Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

EXTENSIBLE, FAST AND SECURE SCALA EXPRESSION EVALUATION ENGINE

Submitted: 251" March 2017; accepted: 26" October 2017

Arkadiusz Janik, Roman Janusz

DOI: 10.14313/JAMRIS_3-2017/26

Abstract:

Scripting and expression evaluation engines are popular
tools in the Java software ecosystem which is understood
as any environment using Java Virtual Machine (JVM) to
execute code (which does not have to be generated from
Java language). With the current, wide-spread popularity
of Java and Java bytecode compliant languages it me-
ans that both: traditional, stand-alone Java programs as
well as enterprise systems run on application servers or
even systems deployed in microservices architecture can
be considered. Expression evaluation engines are often
used for purposes like defining document templates, en-
hancing various static configuration formats with dyna-
mically evaluated snippets or defining data binding for
user interfaces. However, most of these solutions em-
ploy dynamically typed languages and suffer from limi-
ted performance and lack of any concern for security.
This effectively makes it impossible to use expression lan-
guage as a feature exposed to end users. This paper pre-
sents a new approach to implementing an expression en-
gine. It uses Scala as the expression language and levera-
ges its static type system as well as its rich feature set
to create an expression evaluation engine with expres-
sive and concise language, high evaluation performance
and fine grained security control. In the paper we pre-
sent use case built for the domain of telecommunication
networks. In large telecommunication networks one can
find hundreds of devices for which configuration has to be
updated either periodically or on-demand when a given
event occurs. Contents of configuration files may have to
be generated dynamically (based on some data associ-
ated with a given device). On top of that, since commu-
nication networks are heterogeneous environments with
hardware delivered by different providers, exact form of
each config file may vary depending on a type of a device
and its manufacturer. Moreover, as structure and size of
telecommunication networks evolve as new devices are
added, there is a need to dynamically and remotely sup-
port completely new types of devices with a completely
new format of configuration. This paper presents how the
problem can be solved by using configuration file templa-
tes with placeholders that would be filled by some data
associated with a given device. Each template is an ex-
pression that evaluates to exact configuration file. Perfor-
mance is crucial (due to size of network) and so is security:
the solution should allow to control what kind of configu-
ration and by whom may be applied to devices while still
allowing network operators to use a Graphical User Inter-
face to define (or redefine) configuration file templates.

Keywords: expression evaluation engine, Scala

1. Introduction

Embedding scripting environments inside larger
software systems is a commonly used technique
where the system serves as a container for some spe-
cialized, domain specific logic that can be loaded and
executed dynamically. Such environments allow im-
plementing features that cannot be expressed by sim-
ple graphical interfaces without losing much of fine-
grained control and generality provided by a scripting
language.

Perhaps the most ubiquitous example of such a sy-
stem is any web browser. The scripting language that
it embeds is of course JavaScript and the browser ser-
ves as an execution environment for scripts.

Embedded scripting enables dynamic loading and
execution of entire programs. A more lightweight and
limited version of scripting engine is an expression
evaluation engine. Instead of scripts that can be long
and complex, an expression engine allows only sim-
ple expressions to be evaluated, with no access to con-
structs like loops, definitions of functions or classes,
etc. Expressions usually consist of method or function
invocations and operator applications that operate on
expression input and produce some output data. The-
refore, unlike script execution, expression evaluation
is usually not allowed to cause any side effects.

One of the most challenging aspects of embedded
scripting and expression evaluation engines is secu-
rity. Loading and executing code provided dynami-
cally by some third party poses a serious threat of
letting malicious program execute which could result
in either damage to the host system or unauthorized
access to sensitive data. The more freedom a scripting
engine allows, the harder it is to secure it. An expres-
sion engine is much easier to secure than a full-blown
embedded scripting engine like browser-embedded
JavaScript.

A good example of an expression evaluation use
case is an expression-enhanced administrative panel.
Such panel may be used, for example, to adjust a greet-
ing message that is displayed to users upon logging
into a web portal. The message would be configured
as an expression (template) that has access to the data
of the user logging in.

Another example could be an administrative inter-
face for massive data processing system where a user
could dynamically specify a data crunching job to be
executed on a large amount of potentially distributed

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

data (e.g. a map-reduce job). An expression would de-
fine actual transformations performed on that data.

The domain that authors of this paper focused on
when building the real-life use case, though, is tele-
communication networks where there is a need to
update configuration of network devices (or provide
configuration of newly added devices) in some situ-
ations such as device reconfiguration, device decom-
missioning, network topology change etc. The propo-
sed solution has been successfully used to built a de-
vice management platform that allows telco operators
to monitor and manage devices installed in their net-
works. As mentioned above the system has to work in
network with virtually unlimited number of devices.
The devices can be automatically or manually grouped
into hierarchies so that it is possible to manage them
in bulk but still allowing fine-grained differences bet-
ween configurations if required. Network devices have
to be reconfigured remotely and it can be easily done
with configuration files periodically fetched by devi-
ces from management systems. As part of configura-
tion content is attributes (or metadata) of a given de-
vice, configuration file templates can be used. In other
words: each template is an expression that evaluates
to a configuration file. In order to adapt to changing to-
pology of a network and to be able to support new ty-
pes of devices with a new format of configuration files
there is a need to provide a user interface to network
operators allowing them to define new formats dyn-
amically. The system guarantees a fine-grain security
control over information that can/cannot be defined
in the template.

