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Abstract:
We present a novel method of fast and reliable data 
gathering for the purpose of location services based 
on radio signal strength services such as WiFi location/
navigation. Our method combines the acquisition of 
location and mapping based on computer vision meth-
ods with WiFi signal strength stochastic data gathering. 
The output of the method is threefold: 3D metric space 
model, 2D floor plan map and metric map of stochastic 
radio signal strength. The binding of location data with 
radio data is done completely automatically, without 
any human intervention. The advantage of our solution 
lies also in a significant speed-up and density increase 
of Radio Map generation which opens new markets for 
WiFi navigation services. We have proved that presented 
solution produces a map allowing location in office space 
of accuracy 1.06 m. 

Keywords: indoor positioning, radio map, mobile devices, 
WiFi fingerprint localization, path planning

1. Introduction
In classic approach WiFi indoor location is based 

on fingerprinting [1, 4–10]. Fingerprinting is a way 
of representing a Radio Map as a set of metric posi-
tions combined with WiFi BSSID’s (Basic Service Set 
Identifier) and their RSSI (Received Signal Strength 
Indication). Such map is then used as a reference: 
a user willing to localize its terminal compares the ra-
dio-strength distance of its current location with the 
locations on the map and choosing the one with the 
closest distance. The most important aspect is a way 
of calculating the radio-strength distance between 
user’s location and locations from a map.

Apart from location estimate methods there is 
a crucial aspect influencing the quality of location 
services: namely a Radio Map, the quality of which 
determines the accuracy of location itself. Therefore 
a construction of the Radio Map is fundamental for 
further location.

2. Problem Statement
In the research described within the scope of this 

paper the goal is twofold.
The first is to propose a method that minimizes 

the time of gathering the large amount data for wire-
less Radio Map. For this purpose we support automa-

tic receive signal strength indication measurements 
with SLAM (Simultaneous Localization and Mapping) 
approach.

The second goal is to propose novel method of lo-
cation estimation based on previously prepared Radio 
Map. In this goal we want to minimize location errors 
represented by circular error probability measure. 
This is achieved by introducing divergences and me-
trics calculations for Radio Maps stored in a form of 
a set of probability distribution of RSSI signal.

3. Organization of the Paper
The remaining part of article is organized as fol-

lows: Paragraph 4: describes state-of-the-art for Radio 
Map generation method and their drawbacks. Para-
graph 5: describes the motivation to create an automa-
tic method for creating WiFi stochastic metric Radio 
Map. Paragraph 6: describes a high-level approach by 
presenting and distinguishing between two pipelines 
of calculations: SLAM and Wireless pipeline. Para-
graph 8: Describes how metric locations are gathered 
and how a floor plan is calculated based on that measu-
rement. Paragraph 9: Details how wireless measure-
ments are taken and stored as well as it describes a list 
of methods to calculate the location data. A description 
of single-value and f-divergences are given. Paragraph 
10: Explains results of experiments done for validation 
of proposed approach and to assess the quality of pro-
posed solution. Paragraph 11 and 12: lines up conclu-
sions of the work and presents future plans.

4. Current Radio Map Generation Methods
In current approaches [1, 2] a Radio Map is gene-

rated in a following sequence: a human user plans 
a path to walk through locations in which he will ga-
ther the RSSI. He stops on every planed point, measu-
res the radio signal strength and moves to next point 
where the procedure of measurement repeats. While 
this approach is obvious and natural it also has serio-
us limitations. (1) The user needs to position himself 
in the exact location as planned, otherwise the loca-
tion measurement error will also include mismatch of 
the Radio Map. (2) The user needs an a priori known 
map (or plan of the building) to plan his path. (3) The 
output of such procedure is a list of locations with as-
signed radio signal strength information and it has no 
automatic correspondence with a map. (4) The loca-
tion on such Radio Map has to be manually annotated 
with metric data, which excludes the use of such Radio 
Map from a systematic approach for POI placement.
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Other approach of Radio Map generation involves 
collection of data samples gathered by service user [3, 
11–12]. This approach, despite the many benefits and 
advantages over the classic methods of collection of 
data, also requires the preparation of an initial ver-
sion of the map. Furthermore, in a dynamically chan-
ging environment, it is necessary to carry on, with 
a certain time interval, additional measurements for 
Radio Map verification.

5. The Motivation
There were a variety of motivation aspects for 

conducting a research on WiFi surveying. Apart from 
drawbacks mentioned in previous section the prima-
ry motivation to conduct this research was the lack of 
an automatic and fast method for generating metric 
Radio Maps. Such automation is especially important 
when wireless infrastructure changes over time or 
when an infrastructure needs a rapid setup for limi-
ted amount of time e.g. trade fair.

