de�initions with modi�ications. �The modi�i-
cations for the ETPR class are written in brackets
in the de�initions.�

Firstly, to reduce the computational complexity of
a single step of the parsing algorithm the following
constraint is imposed on the form of the right-hand
side graphs of the productions.

Let be an edNLC
graph grammar. The grammar is called a TLP graph
grammar, abbrev. from Two-Level Production, if the
following conditions are ful�illed.
�. is a �inite set of productions of the form ,
where : �a� ,
�b� is the IE �rIE for the ETPR class� graph having
the characteristic description :

is a characteristic description of the node
�i.e. is a terminal la-

bel� and are nodes on level �,
�c� is the
embedding transformation.
�. is an IE �rIE� graph such that its characteristic
description satis�ies the condition de�ined in point
��b�.

An example of a TLP grammar is shown in Fig. �.
Now, we will introduce restrictions on the deriva-

tion process, i.e. on the embedding transformation.
The NLC-like embedding transformation operates at
the border between the left- and right-hand sides
of a production and their context. Thus, we do not
have the important context freeness property stated
that reordering of the derivation steps does not
in�luence the result of the derivation. The lack of the
order-independence property, related to the �inite
Church-Rosser, fCR, property �non-overlapping steps
can be done in any order�, results in the intractability
of the parsing. Therefore, the power of the NLC-like
embedding transformation must be limited in order
to obtain the fCR property and to guarantee ef�iciency
of parsing. For example, in boundary NLC graph

grammars, de�ined by �ozenberg and �elzl ����,
nonterminal nodes cannot be adjacent �in right-hand
side graphs and in the axiom�. In our model ���, ���
we limit the power of the embedding transformation
in the following way. Firstly, we require that all graphs
in a derivation are �r�IE graphs. In fact, this require-
ments restricts the embedding transformation, which
cannot redirect edges. Secondly, we require that a
derivation process is performed according to the
linear ordering imposed on IE �rIE� graphs�. It is also
assumed ���,��,��� that during a derivation step, the
root of the right-hand side inherits the index from the
replaced node �corresponding to the left-hand side�
and the remaining nodes of the right-hand side get
the next available indices.

ATLPgraphgrammar is calleda closed
TLP �rTLP� graph grammar if for each derivation of
this grammar

each graph is an IE �rIE� graph.

Let there be given a derivation of a clo-
sed TLP �rTLP� graph grammar :

This derivation is called a regular left-hand �right-

hand� side derivation, denoted � � if :

��� for each a production for a
nonterminal node having the least �greatest� index in
a graph is applied,
��� node indices do not change during a derivation.
A closed TLP �rTLP� graph grammar which rewrites
graphs according to the regular left-hand �right-
hand� side derivation is called a closed TLPO �rTLPO�
graph grammar, abbrev. from �reverse� Two-Level
Production-Ordered.

In order to achieve the requirements imposed by
�e�initions � and ��, the embedding transformation
of each production should ful�il the following
conditions.
�. has to re-introduce �without re-directing� the in-
coming edge belonging to the spanning tree of the
derived �r�IE graph �cf. �e�initions � and ��.
�. Any other incoming edge can be re-introduced and
duplicated without re-directing. It can also be deleted.
�. An outcoming edge can be:
�a� deleted,
�b� re-introduced without re-directing,
�c� used for generating new edges coming into nodes
of level � of the right-hand side�.

Let us de�ine the concepts used for extracting
handles in the analyzed graphs which are matched
against the right-hand sides of productions during
the graph parsing. These concepts will be used for the
ETPL class as well as for the ETPR .

Let be an IE �rIE� graph, the index of
some node of de�ined by a characteristic description
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Fig� �� An example of an ETPL�k� �e�i�a�on

� �. A subgraph of the graph
consisting of the node indexed with , nodes having
indices ,
and edges connecting the nodes indexed with:

is called anm-successors handle,
denoted . By we
denote the subgraph of consisting only of the node
indexed with .

If the subgraph of the graph from �e�inition ��
consists of the node indexed with , nodes having in-
dices , and edges connecting
the nodes indexed with: , then it is
denoted .

Now, the fundamental constraint which is analo-
gous to that used in a de�inition of string LL gram-
mars can be imposed. This constraint allows an ef�i-
cient, non-backtracking, top-down parsing scheme for
edNLC grammars to be constructed. In order to intro-
duce the idea of this scheme in an intuitive way, an
LL grammar ���,��� is de�ined.