The evaluation engine built is part on an inter-
nal scripting language that has to be flexible as both:
format of configuration expected by a given device
as well as output format used by a given device can
vary but should be unified for end-user experience. By
end-user we understood network administrators with
some technical background. The evaluation engine al-
lows them to (re)adjust the system for needs of a given
customer without rebuilding and redeploying the sy-
stem.

This paper describes an attempt to create an ex-
pression engine running on the JVM that is good for
use cases like the ones described above. More syste-
matically, the essential requirements for such engine
are:

- very high evaluation performance - a single expres-
sion, compiled once, is likely to be evaluated massi-
vely, for many inputs

- fine grained security control - ability to easily reject
potentially dangerous expressions by limiting what
constructs and what API can be used

- flexibility and extensibility of the expression lan-
guage

All of these requirements have a common deno-
minator: to allow the expressions to be dynamically
provided in runtime by means of graphical (e.g. admi-
nistrative) interfaces without fear of security breaches
and performance bottlenecks.

The research described in the paper allowed aut-

hors to build a domain-specific language in Scala (that
was used to define allowed language syntactical con-
structs and calls to control and limit evaluations in
terms of security) and to build a real-life, working and
commercially used system that utilizes the evaluation
engine to remotely manage devices in telecommunica-
tion networks.

2. Related Work

The paper [19] presents the algorithm for evalu-
ating physical expressions and performing automatic
conversions between quantities measured in different
physical units. The paper describes CellML - the XML-
based modelling language that can be used to repre-
sent units and expressions in a way that allows their
easy validation and unit conversion. The authors des-
cribed the two phases, partial evaluation algorithm.
The solution, although very interesting cannot be used
in our research as it only provides a part of required
features. It proposes checking physical units at the le-
vel of the modelling language, removing the need for
the support in the programming language. Also - due
to a nature of the solution - security problems are not
addressed at all. Similarly, although [23] presents a
novel approach to interpretation for abstract equati-
ons using table-driven pattern matching it does not
address security problems and cannot be used to eva-
luate general expressions.

An interesting idea to build an expression evalua-
tion engine is to use XQuery as a base and one of avai-
lable XQuery engines as the execution environment.
This could be achieved directly in Java - for instance
by using XQuery Processor for Java solution. The pa-
per [20] presents XQuery as a very convenient expres-
sion evaluation engine. The paper summarizes non-
standard applications of XQuery - using it to solve re-
creational problems and puzzles or - speaking more
generally - using it as a problem-solving language.

A special case of an evaluation engine is regular ex-
pression searching engine. A regular expression can
be understood as a domain specific language (DSL)
that has to deal with text-parsing. There is a vari-
ety of engines available for Java platform. FIRE/] is
one of them [21]. What makes the solution unique
is its speed. According to the authors of the publica-
tion their solution is the fastest one which is one of
goals of our project. FIRE/] has a major limitation,
though. It’s developed as a tool for direct code genera-
tion. FIRE/] transforms each regular expression into
a class file that is tailored specifically for the expres-
sion. As a result the solution cannot be used to pro-
vide areal, run-time expression evaluation engine. Re-
gular expression evaluation engine is also a part of
[29]. Even though the main subject of the paper is im-
proving efficiency on spam filtering techniques some
ideas presented may be useful in the broader context
of evaluation engines. The paper focuses on evaluating
regular expressions in a fast and efficient way. Despite
of a lack of support for general expressions, the solu-
tion focuses on C/C++ platform.

Although the major subject of the paper [30] is

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

combining textual and visual programming by dis-
playing Python and Java objects in a visual way some
ideas presented could be utilized in the general con-
ceptof evaluation engine. Extending the evaluation en-
gine so that it allows a user to specify the expression
as a combination of text (expression code) and visual
constructs may improve the user experience. One of
test cases presented summarizes a visual editor of re-
gular expressions. Nevertheless, the paper focuses on
Visual Programming Languages (VPL) thus making it
only partially useful in the context of our research.

Another example of a special case of expression
evaluation engine is a database query engine. The
good description of an algorithm for evaluating data-
base queries is described in [22]. Queries are repre-
sented as expressions in a logical language. The recur-
sive algorithm computes values of (sub)expressions in
such a way that re-evaluation is avoided. To increase
performance additional techniques are used such as
transformations of the input expression. Although the
performance of the proposed algorithm is high the so-
lution focuses on a database queries only. Moreover, it
does not describe the whole engine. Security aspect -
due to a nature of queries - is not addressed, neither.