In addition new research [13] on WiFi navigation, 
points out that stochastic measure of radio signals 
provides quantitatively and qualitatively better re-
sults than classic fingerprinting. This can be expla-
ined by a fact that RSSI varies a lot for particular 
AP in one location over time. This is shown in Fig. 1 
– as the number of RSSI samples from AP increases 
(Fig.  1a) the distribution of RSSI changes significan-
tly. In Fig.  1b samples from corridor-like scenario are 
shown with their distribution. Both data charts pro-
ves that compressing such distribution into one num-

ber causes loss of information and brings initial error 
source to location estimation.

Stochastic data gathering is much simplified ha-
ving an access to metric layer on the Radio Map. Ano-
ther advantage of new method is that the spatial den-
sity of fingerprints is the most important impacting 
factor for WiFi location performance [3].

The last motivation was to provide a method that 
could be implemented on existing infrastructure (like 
scrubber driers in shopping malls) for creating and 
updating the Radio Map.

Summarizing due to the (1) low speed of Radio 
Map generation in current approaches, (2) the need 
of metric, stochastic information in the Radio Map as 
well as (3) the low Radio Map density a new automa-
tic way of metric Radio Map creation is highly desired 
for effective WiFi location services.

6. The Overview of New Approach
The proposed approach for Radio Map data ga-

thering is to combine Simultaneous Localization and 
Mapping (SLAM) concept with WiFi data gathering 
(Fig. 2). The data are collected by RGB-D camera 
(SLAM pipeline) and WiFi network card (Wireless pi-
peline). SLAM pipeline aims in creating a metric 3D 
point cloud based on which a Metric Map is created. 
Wireless pipeline collects the RSSIs of APs visible 
at particular point. Therefore there are two layers 
of output data: Metric Map layer and Wireless Map 
i.e. RSSI layer. Both layers are combined to produce 
a dense metric Radio Map for further location purpo-
ses. Whole process is depicted in Fig. 2.

SLAM pipeline aims at determining the current lo-
cation of the apparatus. Together with SLAM pipeline 
a wireless data is gathered as the apparatus is moving. 
The wireless data contains information of BSSIDs and 
their RSSIs. The output is gathered in a form of histo-
gram for particular BSSID and its RSSIs in particular 
location. Such approach is motivated by a fact of non-
-Gausianity of the RSSI distribution and is intended to 
provide as much valuable data for further location al-

Fig. 1. a) A distribution of RSSI signal for one AP at dif-
ferent locations when number of RSSI sample is varying 
b) distribu-tion of RSSI in space for corridor-like scenario 
(user goes through corridor [just x-position is changed] 
and simultane-ously samples RSSI for particular AP)

a)

b)

Fig. 2. The procedure of Wi-Fi metric Radio Map data 
gather-ing in two pipelines: Wireless and SLAM
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gorithm as possible (Fig. 1).This way a simple metrics 
as well as kernelized probabilistic locations approach 
can work on same Radio Map. The position of the ap-
paratus calculated in SLAM pipeline allows updating 
histogram in particular location.

One of advantages of using probabilistic approach 
is that it significantly reduces the influence of vario-
us inferences of radio signal that result in lowering 
the quality of location process. This means that the 
immunity of presented system is higher of those ba-
sed on classic RSSI calculations. These influences are 
reduced by taking multiple samples of RSSI for each 
AP in particular location and build a probability di-
stribution of these samples. In this method we assign 
a probability to particular value of RSSI i.e. we estima-
te what is the probability of this particular RSSI to be 
receive in that location. The influence of RSSI changes 
due to various inferences such as people passing by 
are therefore reduced since such distortion will be 
projected only in a part of signal strength distribu-
tion. This stochastic approach has also an impact on 
noise immunity. 

7. Radio Map Construction
Metric Radio Map M is a set of points Mi. Each of 

the point on the WiFi metric Radio Map combines two 
values:
  (1)

Mi,loc – metric location. This location is calculated by 
SLAM pipeline (Fig. 2). Mi = (xi, yi).
Pi – RSSI probability density function in location Mi,loc 
calculated by maximum likelihood estimation for 
samples gathered in location Mi,loc. This is calculated 
by Wireless pipeline (Fig. 2) The probability density 
function is multinomial: it contains information about 
probability distributions for multiple APs in the loca-
tion Mi,loc:

  (2)

pAP1,i – RSSI probability density function in location 
Mi,loc for particular AP (APi) having particular value of 
RSSI. This probability density function is calculated 
by maximum likelihood estimation and therefore it 
can be considered as a scaled histogram.