Let , a set of symbols, a set
of terminal symbols, a set of productions and the
starting symbol, be a context-free grammar. Let

, and denote the length of the string .
FIRST denotes a set of all the terminal pre�ixes of
strings of length �or less than , if a terminal string
shorter than is derived from � that can be derived
from in the grammar �, i.e.

FIRST �

� .

Let � denote a leftmost derivation in , that is a

derivation such that a production is always applied
to the leftmost nonterminal��, be a set of
nonterminal symbols.

Let be a context-free
grammar. The grammar is called an LL grammar
if for every two leftmost derivations

� �

� � ,

where the follo-
wing condition holds.

If FIRST FIRST then .

The LL condition means that for any step du-
ring a derivation of a string in , we can choose
a production in an unambiguous way on the basis of
an analysis of some part of which is of length at
most . We can say that an LL grammar has the
property of an unambiguous choice of a production
given the -length pre�ix in the leftmost derivation.
Now, by analogy, we de�ine a PL graph grammar
which has the property of an unambiguous choice of
a production given the graph in the regular
left-hand side derivation.

Let be a clo-
sed TLPO graph grammar. The grammar is called a
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PL , abbrev. Production-ordered -Left nodes unam-
biguous, graph grammar if the following condition is
ful�illed. Let

� �

and

� � ,

where � is the transitive and re�lexive closure of

, be two regular left-hand side derivations, such

that is a characteristic description of a node indexed
with , and and are characteristic descriptions
of subgraphs. Let be a number of nodes of the
graph . If

then

For example, our graph grammar shown in Fig. � is
PL . Aswe can see in Fig. � in order to identify which
production has been applied to a node indexedwith �,
we have to analyze graphs originated in this
node. � graphs for productions � and � are the
same.�

For de�ining reduction-based �bottom-up� parsa-
ble graph grammars we have used the same metho-
dology as in the case of top-down parsable grammars.
That is, we have imposed a constraint which is ana-
logous to that used in the de�inition of �nuth�s string

LR grammars ���� allowing us to construct an ef-
�icient, non-backtracking, bottom-up parsing scheme
for edNLC grammars. Therefore, we �irstly de�ine an
LR grammar.

Let � denote a rightmost derivation in , that is

a derivation such that a production is always applied
to the rightmost nonterminal��. A string which occurs
in the rightmost derivation of some sentence is called
a right-sentential form.

Let be a context-free
grammar. The grammar is called an LR grammar
if for every two rightmost derivations

�

� ,

where the
following condition holds.

If FIRST FIRST then , , .

The LR condition means that for each right-
sentential form we can identify a handle �i.e. the
right-hand side of some production� and we can
choose a production in an unambiguous way�� by
looking at most symbols beyond the handle. We can
say that an LR grammar has a property of both
the identi�ication of a handle and an unambiguous
choice of a production given symbols ahead in a
right-sentential form. �ow, by analogy, we de�ine a
PR graph grammar, which has the property of both
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an identi�ication of a handle and an unambiguous
choice of a production given a graph beyond
the handle in a regular right-hand side derivation.

Let be a closed rT-
LPO graph grammar. The grammar is called a PR�k�,
abbrev. Production-ordered -Right nodes unambigu-
ous, graph grammar if the following condition is ful�il-
led. Let

� ,

� ,

and

,

where � is the transitive and re�lexive closure of

, , are characteristic descriptions of certain

nodes, , , , , are characteristic descrip-
tions of subgraphs, is the right-hand side of a pro-
duction: .
Then:

, , .