Another example of research done on building ef-
ficient query engines is presented in [28]. What con-
stitutes the research particularly interesting for our
work is Scalalanguage that has been selected to imple-
ment LegoBase - a query engine being analysed by aut-
hors. The paper is part of abstraction without regret
manifesto. Authors claim that database query compi-
lers should allow both: productivity (by using high le-
vel languages) and high performance. It means that
developers should not be forced to use low-level ab-
straction to program database management systems
in order to obtain high performance. The approach ta-
ken by authors is to use Scala (which means: a high-
level language) which is then optimized to optimized,
low-level C code for each SQL query. Authors used
Scala to emit C code. Generative (meta)programming
in Scala takes advantage of the type system of the lan-
guage which ensures that abstractions such as generic
data-structures or function calls are optimized away
during code generation. Similar concept has been se-
lected in our research: each evaluation is compiled to
Java bytecode (.class), loaded to JVM and then in-
stantiated. Such an instance is ready for evaluation.

As mentioned before a regular expression lan-
guage is an example of a domain specific language
(DSL), sometimes "little languages”. A DSL is a concise
programming language designed to express in a clear
way a small domain of problems. A particularly inte-
resting case for our purposes is embedded DSL which
lives inside a host language which allows developers
to use existing language instead of learning a new syn-
tax. The paper [24] addresses significant problem of
such languages. As DSLs exist inside a general pur-
pose language it is difficult for them to exploit dom-
ain knowledge. To deal with the problem there is a
need for virtualizable languages - the ones that pro-
vide environment for embedded languages that gua-

rantee embedded languages identical to correspon-
ding stand-alone language implementations when it
comes to safety, performance and expressiveness. The
above mentioned paper mentions major safety pro-
blems related with language virtualization and DSL.
However, the paper does not focus on safety thus not
provide a solution.

The work presented in [24] was the initial survey
of the area and has been continued by the team of
Tiark Rompf and Hassan Chafi later on. One of inte-
resting applications of DSL is described in [25]. The
work is driven by the need to support increasing size
of datasets and limited amount of computational po-
wer. Authors propose an alternative to MATLAB: Op-
tiML - a domain-specific language for machine lear-
ning. The major problem authors focused on is hete-
rogenous environment which, despite of lots of ad-
vantages requires researchers to have expert know-
ledge in different programming models (aimed at a
specific component of a computing system: message-
passing libraries, threaded libraries, data parallel pro-
gramming models etc.). What makes this research par-
ticularly interesting is fact that OptiML is embedded in
Scala. Its complier is implemented in Scala so OptiML
programs are also valid Scala programs. OptiML uses
technique called lightweight modular staging to build
an intermediate representation of a program. Several
static and dynamic optimization techniques are used
including pattern rewriting, op fusing, best effort com-
puting or relaxed dependencies. Authors focus on per-
formance aspect of the problem but security control is
beyond the scope of the research.

It has to be underlined that significant difference
between our research and OptiML is OptiML's de-
pendency on Scala-Virtualized [26]. Scala-Virtualized
is a branch of the Scala compiler and standard li-
brary that contains a few additions to provide even
better support for embedded DSLs. The major con-
tribution is overloadable control structures (while-
loops, if-then-else, pattern matching), variables, ob-
ject creation, etc. In Scala-Virtualized concept of trans-
lating for-comprehensions into method calls (to al-
low a programmer to change the meaning of a for-
comprehension by implementing these methods in a
required way) has been generalized to all control flow
operators.

An extremely interesting and practical application
of Lightweight Modular Staging is Lancet - a Just-In-
Time (JIT) compiler framework for a Java bytecode
[27]. Traditional JIT compilers use rather simple sta-
tistics to determine piece of code to be compiled (such
as a number of a method’s calls) and use speculative
("optimistics”) inlining decisions (which means that
later on, during program'’s exeecution the method call
may resolve to a different target thus forcing JIT com-
piler to deoptimize compiled code and compile/inline
again). What Lancet adds on top of techniques used by
modern JIT compilers is "access” to many other infor-
mation that could be exploited runtime. Mixing DSL-
expressions in a more general program allows expli-
cit compilation and compile-time computation. Expli-

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

cit (on-demand) compilation is utilized by invoking
JIT compilation directly by programs which gives an
possibility to relay warning (or error) messages to the
program. That, combined with several techniques of
code optimization (namely controlled inlining, dead
code elimination and aggressive partial evaluation) al-
lows the compiler to guarantee (in same cases) that
the part of compiled code will never allocate objects
on the heap. As a result, that part of code can excluded
from garbage collector’s tracking. Compile-time com-
putation is a technique that allows JIT compiler to call
back into the running program. In other words, the
JIT compiler is provided access to a "context” - proper
"smart” library provided by a programmer of an appli-
cation allows smart, domain-specific compilation op-
timizations. Even though the goal of authors - more ef-
ficient, better native code generated by JIT compilers
- is beyond the scope of our work some concepts pre-
sented in the above mentioned paper have been inclu-
ded into our research. For instance SyntaxValidator
traitimplements similar logic to a part of Lancet called
"taint-analysis” which tracks what happens to user in-
put. It is assumed that input is tainted and validation
is performed to check whether the tainted data is "le-
aked” to branched part of code etc.