8. SLAM Pipeline
SLAM produces a Metric Map consisting on a set of 

locations in which the apparatus was present (Mi,loc). 
Each time the apparatus moves producing new Mi,loc 
new location is added to Radio Map M.

With the apparatus position changes RGB and 
Depth images are collected and compared with pre-
vious ones. The first comparison is done for RGB 
image for matching visual features. Algorithm used 
for this purpose is strictly dependent on the plat-
form used for data collection. The user should make 
a choice between algorithms SIFT / SURF and ORB. 
The first two proposed algorithms allow for better 
accuracy, however, require more computing power. 
The third algorithm, which gives the worst results, is 
suitable for use on mobile platforms. Below (Fig. 3) 

one can find graphs showing the effect of changing the 
orientation of the camera and the distance from the 
captured object to the obtained results. These indica-
te clearly that in the case of using a mobile platform 
with less computing power it is necessary to ensure 
a stable position of the camera, and it’s relatively slow 
movement (slow walk). Moreover, the use of a plat-
form with lower computing power will prevent col-
lection of data in an environment with a low degree of 
differentiation and with low details (e.g. hallway with 
white walls).

Second step of method is based on preselecting 
a pair wise (between two acquisition points) 6D 
transformation estimation: RANSAC [15] for visual 
data, Global Iterative Closest Point algorithm for po-
int cloud. This order is result from the need to redu-
ce the amount of calculations required to determine 
the exact camera shift. At the first the displacement 
is determined with less accuracy and next based on 
that the more detailed solution is calculated. In next 
step a pose graph optimization is run (g2o) on data 
from matched 3D point cloud. As a result point cloud 
(coloured by RGB image) is added to metric 3D model. 
Unfortunately, it is impossible to avoid drift occurring 
during data collection; therefore it is necessary to 
close the loop for long straight sections of the route 
(over 10m) in order to minimize the location error. 
The last step of proposed method is projecting 3D 
model (Fig.  4a) on XY surface to produce metric 2D 
map (Fig. 4b).

Fig. 3. Comparison of matching algorithms due to: a) 
chang-ing the distance from the object. b) changing the 
orientation of the camera, Source: [14]

b)

a)
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The density of a map understood as an avera-
ge distance between consecutive points is therefore 
dependent of the velocity of measuring device. With 
our implemented SLAM pipeline we have achieved an 
average density of 0.10 m in office space for average 
velocity of movement 1.4 m/s (typical walking speed 
of human). Feature matching, global pose estimation 
and 3D point cloud are generated whilst apparatus 
moves (i.e. all calculations are done online, without 
uploading it to a cloud). An example of three steps of 
map creation is shown in figure below (Fig. 5).

Due to a drift in Global Pose estimation it is always 
better to close the loop while moving to reduce this 
drift. When the loop is not closed (Fig. 5a) straight 
segments of movement become curved due to drift. 
When feature matcher has matched “end” of the loop 
with the “beginning” (Fig. 5b) global pose graph opti-
mization corrects such drift.

Locations of Mi,loc do not have to be known a’priori, 
before the map building process is started. Mi,loc are 
calculated along with SLAM apparatus movement. 
The only limitation of the sampling locations is that 
during map building the apparatus needs to visits po-
sitions Mi,loc in which further location will be perfor-
med. This means that the apparatus needs to appear 
wherever human will need location service. On the 
other hand if the apparatus appear multiple times in 
one location or in the proximity of that location the 
map is updated by adding wireless signal information 
to that location. This means that deployment and ma-
intenance cost of surveying system is negligible, as it 
needs only the SLAM aparathus.

9. WiFi Pipeline
Our method of wireless data gathering and proces-

sing can be described as follows: In order to perform 
location we need to find the metric position L = (xl, yl)  
in that particular point. To achieve that we sample the 
distribution Q of RSSI for multiple APs (Q = (qAP,1, …, qAP,n)  
is multimodal as Pi in each location Mi,loc is). Next we 
need to compare Q with Pi for each location Mi,loc. This 
comparison aims in providing a single number that 
shows how similar is the distribution of RSSI signals 
in the location that we currently measure (Q distribu-
tion) to each of previously measured distributions (Pi 

in Mi,loc in the Radio Map M). Based on this comparison 
we estimate L as L in the position in which Q was ta-
ken  Therefore the key aspect in location 
is to calculate a distance between Q and Pi distribu-
tion. The comparison between Q and Pi is a compa-
rision of a discreet probability density functions. In 
order to make such comparison we use and compa-
re different approaches including: comparing single 
values represented by mean and median values, pro-
bability density divergences and density metrics i.e. 
f-divergences [16–18].