The last restriction that has to be imposed con-
cerns the embedding transformation. We have already
introduced limitations for the embedding transfor-
mation which guarantee that all graphs during a
derivation are IE �rIE� graphs and that node indices
do not change during a derivation ��e�initions � and
���. Nevertheless, these conditions do not guarantee
that during parsing the characteristic description
of a node does not change �e.g. after its analysis by
a parser�. Of course, it is an unwanted effect. For
example, let us modify the de�inition of production
� of our grammar shown in Fig. �e. A modi�ied
production ���� is shown in Fig. �b. The results of
applying productions � and �� to a graph shown in
Fig. �a are shown in �igures �c and �d, respectively.
One can easily notice that during parsing with the
modi�ied grammar, after analyzing a node indexed
with �, its characteristic description changes, because
the embedding transformation of production �� does
not re-introduce an edge labelled with . We will
claim such edges need to be re-introduced. Let us also
notice that the issue concerns only edges incoming to
the root of the right-hand side, since they have already
been analyzed by the parser. �If the embedding trans-
formation for the root node does not re-introduce

an edge outgoing from , then the parser, analyzing
the handle originated at , �sees� such a situation.�

Let be a PL� �
�PR� �� graph grammar. A pair ,
is called a potential previous context for a node
label , if there exists the IE �rIE� graph

belonging to a certain regular
left-hand �right-hand� side derivation in such that :

and .

A PL� � �PR� �� graph grammar
is called an ETPL �ETPR �,

abbrev. from Embedding Transformation - preserving
Production-ordered -Left � -Right� nodes unam-
biguous, graph grammar if for each production

the following condition is ful�illed.
Let , , where

, be labels of nodes indexed with
of the right-hand side graph . For each poten-
tial previous context for , there exists

. If ,
then , i.e. .

A parsing algorithm, , for ETPR graph
grammar was de�ined in ����. It is a slight modi�ica-
tion of the parsing scheme for ETPL graph gram-
mar ����.

�� �e�e����e ���e� �� ������� g���� ���g���
ges

In this section the generative power of ETPR
graph languages is characterized in an analogous way
as was made for ETPL graph languages in ����. Fi-
nally, two theorems concerning both classes of langua-
ges are proved.

Let denote a class of graph grammars. Then
denotes a set of graph languages such that there

exists an grammar and .
Additionally, we say that a language is ETPL
�ETPR �, if there exists an ETPL �ETPR � gram-
mar such that .

Firstly, we will show that the class of ETPR
languages is a proper subclass of the class of edNLC
languages. Comparing the generative power of both
classes, we are interested in their intrinsic properties,
which do not result from assuming the speci�ic index-
ing for graphs as in the case of ETPR languages.
�Since, obviously, any �ordered� version of a class of
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graph languages is its �subfamily�.� Therefore, to com-
pare the essential generative power of both families
an ordered version of �pure� edNLC languages will be
de�ined.
Let . Then denotes a graph obtai-
ned from by indexing its nodes and re-directing
�if necessary� its edges in such a way that ful�ils
the conditions of �e�inition �, i.e. is an rIE graph.

A grammar is called an ordered

edNLC grammar corresponding to , denoted edNLC ,
if

�

� and .

Theorem �. For any

ETPR edNLC .

Proof. PART �: ETPR edNLC .

��



Let ETPR , i.e. there exists an ETPR gram-
mar such that . We should show that

edNLC , i.e. that there exists an edNLC gram-
mar such that .

One can easily note that setting is suf�i-
cient, because any ETPR grammar is also an edNLC
grammar.
PART �: ETPR edNLC .
Wewill de�ine a language edNLC that cannot
be generated by any ETPR graph grammar. Let us
introduce a language which is of the complementary
palindromic form. In case of strings, a complementary
palindrome is a sequence of symbols which reads in
reverse as the complement of the forward sequence.
It means that for each symbol its complementary sym-
bol has to be de�ined. For example, in DNA a symbol
is complementary to , and is complementary to .
Thus, for example the DNA sequence is
a complementary palindrome.

Let consist of rIE graphs of the complemen-
tary palindromic form as the graph shown in Fig. �.
Let us assume that a node label is complementary
to a node label . The graph is �divided� with the
edge . A string of node labels of a �path� on the
right-hand side of this edge �without a node indexed
with �� is a complementary palindrome of a string of
node labels of the left-hand side �path� �also without
a node indexed with ��. That is, for any -node graph

, - an even number, the fol-
lowing holds. ; or ; for
an odd index : if then

, and if then .

. We will call the com-
plementary palindromic graph language.

Now, we de�ine an edNLC grammar
generating the language . �Wit-

hout loss of generality we assume that during deriva-
tion all nodes indexedwith are genera-
ted directly as terminal nodes, i.e. not via nonterminal
nodes.�

,
and are shown in Fig. �.
Now, we will show that cannot be generated by

any ETPR grammar. Let us assume, proving by con-
tradiction, that there exists an ETPR grammar
which generates . Then, let us assume that we gene-
rate the -node graph , , belonging to . Let
be the following derivation of :

� � .