Dedicated Expression Engines JVM has a significant
number of expression evaluation engine implementa-
tions. In this article, particular three are of our inte-
rest:

- Java Unified Expression Language (JUEL) [1]

- Spring Expression Language (SpEL) [2, ch.8]

- MVFLEX Expression Language (MVEL) [3]

JUEL is an implementation of the Unified Expres-
sion Language standardized as a part of JSR-245 spe-
cification - Java Server Pages [4]. In JSP and]JSF (Java
Server Faces [6], its successor) an expression language
is used mostly as a data binding layer between a web
interface and an underlying business layer. Expres-
sions are embedded inside JSP/JSF pages to specify
what data various Ul components link to. Thisisa good
example of a template-based user interface develop-
ment, where a web page is a template that has some
"holes” that need to be filled up in concrete context by
an expression evaluation.

SpEL is an expression language used by the Spring
Framework [2], primarily for enhancing configuration
of application components (called beans) in the IoC
(Inversion of Control) container. In particular, expres-
sions can be embedded in XML files that configure be-
ans or inside Java annotations in source code of ap-
plication components. This allows setting dynamic va-
lues to various configuration properties that can’'t be
expressed by simple literal values.

MVEL is a general purpose expression engine with
a hybrid dynamically-statically typed language and an
optional compilation to JVM bytecode which signifi-
cantly improves performance.

The three listed expression engines use mostly dy-
namically typed, ad-hoc, simple expression languages.

JUEL and SpEL were designed to be used in static re-
sources of applications that use them. None of the
three engines have any security features or means of
easily achieving it.

Expression Engine on Top Existing Language Perhaps
the most well known specification of an embedded
scripting engine on the JVM is the JSR-233 standard,
Scripting for the Java Platform [5]. It specifies standard
data types and interfaces that must be provided by an
engine that allows dynamic script execution inside a
running JVM program. This standardized API prima-
rily defines the way that host a program can commu-
nicate with an embedded script - a glue layer. It is ag-
nostic of the actual scripting language.

There is a vast amount of JSR-233 implementati-
ons for many standalone programming languages as
well as custom, ad-hoc scripting languages. These in-
clude Java, JavaScript, Groovy, Scala, Ruby, Python,
PHP, etc.

An JSR-233 scripting engine could be used as a ba-
sis for an expression engine providing that there is a
way to limit the scripting language to simple expres-
sions with proper security enforcement. The standard
itself does not define any means to achieve that, but
concrete implementations and the scripting language
that they use may have such capability.

If a programming language has a standalone inter-
preter or compiler to JVM bytecode that by itself also
runs under JVM, it could be used directly instead of re-
lying on a JSR-233 implementation.

In general, suitability of an JSR-233 implementa-
tion or a standalone compiler for implementing an ex-
pression evaluation engine depends heavily on traits
of the language itself. Since the new expression en-
gine targets the JVM, we are only considering langua-
ges that have a JVM implementation. Also, require-
ments for evaluation performance and ability to sta-
tically analyze expression code suggest that languages
with at least some form of static typing should more
easily meet these requirements than dynamically ty-
ped languages.

Three languages have been chosen for evaluation
in this paper:

- Java [7] - statically typed but verbose and inflexible
in many aspects

- Groovy [9] - concise and flexible in many ways, but
mostly dynamically typed (static typing as an op-
tion)

- Scala [8] - statically typed, with conciseness and flex-
ibility potentially on par with dynamically typed lan-
guages thanks to type inference and other features

Scala and Groovy are normally languages compi-
led to JVM bytecode, but this does not mean there’s no
point in them supporting JSR-233. The point of JSR-

233 is not just interoperability with JVM objects but

dynamic, embedded execution without need for expli-

cit compilation and deployment.

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

3. Language Comparison

In order to choose a programming language that
could serve as a basis of an expression evaluation en-
gine, we must recognize what features in detail should
the expression language provide. The new expression
engine should be considered as a potential replace-
ment or alternative to already existing engines and
therefore should support most of expression language
constructs that these engines provide.

More in-depth research on engines mentioned ear-
lier (JUEL, MVEL, SpEL) as well as a closer look on ge-
neral purpose programming languages that could be a
basis for the new expression engine reveals the follo-
wing set of commonly supported constructs:

- essential constructs: literals, constants, arithmetic
and logical operators

- variable assignments and references
- function and method calls
- class instantiation

- operators for concise access to array, list and map
elements (like square brackets for array access in
Java)

- concise syntax for array, list and map creation
- field references and assignments
- anonymous functions (lambdas)

- basic higher-order functions for collections like fil-
tering and transformation

- automatic type coercion
- null-safe dereference, e.g. the . 7 operator in Groovy
[10].

Example: expression obj.?field will evaluate to
null when obj is null instead of failing with an ex-
ception.

- default value operator (e.g. Groovy Elvis - 7: [11])

Makes it possible to concisely provide a fallback va-
lue that should be used when another value is null.
Example: obj.name 7: "unknown"

- conditional expressions (e.g. ternary operator 7: in
Java)

- structural and constructs

if-else etc.)

imperative (loops,

- template expressions - string literals with "holes”
that will be filled by actual expressions.