In current approach the number of Pi distributions 
equalling number for visited locations (Mi,loc) has an 
impact on systems performance. This is because the 
calculation of location estimation demands a compa-
rison of Q and Pi distribution. The number of compari-
sons depend on number of points in the Radio Map in 
the linear manner and so does the time complexity of 
the location (O(n)). In practice we have calculated the 
location of a terminal on the map of order of 103 po-
ints (30 × 25m) in 5 ms on a typical desktop computer. 

In following chapters three groups of methods will 
be discussed.

Fig. 4. Partial point cloud visualisation: a) Whole point 
cloud, b) Detected floor

a)                                                      b)

Fig. 5. Consecutive steps of metric map generation by 
our algorithm at office space (30 x 25m). a) The loop 
is not closed and in further part of path a drift starts 
to play significant role b) the loop is closed and drift is 
minimised c) whole floor model, d) original floor plan

a)                                                       b)

c)                                                       d)
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9.2.1. Kullback-Leiber Divergence

  (10)

  	

(11)

  

(12)

9.2.2. Jeffrey Divergence
    

 (13)

9.1. Single Value Based Calculations
For single value based calculations we compress 

the distributions Q and Pi to single value of mean or 
median of these. The distance between Q and Pi is 
calculated as a distance between vectors of means or 
medians of Q and Pi . This is done in following steps:

Calculate means or medians for distributions Q and 
Pi : .

Calculate distance between vectors :

  (3)

  (4)

S – a sensitivity of a receiver and μpAP,i is a mean value 
of RSSI in distribution pAP,i. For our case S = –120 (120 
dBm is a sensitivity level of our wireless card). 

Calculate the norm of a vector:

  (5)

9.2. Divergence-Based Calculations
In probability theory a divergence is a function 

that measures the difference between two probability 
distributions. We assume local independence of prob-
ability distribution for different AP. Thanks to this 
assumption the total divergence of and is a sum of 
divergences between distributions of the correspond-
ing AP’s RSSI:

  (6)

  (7)

  (8)

Ddiff(Q‖Pi) – divergence for AP’s that are present in dis-
tribution Q (location L) i.e. when pAP,1 = 0,
Dcomm(Q‖Pi) – divergence for AP common in and Q, 
pα – is a small constant. Its function is explained below.

Note that D(Q‖Pi) is non symmetric i.e. in general 
D(Q‖Pi) ≠ D(Pi ‖Q). Therefore to symmetrise a sym-
metric divergence is introduced:

  (9)

In our approach we use four different divergences: 
Kullback-Leiber [19–20], Jeffrey [21–22], Kagan and 
Exponential. Realisation of (7) and (8) is for these di-
vergences presented below:

Fig. 6 a) Mean location error in function of number of 
samples gathered for non-kernel divergences (calcula-
ted by combining Method 1 of section 9.4 with diver-
gences of (12),(15),(18),(21)) and Method 1 of section 
9.4 with Hellinger distance of (24) ), b) 50-th percentile 
of location error in a function of number of samples for 
kernelled method (calculat-ed by combining Method 3 
of section 9.4 with divergences of (12), (15), (18), (21) 
and Method 3 of section 9.4 with Hellinger distance of 
(24)). The error units are equal to Metric Map density, 
for this case was 1m

a)                       

b)
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9.2.3. Kagan Divergence

 
   
  (14)

(15)

  (16)

 (17)

(18)

9.2.4. Exponential Divergence

   
(19)

  
(20)

(21)

Equations (10), (13), (16) and (19) are specific re-
alisation of a sum (7), whilst (11), (14), (17) and (20) 
of (8). pα is a small constant (~108) used in (10), (13) 
and (16) to avoid taking logarithm of zero. Because 
pα is a Laplace-like smoothing stilling some mass pro-
bability from parameter the remaining probability di-
stribution, namely qAP,i becomes q’AP,i in (10), (13) and 
(16). To do so it needs need to be renormalized:

  (22)

c – number of AP present in distribution Q and not 
present in distribution Pi = (pAP,I = 0).

Due to a fact that pa is very small e.g. 10–8 the dif-
ference between qAP,i and q’AP,i are very small. All diver-
gences used here do not satisfy triangle inequality and 
therefore are premetric. Symmetrising corresponding 
divergences of (10) and (11), (13) and (14), (16) and 
(17), (19) and (20) by applying approach of (9) we end 
up with symmetric divergences. By applying (9) we end 
up with (12), (15), (18), (21) respectively for Kullback-
-Leiber, Jeffrey, Kagan and Exponential divergences.