Let us assume that the graph has nodes
and , i.e. we have still to generate at least
four nodes. Let us assume also that has more
than nodes, i.e. new nodes are generated

during of .

Note that the graph has to be of the form shown

in Fig. �a. The form of results from the following
facts. All the nodes of , except for the node indexed
with �, have to be labelled with terminals. �According
to De�inition �� we apply a production to a nonter-
minal node having the greatest index.� The graph
has to be of the proper, i.e. complementary palindro-
mic, form. That is, the right-hand side �path� has to
be a complementary palindrome of the left-hand side
�path�, because we use a context-free graph grammar
that does not possess themechanisms allowing one to
take into account previous derivation steps �and the
terminal �context� already derived� in a further deri-
vation process. It means that a graph derived cannot
be recti�ied later, if it does not conform to the comple-
mentary palindromic form. Ascribing indices to nodes
of has also to be de�initive since according to De-
�inition �� node indices do not change during a deri-
vation. The edges have to be directed as in Fig. �a ac-
cording to De�inition �. Obviously, the labels of edges
connecting terminal nodes have to be de�initive.

At the step of we have to ge-

nerate two new nodes simultaneously because of a
palindromic-like structure of . Let us assume that the
node indexed with of is labelled with and
the node indexed with of is labelled with
. �For the opposite labelling reasoning is analogous.�
The production of which is to be applied for ge-
nerating the succeeding pair of complementary nodes
has to be of the form shown in Fig. �b, where

- is a nonterminal node used for generating the
succeeding pairs of complementary nodes in further
derivation steps,

- is a terminal node labelled with or is a
nonterminal node and the production replacing
with a terminal node labelled with belongs to ,
and

- is a terminal node labelled with or is a
nonterminal node and the production replacing
with a terminal node labelled with belongs to .

Let us note that according to De�inition � the right-
hand side graph of the production �i� has to be a
two-level graph. Moreover, the root of the right-hand
side has to inherit the index from the replaced node.
Thus, the node has to be the root of the right-hand
side. However, it is contrary to the condition of
De�inition � saying that the root of the right-hand side
has to be a terminal node. Q.E.D.

The parameter in de�initions of both ETPR
and ETPL graph grammars has shown to be very
useful froma practical point of view inmany applicati-
ons of these grammars e.g.: robotics ����, distributed
systems ����, CAD�CAM ���, ���, industrial-like cont-
rol ��, ���, CAE �FEM computing� ����, sign language
recognition ���, ���, computer vision ����. In ����
we have proved that by increasing this parameter
we strengthen the generative power of ETPL
grammars. By proving the following theorem, which
establishes the hierarchy of ETPR grammars, we
show that the same holds for the ETPR class.
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Theorem �. For a given

ETPR ETPR .

Proof. PART �: ETPR ETPR .
Let be an ETPR grammar. �ne should de�ine such
an ETPR grammar that .

Let us note that it is suf�icient to set : .
PART �. ETPR ETPR .
Let us take any . �e de�ine an ETPR lan-
guage which cannot be generated by any ETPR
grammar. Let . The rIE graphs belonging
to both and are of the cascade-like form shown
in Fig. �a. Firstly, let us de�ine this cascade-like
structure. Each -node graph ,
consists of: two nodes indexed with and � such

that , , , and levels,
, assuming that it has at least two levels.

Each level consists of nodes indexed as shown
in Fig. �a. If we denote the th node of the level
with , then its index .
A set of edges contains additionally the following
edges �cf. Fig. ��:
- ,
- for each level :

.

�ow, we de�ine the way of labelling the graph no-
des belonging to levels �cf. Figs. �b and c.�
- If , then , for
, and .

- If , then , for
, and .
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Fig� ��� ��� a�i�m a�� ��� �r�������� �� ��� ETPR grammar

Wewill call the �m���-height-step cascade graph lan-
guage.

Now, let us de�ine an ETPR grammar
which generates a language .

, and are shown in Fig. ��.

It can be easily noted that to generate a graph
having levels one has to apply production � once,

production � times, and production � once, and to ge-
nerate a graph having levels one has to ap-
ply production � once,production � times, and pro-
duction � once. The grammar obviously does not ge-
nerate any graphs not belonging to . Thus, .