An example of atemplate expression in SpEL (see
[2, p.189]): My name is ${person.name} where
person is the input object containing a property
name.

- standard C/C++ and Java like syntax for function
and method invocations and operators (this exclu-
des Lisp or Haskell like languages)

The features listed above are only the purely syn-
tactical constructs used by the end user who will ac-
tually write expressions. However, there is also a set

of additional features that are important for the pro-
grammer who sets up the expression evaluation con-
text. In particular, he/she must be able to influence
how expressions in concrete context are compiled and
evaluated and what constructs, APl and types are avai-
lable to the author of expressions. In detail, these fea-
tures include:

- ability to define what top-level functions and objects
are available in the expression

- pluggable strategies for implementing dynamic ob-
ject property access and method calls

- enhancing API of existing types, e.g. by adding addi-
tional methods to standard data types like strings

- limiting the API of well-known types only to a desi-
red set of methods, fields, etc.

- defining additional automatic type conversions
- custom operators and operator overloading

- ability to statically (during expression compilation)
analyze the expression code and reject potentially
unsafe or forbidden constructs and invocations

JUEL, MVEL and SpEL engines as well as the lan-
guages Java, Groovy and Scala were all verified in
detail if features mentioned above are supported by
them in any form. Table 1 summarizes the results of
this research.

As we can see, Scala and Groovy seem to be the
most promising. They have most of the language featu-
res required for an expression engine and they are the
only two technologies with possibility of static expres-
sion code analysis, which is probably the most impor-
tant requirement for the new expression engine con-
sidering its need for security enforcement.

Additionally, after more detailed analysis, Scala
seems to be the winning option over Groovy since the
latter is severely limited in its static analysis capa-
bilities by dynamic typing. Although it is possible to
force static typing in Groovy and obtain some type in-
formation during compilation (by means of Groovy’s
ASTTransformation feature), this cripples other lan-
guage features like dynamic method calls or ability to
enhance API of existing types.

Adding language features and extensibility mecha-
nism listed in Table 1 to already existing languages
would be a non-trivial task requiring probably cre-
ating a fork of each language and modifying their
compilers/interpreters accordingly. Therefore, Scala
is selected as the most suitable technology for imple-
menting the extensible, fast and secure expression en-
gine described in this article.

It is worth explaining how the constructs to be ex-
posed in language comparison were chosen. Expres-
sion language is not meant to be a full programming
language. In order to implement use cases like the one
described in the paper (config file templates) we only
need the ability to define relatively small, pure functi-
ons. For that, constructs like field/property selection,
function/method/operator application, ’if’-’else’ ex-
pressions, lambda expressions, literals and constants
are sufficient. Expression engine will not be used

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

Tab. 1. Language comparison summary

Feature

Java

Groovy

=

Scala | JUEL | S MVEL

constants and literals

arithmetic and logical expressi-
ons

variables

object property access and assig-
nment

method calls

class instantiation

concise collection and map ele-
ment access

> NNONN NS

concise collection and map crea-
tion

R

NONXN NS

basic higher order functions for
collections

SN N NENANEEENEN R NEN
AN N NANAN RN AN
AN N NA AR NN R NN =2
NN NET AR NEN

*

lambda expressions

automatic type coercion

null-safe dereference

default value operator

conditional expressions

imperative and structural state-
ments

ANANRIR R IANEERN

x| x| x| [
x NN NN X

template expressions

pluggable dynamic property
access and assignment strategies

x| x

NN NNIX N NS

ANEN

pluggable dynamic method invo-
cation strategies

*
*

enhancing API of existing types

limiting API of existing types

custom automatic type conversi-
ons

NNN NN NN NN XS

NN x>
N x| %

custom operators and operator
overloading

NONNYNON NS

N

static expression code analysis

NN ONNYN N NN NNNNNSN

v

*
>
*

to implement complex algorithms, side-effecting pro-
grams, low-level programs or large codebases. The-
refore, there is no need to support language con-
structs like methods or classes, which are associated
with code reuse, abstraction, modularity, readability
and long-term maintenance. Supporting minimal, suf-
ficient subset of language features also makes it way
easier to secure the engine against exploits and write
Ul tools for syntax highlighting, suggestions, etc.

4. Scala as Expression Language

In this section we will present a quick overview
of essential properties of the Scala programming lan-
guage and discuss in detail how its various features
are sufficient to meet requirements discussed earlier.
See [12] and [13] for more complete overview of the
language.

Scala [8] is a programming language for the JVM ai-
ming to blend the object oriented and functional pro-
gramming paradigms and retain good interoperability
with Java. It is a statically typed language with type in-
ference and very complex, fine-grained type system. At
the same time it aims to be close in its conciseness and

flexibility to dynamically typed programming langua-
ges.

Scala version 2.10 introduces important metapro-
gramming facilities - reflection and macros which are
key for implementing security features of the expres-
sion engine.