9.3. Metrics-Based Calculations
The similarity between two probability distribu-

tions can also be calculated by Hellinger distance 
[23–25]. Its discreet form is as follows:

  (23)

There is no need to deal with common and differ-
ent AP in this Hellinger’s approach as non-existing AP 
zeroes particular expressions in the sum. Therefore 
smoothing is also not needed. The total Hellinger dis-
tance between two multimodal RSSI distributions is 
therefore equal to:

 (24)

9.4. Regression Methods
Using solutions from (12), (15), (18), (21) or (24) 

one ends up with a table T of length imax (imax is a num-
ber of of data points on the Radio Map M). This ta-
ble represents estimate of distances1 of the location 
where the measurement was taken (Q distribution) to 
each point Mi on the Radio Map with corresponding 
Pi distribution.

In order to estimate the position of current me-
asurement  we can use one of three appro-
aches:

Method 1. Pick Pi for which T[i] has the smallest 
value i.e. choose the nearest neighbour.

Method 2. Sort T increasingly and sort Mi,loc ac-
cordingly (so that Ti corresponds with location Mi,loc). 
Choose k-nearest neighbours and estimate the output 
location by regular weighted sum:

  (25)

Method 3. Sort T increasingly and sort Mi,loc ac-
cordingly (so thatv Ti corresponds with location 
Mi,loc)Choose k-nearest neighboursa and estimate the 
output location by kernel regression-based weight-
ed sum:

  (26)

1 Not in mathematical sense.
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  (27)

  (28)

Β – is only a scaling factor added here not to lose nu-
merical precision in case of large D(Q, Pi). It is differ-
ent for particular realisation of D(Q, Pi): (12), (15), 
(18), (21) and (24). The kernel can take two forms: 
simple (27) or Gaussian kernel (28).

Note that, sums of (25) and (26) are limited to ne-
arest neighbours. For comparison we choose to corre-
spond with positions of: mean (μ), 10-, 20-, 30-, 40-, 
50-, 60-, 70-, 80-, 90-percentile, μ – σ and μ – 2σ (μ, σ 
are mean and standard deviation of T (for (25)) and 
k(T) (for (26)). 

Summarising each method of calculation (there 
are 7 methods) we use 4 types regression and for 3 of 
them we have 12 different k values. This gives us 273 
variants of methods for quality comparison.

10. Experiments
10.1. Experiment 1: Estimation of Number of 

Needed Samples 
In order to estimate the proper conditions for ga-

thering Radio Map data we have measured what is 
the desired number of samples per location Mi,loc to 
create RSSI distribution Pi meaningful for the process 
of location estimation. Such information is needed 
since samples are gathered by WiFi pipeline while 
the whole apparatus is moving, therefore the desired 
number of samples per location limits the velocity of 
movement while gathering these samples. From one 
site (D1) one needs to limit number of samples per lo-
cation Mi,loc since the number of samples affects sam-
ple gathering time in this particular location and this 
affects the total time for creation of full Radio Map 
M. On the other hand we need (D2) many samples to 
provide Pi distribution that would capture the true di-
stribution of RSSI signals for different AP in location 
Pi. These demans: (D1) and (D2) are in contradiction 
and in order to build Radio Map effectively we need to 
find a good balance between these two.

We have collected a large sample data from 20 loca-
tions i.e. a Radio Map consisted of 20 Mi points. Each Pi 
consisted of distributions of RSSI for particular AP as 
in (2). For each AP we have collected more than 3000 
samples from which pAP,i distribution was build. Data 
collection for one Mi,loc took approximately 360 s gi-
ving approximately sampling speed of 150 samples/s.  
Next we have limited the number of samples per AP 
in each point Mi,loc to 1, 2, 3, …, 3000 and for such limi-
tation we have build . Next we have extracted points 
Mi one by one and for each point of the Radio Map Mi 
we have estimated the location on such limited Ra-
dio Map M’ = M – {Mi} and calculated the error of this 
estimation. The average error is presented in Fig. 6a, 
whilst the 50th percentile of an error is presented in 
Fig. 6b. Units of error are not significant in this experi-
ment as it strictly depend on how sparse the locations 
of Mi,loc are – only the dependency type is important 
here. One may notice that the error of location esti-
mation both for average and 50th percentile starts to 

a)

b)

c)

d)