Now, we show that is the only grammar of the
ETPR class which generates .

Firstly, let us note that graphs belonging to are,
in fact, trees.

Secondly, according to �e�inition � the right-hand
side graph of any production in an ETPR grammar has
to be a graph of level at most �. A node of the right-
hand side graph indexed with has to be terminal.
Then, a nodeof the right-hand side graph indexedwith

of the productions used for developing succeeding
levels�� has to be nonterminal��.

Thirdly, let us note that a higher level of any graph
belonging to has to be generated at one deriva-
tion step, i.e. the right-hand sides of productions used
for developing succeeding levels have to be two-level
trees having children��. To show it, let us as-
sume, proving indirectly, that some level can be ge-
nerated in stages. It means that at the �irst stage we
generate a subtree having children, ,
indexed with: �cf. Fig. �a�. Now, on the ba-
sis of a node indexed with we have to generate the

��
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Fig� ��� The language that cannot be generated by any ETPL grammar

next child, i.e. with some production . We have

to use the embedding transformation of to connect
the newly-generated child with the parent, i.e. to ge-

nerate an edge �cf. Fig. ��. Ho-

wever, let us note that we will also have to destroy an
edge connecting nodes and in a further deri-

vation, which is forbidden by the principle of preser-
ving a potential previous context �cf. De�inition ���.

On the other hand, is not an ETPR grammar.
During a derivation of any , in spite of the
fact that graphs described by De�inition
�� are isomorphic, the corresponding right-hand
side graph �the handle� can be reduced to various
left-hand side nonterminals. For example,
right-hand side graphs of productions � and � are
isomorphic, however, these productions reduce to
different nonterminals and ��. Q.E.D.

At the end of this section we show that both
classes ETPL and ETPR are incomparable.

Theorem �. There exists

ETPR

such that for any

ETPL .

Proof. In ���� �cf. Theorem �, ����� we have de�i-
ned a language which cannot be generated by any
ETPL , grammar. The language consists of
three graphs , , and shown in Fig. ��a. If the up-
per path �inisheswith anode labelled , then the lower
path can �inish with a node labelled either or . Ho-
wever, if the upper path �inishes with a node labelled
, then the lowerpath can �inishonlywith anode label-
led . We will call a third-level contextual graph lan-
guage, since contextual dependencies between pairs
of node labels occur at the third level of a graph.

We will de�ine an ETPR grammar which ge-
nerates the language . In Figs. ��b and c we have
shown the proper reductions during the bottom-up
parsing. They help us to de�ine the following grammar

.
,

, , the axiom consists
of the one-node graph labelled with , is shown in
Fig. ��.
One can easily note that . Q.E.D.

Theorem �. There exists

ETPL

such that for any

ETPR .
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Proof. Firstly, we de�ine an ETPL language . Let
. Each -node graph, ,

is of the form shown in Fig.
��a. The graph consists of a node having the characte-
ristic description and two paths. A
sequence of nodes in each path is connected with ed-
ges labelled . The lower path consists of:
- a subsequence of nodes indexed with:

and labelled ,
- a �distinguished� node indexed with and
labelled , and
- a subsequence of nodes indexed with:

and labelled .
The upper path consists of:
- a subsequence of nodes indexed with:

and labelled ,
- a �distinguished� node indexed with
and labelled , and
- a subsequence of nodes indexed with:

and labelled .
The lengths of both paths �de�ined as a number of no-

des in a sequence� can be various.

Additionally, there exists a
. In other words, let de-

note the number of nodes between the node labelled
and the node labelled , and denotes a num-
ber of nodes between the node labelled and the node
labelled . Then, and there ex-
ists a .

consists of graphs analogous to the graphs of
. However, and, there is no

edge � � connecting both paths. Summing up, an
edge called a occurs in a graph iff

. We will call the contextually-
conditioned-bridge graph language.

Let us the de�ine an ETPL grammar
generating the language .

,
, , and are

shown in Fig. ��.

An example of generating a in case
is shown in Fig. ��b. One can

��
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Fig� ��� The ETPL language that cannot be generated by any ETPR grammar

easily see that .