Scala naturally supports essential constructs like
constants, arithmetic expressions, object property
access and method calls, constructors, etc. Expressi-
ons in Scala mostly have a syntax similar to Java. Dif-
ferences include e.g. usage of square brackets instead
of angle brackets to denote generic types. For exam-
ple, Arrays.<String>asList("str") in Java beco-
mes Arrays.asList[String] ("str") in Scala (the
type can however be usually omitted due to type in-
ference).

In Scala, there is no clear difference between a met-
hod and an operator. Every operator can be though as
ifit’s a method with a symbolic name. At the same time
every method which takes exactly one argument can
be called with an infix syntax. All of the following con-
structs are correct:

1 +2

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

1.+(2)
set.contains(element)
set contains element

An unique feature of Scala is an ability to define im-
plicit conversions [12, ch.15] between types. In an ex-
pression evaluation engine, this can be used for two
purposes:

- to provide custom automatic type coercion

- to enhance API of existing types with new methods,
fields, etc.

The API enhancing is possible thanks to the so cal-
led implicit views. By introducing an implicit conver-
sion from type A to type B we effectively enhance API
of A with API of B. Methods in type B become extension
methods of type A. This is often realized in Scala using
a syntactic sugar called implicit classes. The follo-
wing example enhances type String with an additio-
nal capitalize method:

implicit class richStr(str: String) {
def capitalize =

str(0) .toUpper + str.substring(l)

}

It is worth noting that extension method can also
be called with an infix syntax, so it is effectively possi-
ble to create and overload operators.

Scala also has a number of syntactic sugars that
increase conciseness. For example, when a method is
called apply, it can serve as an overloaded function
application operator, i.e. obj.apply(arg) can be re-
written just as obj (arg). Thanks to this, we can have
concise collection creation constructs like:

List(1, 2, 3, 4)
Array("str", null, "sth")
Map(llonen -> 1, "two" -> 2)

The example above also uses a few other, indepen-
dent Scala features:
- variadic arguments (the apply method takes a vari-
able number of arguments of the same type)

- first-class objects (List, Array and Map are actually
singletons associated with their corresponding col-
lection types - so called companion objects)

- type inference (the apply methods on objects List,
Array and Map are generic)

- custom operators (the -> is a custom operator that
creates a pair out of its operands)

The apply method can also be used to im-
plement concise access to collection elements, e.g.
someList (2), someMap ("key").

It is important to remember that implicit con-
versions are resolved statically, based on types
known at compile-time (unlike type coersions in
JUEL/SpEL/MVEL which use runtime type informa-
tion).

Scala is a functional language, so it naturally sup-
ports constructs like lambda expressions and higher
order functions. Examples:

List(1, 2, 3, 4).filter(_ % 2 == 0)
List(1, 2, 3, 4).filter(i => i %2 == 0)
List(1, 2, 3, 4).map(_.toString)

Scala does not have a ternary conditional operator
(7:) from Java but it does not explicitly need it, be-
cause - unlike in Java - the if-else statement is an
expression in Scala which means that is has a value.
This means that if-else can be used instead of ter-
nary operator:

val yes: Boolean = 777
val repr = if(yes) "yes" else "no"

Scala also does not have null-safe dereference
operator or default value operator, but it is possible to
create a custom operator in Scala that serves both pur-
poses. We will not show the implementation in this ar-
ticle, but as a guideline, the technique used to do this
involves either macros or an implicit conversion that
takes its input as an by name argument (another dis-
tinct feature of Scala). As a result, following syntax is
possible:

obj.prop.method(arg) ? defaultValue

The expression in above example will evaluate to
defaultValue either when left-hand-side operator
evaluates to null or when evaluation of left-hand-side
would result in a NullPointerException. So the 7
operator is actually a combination of null-safe dere-
ference and fallback value operator.

In version 2.10, Scala introduced string interpola-
tion syntax. It allows to splice identifiers and expres-
sions into a string literal instead of concatenating all
the parts with the + operator. The syntax happens to
be similar or identical to template expression syntax in
JUEL/SpEL/MVEL and therefore, string interpolations
can directly serve as a realization of template expres-
sions.

val name = "John"
val surname = "Kowalski"
val greeting = s"Hello, $name $surname!"

An area where Scala is perhaps more limited than
dynamically typed expression languages is the abi-
lity to provide pluggable strategies for dynamic pro-
perty access and method invocations on arbitrary ty-
pes. The limitation is caused primarily by the static ty-
ping in Scala. However, this feature is often used in
JUEL/SpEL/MVEL as a method for API enhancement
which has already been shown to be possible in Scala
using implicit classes.

Scala allows dynamic method and property access
on types that the programmer has control of (is their
author). There is a special trait (base type) in Scala -
scala.Dynamic that can be extended by classes that
need to support dynamic property/method access.
In order to actually provide the property or met-
hod resolution strategy, that class needs to implement
selectDynamic and applyDynamic methods.

It is important to remember that selectDynamic
and applyDynamic still are statically typed - they have

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

a statically typed arguments and a static return type.
So this feature cannot be used to somehow introduce
dynamic typing into Scala.

5. Metaprogramming in Scala

Metaprogramming is the method used by Scala-
based expression engine to enforce security of evalua-
ted expressions. Therefore it deserves a separate over-
view in this article.