Fig. 7. Location errors for different modes of calcula-
tions. Mean and median (first two) based calculations 
are provided as a baseline: a) nearest neighbour – sec-
tion 9.4. Method 1, b) Weighted sum calculation – sec-
tion 7.4. Method 2, c) Kernel based calculation for k_1 
kernel – section 7.4. Method 3 d) Gauss kernel based 
calculation for k_2 kernel – section 7.4. Method 3. All 
methods (x-axis) are KL-Kullback Leiber, Jeffrey, Kagan 
and Exponential divergence, Hellinger Distance. k – li-
mitation of length in weighted sum and kernel methods 
is set to be: p=0.1...0.9 – percentile 0.1...0.9 of distribu-
tion, μ – mean value of distribution, μ-σ – mean minus 
standard deviation, μ-2σ – mean minus two standard 
deviations

rapidly decrease for Radio Maps of at least 10 samples 
for AP this decrease is stabilised around Radio Map of 
35 samples. On the other hand having a Radio Map of 
over 3000 samples per AP per location is redundant 
as the location performance for a Radio Map of over 
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lier. In this office space of approximately 30 m × 25 m 
a Radio Map M was created and set of locations (Lj, Qi)  
was taken in the same location. Number of Radio Map 
points is imax = 1172. The procedure of estimating lo-
cation error was similar to the one described in sec-
tion 10.1: for each i-th point in the Radio Map set this 
point as location L = Mi,loc, Q = Pi, and remove from the 
Radio Map M: = M – {Mi}. For each of point we have 
calculated location errors for each method: single val-
ue (section 9.1), divergences (section 9.2) and metrics 
(section 9.3). For all calculations we have used non-
regression and regression methods according to sec-
tion 9.4. Location errors for these combinations are 
shown in figure below (Fig. 7).

Worst accuracy is achieved by Kagan Divergence 
for all modes of calculation (NN, weighted sum and 
kernel). 

In this scenario we have achieved best performan-
ce for non-kernelled NN methods. 50% of locations 
estimated by Nearest Neighbour Jeffrey divergence 
are inside a circle of radius of 0.079 m. For Exponen-
tial divergence NN 95% of locations provided by esti-
mate are in 1.06 m of radius. Nearest Neighbour get 
the location of a point with smallest divergence/di-
stance value. Therefore such good results for Nearest 
Neighbours can be explained by a fact that Radio Map 
is taken by SLAM with very high density of Mi,loc. In this 
Radio Map locations are distanced in average 0.059 m 
so that the Radio Map is very dense. Average number 
of APs was 35.

10.3. Experiment 3: Office Location – Location 
Accuracy

In this experiment we have created a Radio Map of 
environment M. A view of RSSI levels for several AP is 
presented in Fig. 8.

In this experiment we have gathered the Radio 
Map M of the office space and a set of locations L of 
the same office space. M and L were gathered using 
our method for Radio Map gathering, therefore when 
calculating  we were able to calculate an er-
ror EM,L of positioning by comparing it with L measu-
red by SLAM. EM,L has two components: SLAM error 
component and WiFi location component. SLAM er-
ror component comes from the fact, that Metric Map 
produced by SLAM is not ideal: estimating location 
of each point of the Radio Map bears an error ESLAM  
(ESLAM is estimated in office space in our method ap-
proximately 0.3 m). The total EM,L for selected methods 
is shown in graphical form Fig. 9, whilst numeric valu-
es can be found in Tab. 2.

In the best case (Hellinger distance with no-ker-
nels) we have achieved a location accuracy of 1.06 m 
for 0.5 percentile of measurements (CEP=50) whilst 
almost all measurements (95th percentile) are below 
3 m of error (see results and comparison with other 
methods in Fig. 10). The subsequent locations estima-
ted by algorithm based on non-kernelized Hellinger 
distance well mirrors the original path as can be seen 
by trajectory and bindings presented in Fig. 9e. Ple-
ase note that trajectory estimation is not supported 
by any other Bayesian-like filter, but rather is a raw 
output from location engine. A support of such fil-