Now, we show that cannot be generated by any
ETPR grammar. First of all, let us note that any rIE
graph has to be indexed as shown in Fig. ��a.
If has to belong to , then .
Assuming indexing de�ined as in Fig. ��a �i.e. a node
labelled is indexed with �, it means that a node la-
belled has to be indexed with .

According to the �e�inition �� of ETPR gram-
mars the upper path of has to be generated �ir-
stly, as we can see in Fig. ��b. �An edge is to
be established in order to generate a .� Howe-
ver, one can easily see that we do not know whether
an index of a node labelled ful�ils the condition�

��. In consequence, we do not know
whether to establish a �in case � or not
�in case �. Q.E.D.

�� CF and NLC Languages with Polynomial
Membership Problem

As stated in the introduction, research into the the-
ory of parsing for NLC graph grammars has been con-
ducted for thirty years. The graph grammars of the
edNLC class ����were chosen as the basis for this rese-
arch from the outset, which has proved to be appropri-
ate. On the one hand, the edNLC class has been revea-
led as descriptively strong enough to be successfully
applied for solving the previously mentioned real-
world problems ��, ��, ��, ��, ��, ��, ��������. On
the other hand, the edNLC class has turned out to be
�lexible enough to enable us to de�ine the determinis-
tic subclasses with polynomial membership problem,
and in consequence - the ef�icient parsing algorithms.
�oreover, the way of de�ining edNLC graph grammars
has enabled to de�ine these deterministic subclasses,
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using constructs and mechanisms analogous to those
used in the theory of parsing of string languages. This
analogy is especially noteworthy, since from the met-
hodological�paradigmatic point of view, analogies of
this kind are highly desirable ����.

First of all, let us note that the essential proper-
ties of both subclasses of edNLC graph grammars,
namely top-down parsable ETPL and reduction-
based �bottom-up� parsable ETPR , expressed by
�e�initions �� and �� are analogous to the de�initi-
ons of theirs counterparts, namely subclasses of top-
down parsable LL ���,��� and bottom-up parsable
LR ���� CF �context-free� grammars in the parsing
theory of string languages.

Secondly, these analogies have proved to be useful
when studying the formal properties of ETPR lan-
guages presented in a previous section. For example,
the well-known fact that the �string� CF language of
palindromes cannot be generated by any LR gram-

mar has inspired us to construct the edNLC comple-
mentary palindromic graph language in order to show
that it cannot be generated by any ETPR gram-
mar �the proof of Theorem ��. On the other hand, in-
vestigating whether ETPR languages constitute a
hierarchy, we have analyzed the Mickunas-Lancaster-
Schneider strati�ication-based method used for pro-
ving that LR languages do not constitute a hierar-
chy ����. The study has revealed that the strati�ication
trick ���� cannot be made in case of graph structures.
Knowing why this is impossible, we have been able to
de�ine the ETPR �m���-height-step cascade graph lan-
guage in order to show that ETPR languages con-
stitute a hierarchy �the proof of Theorem ��.

In our previous paper concerning the generative
power of ETPL languages ���� we have proved,
among others, the following two theorems.

Theorem ��. in ����� For a given
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ETPL ETPL .

Theorem ��. in ����� For any

ETPL edNLC .

These two theorems together with the ones pro-
ved in a previous section allow us to establish a di-
agram presenting the relationships among the fami-
lies of parsable edNLC languages shown in Fig. ��b. An
analogous diagram for �string� CF languages is shown
in Fig. ��a. The analogy between both basic classes
of languages, i.e. �string� CF and �graph� edNLC, can
be easily noted. However, there are also some essen-
tial differences. The �irst one consists of the lac� of a
hierarchy in the case of a bottom-up parsable subclass
of the edNLC class. The second difference is crucial
from an application point of view. Whereas the family
of LL-type languages is strictly contained in the fa-
mily of LR-type languages, the classes ETPL and ETPR
are not comparable. Although the insuf�icient descrip-
tive power of ETPL-type languages for solving certain
real-world application problems was the original mo-
tivation of the author for conducting research into a
bottom-up parsable subclass of edNLC grammars, �i-
nally it was shown that both parsable subclasses are
needed and that they complement each other.

�� Concluding Remarks

The following two goalswere the focus of our rese-
arch intoNodeLabel Controlled �NLC� graphgrammars
formulated in ����.