Scala Compiler Metaprogramming techniques in
Scala are heavily related to internal architecture of
the Scala compiler. Therefore we will briefly describe
the compilation process and data types used by the
compiler to represent various entities in compiled
programs. These data types are also exposed by
the reflection API, which is used in both runtime
reflection and macros (described later).

A compiler run consists of several phases [14].
Each phase takes as an input the output of the previ-
ous phase. In most cases, that input and output is the
abstract syntax tree (AST) of the program. Each phase
performs some modifications and refinements on the
AST. In total, there is about 30 phases. Phases can be
divided logically into two stages, according to a stan-
dard, generic architecture of compilers:

- Stage of analysis is responsible for extracting as
much information as possible from the textual
source code and transforms it into canonical inter-
mediate representation ready to be compiled into
JVM bytecode. The most important phases of analy-
sis are the parser, namer and typer. Parser trans-
forms the textual code into an initial AST. Namer is
responsible at least for resolution of imports and ty-
per - the most complex and time consuming phase -
performs the typechecking of the code.

- Stage of synthesis gradually transforms the AST into
more raw forms, closer to the final representation
which is ultimately translated into JVM bytecode. It
contains several phases which are not of an interest
in this article.

The compiled program is represented inside the
compiler primarily by three types of objects which re-
fer to each other:

- Tree is a representation of abstract syntax tree that
is an input and output of most of the phases. Trees
have immutable, hierarchical structure and mutable
attributes. The structure of the tree heavily depends
on what phase is being executed. For example, a tree
just after parsing is closest in its structure to textual
source code - no syntactic sugars have not yet been
expanded, no types inferred, no implicit conversions
applied, etc. The tree is still closest to its textual form
in this phase because things like import resolution,
type inference and implicit resolution have not been
performed yet. On the other hand, all of this informa-
tion is explicitly represented in the tree after it exists
the typechecker phase.

- Typeisarepresentation of every Scala data type. Ty-
pes are one of the attributes associated with most

of the trees after they are typechecked. Types have
a rich API which, among other things, makes it pos-
sible to inspect what members are available on va-
rious types or perform operations like type confor-
mance tests.

- Symbol objects represent various entities found in
the source code. For example, each variable, method,
class, object, etc. has a symbol. Symbols are divided
into two subcategories - term symbols (values, vari-
ables, objects, etc.) and type symbols (classes, traits,
abstract types, type aliases, etc.). Symbols are also
associated with most of the trees after typechecking.
For example, a tree representing a method invoca-
tion will have the symbol of the method being invo-
ked associated with it.

Reflection and Macros Trees, types and symbols are
not only used by the compiler internally, but they are
also exposed by the Scala reflection API [15]. This API
is used by two metaprogramming facilities in Scala -
runtime reflection an macros.

Runtime reflection [17] allows a programmer to
work with trees, types and symbols in runtime, as the
name suggests. It is possible to obtain types and sym-
bols for runtime objects and extract various informa-
tion from it.

Macros [16] are a form of compile time metapro-
gramming in Scala. A macro is a special declaration
in the Scala source code which is syntactically similar
to a regular method. The difference between a macro
and a method is that while a method works in runtime
- on values of its arguments and returns some other
value - a macro is invoked during compilation and ta-
Kkes as its input and output a Tree for each argument.
It can inspect these trees and modify them before re-
turning a final tree that will replace the macro invoca-
tion and eventually be compiled to JVM bytecode. Ma-
cros are expanded inside the typechecker phase. This
means that the trees that macros work on carry max-
imum information, including types and symbols. Ma-
cros can also trigger compilation errors during their
expansion.

Macros are the key feature for implementing se-
curity in a Scala based expression evaluation engine.
They effectively allow a static analysis of expression
code which can inspect what language constructs are
being used in an expression being compiled and what
methods are being invoked by it. Upon detection of a
forbidden construct or invocation, the macro can sim-
ply trigger a compilation error.

6. Scala Expression Engine Implementation

This section describes the core API of the Scala ex-
pression evaluation engine as well as gives more de-
tails about the underlying implementation.

Essential Components and Types The central
component of the Scala expression engine is the
ScexCompiler object. It encapsulates the actual Scala

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

compiler and provides the toplevel API for expres-
sion compilation. The most important method for
expression compilation has the following signature:

import scala.reflect
.runtime.universe.TypeTag

def getCompiledExpression[
C <: ExpressionContext[_, _]
T: TypeTag] (

profile: ExpressionProfile,
expression: String,
template: Boolean = true,
header: String = ""): Expression[C, T]

: TypeTag,

The types used in above signature and other API
elements are:

- TypeTag is a type from Scala runtime reflection
API. The syntax T: TypeTag denotes that method
getCompiledExpression will have access to run-
time information about type T.

- Expression[C,T] isafunction that takes an expres-
sion context (type C) as an input and returns some
arbitrary value of type T. This is what we understand
as expression evaluation.

- ExpressionContext[R,V] is the input of the ex-
pression and serves two purposes:

- It encapsulates the root object of the expression -
an object of arbitrary type R whose API is directly
exposed to be used by expression code. Root ob-
ject is also de facto the actual input data of the ex-
pression.