Fig. 8. RSSI signal from 6 different AP in the Radio Map M

1000 RSSI samples per AP is almost constant for such 
Radio Maps. Summarising: a time of 1 s of sampling 
gives on average 150 samples per AP. In the result we 
estimate, that 35 samples for AP is enough for efficient 
location using proposed methods. A time of 0.2(3) s of 
sampling in one location is therefore enough to pro-
duce Radio Map point Mi with effective calculation for 
methods described in chapter 7 Average number of 
APs for this scenario was 24 and points where gathe-
red with density of 1 m. Since the process of RSSI sam-
pling is continues in sense that the apparatus is in mo-
vement while measuring WiFi signal we have to assign 
some distribution Pi gathered on the movement to one 
location Mi,loc. Since the location accuracy of presen-
ted method i.e. the primary location accuracy of Mi,loc  
calculated by SLAM pipeline is several centimetres 
this location estimation has to be rounded to higher 
(worse accuracy) number e.g. 50 cm. This means that 
all RSSI samples in the range of 50 cm from M’i,loc will 
be bonded to that location (M’i,loc). Assuming a linear 
movement (constant velocity), sampling achieved spe-
ed of 150 samples/s, calculated 35 samples the and 
a map of a grid of 50 cm we achieve maximum velocity 
of apparatus of 2.14 m/s. The preferred walking velo-
city is 1.4 m/s, therefore our solution allows to exceed 
this velocity. When moving with the preferred walking 
velocity we can achieve over 54 samples per AP. On the 
other hand preferred walking velocity allows gathe-
ring samples of minimum quantity (35 samples per 
AP) with the grid of 30 cm. Summarizing the proposed 
method allows it to be used by both: walking human 
and a robot, because WiFi sampling time is low eno-
ugh to gather the representative set of RSSI samples 
for further distance calculations. 

10.2. Experiment 2: Office Location – Comparison 
of the Points of Radio Map

During this experiment a Radio Map M of an office 
building was taken by SLAM method described ear-
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Fig. 9. Location errors for office-like scenario for different 
methods of location estimation. Bindings lines connect 
the location L with calculated estimate L.̅ a) and b) are 
given as a baseline, c) and d) are worst results, e) and f) 
are best results. a) Single value calculation for mean va-
lue (section 9.1), b) Single value calculation for median 
value (section 9.1), c) Location estimated by Kagan di-
vergence weighted sum for k=40th percentile of T ((18) 
with section 9.4, Method 2),   d) Location estimated by 
Hellinger distance kernelled for k=90th percentile of T 
((24)with section 9.4, Method 3, kernel k_2),  e) Location 
estimated by Hellinger distance no kernelled ((24)with 
section 9.4, Method 1), f) Location estimated by Jeffrey 
divergence kernelled with k= μ(T) ((15)with section 9.4, 
Method 3, kernel k_1) Refer to Tab. 2 for numerical data
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Fig. 10. Cumulative error probability for chosen methods

ter would only increase quantitatively the quality of 
our results.

In addition to presented test a cumulative distribu-
tion of location error was measured for this scenario. 
Fig. 10 refer to six selected examples of location es-
timation method (see Tab. 2 and Fig. 9). We achieve 
80th percentile of below 2 m.

11. Related Work
Indoor navigation problem has recently been in-

vestigated with different contexts and principals of 
operation [26–30]. Despite large research attention, 
commercial indoor navigation solutions are still not 
very popular. Literature review state two reasons to 
support this fact [31–33], namely they are (1) Need 
of higher accuracy in comparison to outdoor solu-
tions and (2) High cost of RF fingerprinting. Accuracy 
of the order that GPS provides for indoor scenarios: 
in a mall or in a train station can in fact mislead the 
user, as the location estimation error can cause po-
inting to a different store or platform. Unfortunately 
this problem is even more visible when we compare 
positioning accuracy in all three dimensions. In real 
conditions when device has been moved between of-

fice floors most of available systems are not reliable in 
determining the right position. User has to move for 
a while to get the precise location. 

High cost of RF fingerprinting and a nessesity of 
repeating fingerprinting for building up-to-date map 
is another drawback of RF-based indoor location me-
thod. Even through RF fingerprints (signatures) are 
widely available in indoor environments they vary 
over time. Moreover the signatures are sensitive to 
high usage of APs, number of connected devices and 
even to human presence. A part from this in public 
places the infrastructure and is changing over time 
e.g.every shop is changing decoration every season.

In the environments where global positioning sys-
tem is not available, the most popular solutions are 
these based on training sets of signatures annotated 
with the ground truth (fingerprinting) [34–36]. They 
provide accurate results and in most cases they do 
not need any additional hardware. Latest proposed 
solution try to utilize already available wireless si-
gnals, mostly in form of received signal strength in-
dicator – RSSI [32–37]. In this group of solutions that 
can be called a baseline, location accuracy is in a high 
correlation with fingerprinting density (e.g. PinLoc 
[38], Radar [34] and Horus [36]). This particular fe-
ature makes the fingerprinting process cost ineffecti-
ve when higher accuracy is needed since the sample 
gathering process is manual, performed by a human 
operator. There are many elaborations proposing so-
lutions to this problem, but most of them determine 
a set of locations that need more fingerprints. 