- To establish a theory of parsing for NLC graph lan-
guages �the theoretical-oriented research area�.

- To apply this theory to various real-world pro-
blems, which re�uire ef�icient algorithmic sche-
mes of graph �sets of graphs� processing �the
application-oriented research area�, for their solu-
tion.

Two generic types of parsable subclasses of lan-
guages with polynomial membership problem are
considered in the theory of parsing: the top-down par-
sable languages and the reduction-based �bottom-up�
parsable ones. These twogeneric subclasseshaveboth
their pros and cons. Therefore, within the theoretical-
oriented area of our research two subclasses of NLC
graph grammars have been developed, namely top-
down parsable ETPL �analogous to LL gram-
mars ���,���� and bottom-up parsable ETPR �ana-
logous to LR grammars �����. The generative po-
wer of the former has been presented in ���� and the
latter - in this paper. Additionally, we have compared
generative power of both subclasses as well. Finally,
we have discussed the analogy between the triad of CF
- LL - LR string languages and the triad of NLC -
ETPL - ETPR graph languages.

Apart fromthe previously discussed theoretical re-
sults, both parsable subclasses of NLC graph gram-
mars have been successfully used in a variety of ap-
plications such as: scene analysis in robotics ����, soft-
ware allocation in distributed systems ����, CAD�CAM
integration ���, ���, reasoning in real-time expert sy-
stems ��, ���, mesh re�inement ��inite element met-
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hod, FEM� in CAE systems ����, sign language recog-
nition ���, ��� and computer vision ���� within the
application-oriented area of our research .

Summing up, the class of NLC graph grammars has
proved to bean attractive theoreticalmodel because of
its well-balanced properties. That is, on one hand, due
to its simplicity, formal elegance and strong descrip-
tive power, and on the other hand because of its �lex-
ibility allowing it to be used in a variety of real-world
applications. In our opinion,NLC graph grammars pro-
vide an attractive reference model for the theory of
parsing of graph languages and that they will play a
key role in the further development of this theory.

Notes
�NLC grammars are introduced below.
�This condition concerning �r�IE graphs can be ful�illed easily

in practice. �r�IE graphs have been used as a descriptive formalism
for representing: combinations of objects of scenes analyzed by in-
dustrial robots ����, con�igurations of hardware�software compo-
nents analyzed by distributed software allocators ����, structures
consisting of geometrical�topological features of machine parts in
CAD�CAM integration systems ���, ���, semantic networks�frames
in real-time expert systems ��, ���, grids analyzed with Finite
Element Analysis �FEA� methods in Computer Aided Engineering
�CAE� systems ����, hand postures analyzed by sign language re-
cognition systems ���, ���.

�That is, �some� edges of can be re-directed with respect to
their counterparts in .

�Let us recall that LOTTmeans that for each node �irstly the node
is visited, then its child nodes are put into the FIFO queue. This type
of a tree traversal is also known as the Breadth First Search �BFS�
scheme.

�We assume that the root is on level �, its children are on level �,
etc.

�Formal properties of the ETPL class have been presented in
����.

�Analogously, as for parsable LL �LR string grammars a
leftmost�rightmost derivation is required.

�The formalization of these conditions is contained in the paper
on inferencing ETPL graph grammars ����.

�Both notions: graph and FIRST pre�ix play an analogous
role in considered models.

��A regular left-hand side derivation in our model is analogous to
a leftmost derivation for CF grammars.

��A regular right-hand side derivation in our model is analogous
to a rightmost derivation for CF grammars.

��That is, we can choose a proper left-hand side.
��That is, productions �, �, �, � in .
��In ���� �Lemma �, p. ���� we have proved that the index of a

replaced node is always preserved in our model.
��As it is in productions �, �, �, �.
��To determine a proper reduction �unambiguously� one has to

analyze graphs instead.
��Obviously, at any derivation stepwe do not knowhowmany no-

des labelled with have been generated till this step.
��Let us note that although syntactic pattern recognition pro-

blems have been the main motivation for the application-oriented
part of this research, it was not limited to this area and has inclu-
ded e.g. distributed systems, reasoning over ontologies in expert sy-
stems.
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���� M. Flasiński, �Characteristics of edNLC-graph
grammars for syntactic pattern recognition�,
Computer Vision, Graphics and Image Processing,
vol. ��, ����, ����.
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