Another group of solutions is based on customised 
beacons placed in fixed positions that allow further 
optimisation for indoor localization algorithms. Tho-
se beacons make a use of vartiety of different wireless 
technologies e. g. RFID [39], Bluetooth [40], FM signal 
transmitters [41, 42], ultrasounds [43], infrared [44] 
and VLC [45–48]. Whilst in general they provide hi-
gher location accuracy, they demand additional infra-
structure with further need of servicing that incre-
ases the overall cost of the system.

The third group can be described as infrastructu-
re-less or self-calibrating. In general those methods do 
not use any a priori known data about environment. 
In most cases, they do gather all of the used data di-
rectly from users. The biggest advantage of this gro-
up in comparison to previously mentioned systems 
is a low cost of deployment. Unfortunately they also 
provide the lowest accuracy. Recent elaboration intro-
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ducing EZ [49] proposes a solution based on idea that 
location based on WiFi APs and RSSI can be improved 
by checking it with GPS on signal availability. Median 
accuracy achieved after such modification is between 
2 and 7 m. Different approach to infrastructure-less 
localisation was introduced in [50, 51] where authors 
proposed a solution based on internal inertial sensors 
of mobile devices. Dead-reckoning accuracy in most 
cases suffers from the accumulated error from acce-
lerometer [53]. To improve its performance modifi-
cations similar to [49] were tested [53, 54]. Slightly 
better performance was achieved by UnLoc [31] and 
other solutions [30, 55] that combine dead-reckoning 
approach with signature detection. 

12. Conclusion 
The goal of this research was threefold: First we 

wanted to speed-up a process of wireless Radio Map 
data gathering, reducing one of the main drawbacks 
of fingerprint-based location methods. Our approach 
of Radio Map data gathering uses capabilities of SLAM 
to correctly bind a metric location with WiFi radio 
strength signal. Thanks to such approach the output 
Radio Map is gathered automatically with correct bin-
ding of metric position and WiFi signal strength sta-
tistics. Our method outperforms classic approach of 
Radio Map data collection with respect to Radio Map 
density, location error, time needed for Radio Map 
creation and automatic generation of a ready-to-use 
Radio Map. Since the WiFi Radio Map is generated as 
the apparatus moves we have received up to 10 times 
faster Radio Map generation comparing with classic 
methods. This yields the usage of our approach in hi-
ghly dynamic environments like trade fairs, shopping 
centres etc. 

The second goal was to propose novel method of 
location estimation based on previously prepared 
Radio Map. For the purpose of location estimation 
we proposed to use f-divergences (Kulback-Leiber, 
Jeffrey, Kagan and exponential divergence) and Hel-
linger distance together with nearest neighbour ap-
proach and 2 types of regression. It is legitimate to 
state that our method of Radio Map data gathering 
outperforms the classic, human assisted wireless Ra-
dio Map generation approach in sense of Radio Map 
creation speed and time and Radio Map density. Our 
method produces a Radio Map of density of 0.05 m (in 
comparison with approx. 2.5 m for classic approach) 
density with average speed of sample gathering of 
0.2 s (approx. 2 s for classic approach). This result is 
a significant progress in WiFi surveying.

Thanks to using multiple samples of RSSI the lo-
cation process is immune to noise and abrupt RSSI 
changes caused by various inferences e.g. people 
passing by during sampling. This makes the process 
of building a Radio Map and then location estimation 
possible in non-laboratory conditions. This can be 
explained by the fact that we use stochastic methods 
for calculations thanks to which we assign small pro-
bability to events that occurs rarely in particular lo-
cation dismissing their influence on further location 
estimation. The susceptibility to such events is a com-
mon issue for signal-strength based localization.

Experimental results of location estimation error 
show also that proposed solution of using stochastic 
measures is superior to current solutions presented 
in the literature [56, 57] even though we do not use 
any additional source of information than WiFi RSSI. 
Our solution does not use any additional information 
to WiFi signal and still it outperforms new systems 
presented in literature. In space-like scenario we 
have achieved a result of circular error probability of 
1,06 m for office and still show very good performan-
ce in 80th percentile of cumulative error probability 
equal to 2 m for office-like scenario. 

13. Future Work
For future work we plan to introduce a method of 

estimating the quality of Radio Map built automati-
cally so that our solution may be supplemented by au-
tonomous robotic mobile platform that would gather 
the Radio Map automatically without human inter-
vention.
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