- Itservesas a container for variables of an arbitrary
type V which can be accessed inside the expres-
sion.

- ExpressionProfile customizes the way expres-
sion is compiled. The profile consists of:

- SyntaxValidator defines what language con-
structs are allowed to be used by the expression.

- SymbolValidator defines which methods can be
invoked and which fields can be accessed for par-
ticular types.

- Expression header - code that will be compiled al-
ong each expression. Header is primarily used to
provide import clauses for expression code.

- Expression utils - implementation of additional
API that can be used inside expressions. This can
be used to implement some API in Scala in situa-
tion when application using the expression evalu-
ation engine is by itself written in Java.

Symbol validator and syntax validator are the core
components performing static analysis of expressi-
ons and security enforcement. The way they are cre-
ated and configured will be described in more detail
later in this paper.

- The template parameter controls whether an ex-
pression is compiled as a template expression.

- The header parameter provides additional header
that will be compiled in expression code. Its pur-
pose is similar to the header specified in expression

profile, but can be different for each expression that
uses the same profile.

Compilation Process Expression Compilation is Per-
formed in the Following Steps:

1) ExpressionDef object is created. This intermedi-
ate object contains full information about how the
expression should be compiled, what the expres-
sion code is and what are the input and output ty-
pes.

2) ExpressionDef object is optionally preprocessed.
Preprocessing may include any modification of ex-
pression definition (e.g. additional pre-translation
of code)

3) Expression code is wrapped into a proper Scala
source file that contains the expression class im-
plementing Expression trait. The bare expression
code is wrapped into an invocation of security-
enforcing macro.

4) Source file is passed into the Scala compiler for ac-
tual compilation.

5) During typer phase, the security-enforcing macro
is expanded. The macro uses syntax validator and
symbol validator to analyze expression code for
forbidden constructs and invocations.

6) Expression class is compiled into JVM bytecode
and . class files are generated.

7) Expression class is loaded into the JVM, instantia-
ted and returned as a compiled expression.

Configuration of Validators As described earlier, the

programmer can decide whatlanguage constructs and

invocations can be used inside expression code by pro-

viding a SyntaxValidator and a SymbolValidator

instance through ExpressionProfile. This section

describes how these two components are configured.
Syntax validator is a following trait:

import scala.reflect.macros.Universe

trait SyntaxValidator {

def validateSyntax

(u: Universe) (tree: u.Tree):
(Boolean, List[u.Treel)

}

The tree is a fully typechecked tree representing
the expression code. Since it contains type informa-
tion, it may be used for much deeper validation than
just syntax validation. However, validation of types
and symbols is much more complex in its implemen-
tation and was done as a separate component - the
symbol validator. Syntax validator is intended to be
used to look for forbidden syntactic constructs, like
definitions or loops. Such validation can be easily im-
plemented using pattern matching on particular ca-
ses of trees. This is what is usually done inside the
validateSyntax method.

The validateSyntax method returns a pair that
denotes whether the tree passed the validation and

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

a list of children trees that need to be validated next.
This way syntax validation descends through the en-
tire expression tree.

By default, the expression engine provides a stan-
dard implementation of a syntax validator that al-
lows only simple expressions to be used. This includes
constants, identificators, method calls, operator appli-
cations, lambda expressions, conditional statements,
simple blocks and constructor invocations. No assign-
ments, declarations, definitions or loops are allowed.

Symbol validator is much more complex to imple-
ment and requires some more convenient configura-
tion layer to avoid dealing with raw Tree objects.

In order to «create an instance of
SymbolValidator, the programmer needs to pro-
vide an ACL-like structure (Access Control List). In
a program using Scala expression engine, this ACL
is represented by type List[MemberAccessSpec].
Each element, a MemberAccessSpec instance either
allows or denies usage of some symbol (method, field
or constructor, including methods visible through
implicit views) on a particular type. In detail, the
MemberAccessSpec contains following information:

- information about the type

- signature of the member of that type that is being
denied or allowed by this element

- optional signature of implicit conversion thatis used
to obtain an implicit view that causes that member to
be available on that type

- information about whether this element denies or
allows usage of given symbol on given type

Symbol Validation DSL Instances of
MemberAccessSpec and the ACL are not created
by the programmer manually. Instead, a dedicated
Scala DSL (domain specific language) has been cre-
ated for that purpose. That DSL is an example of a
technique called language virtualization, which essen-
tially means to replace standard semantics of some
language (in this context Scala) with some custom
semantics, i.e. leverage syntax and type system of
Scala for a different purpose than compilation of Scala
program.

Language virtualization in symbol validation DSL
is realized by another set of Scala macros, allow and
deny. Each of these macros take a specific block of
code (format described below) and generate code that
evaluates to a part of the ACL. These parts can be later
concatenated into a full ACL using standard Scala list
concatenation operator ++,

The blocks being passed as inputs to allow and
deny contain a references to scala types and their
members that the programmer wants to allow or deny.
References are represented as lambda expressions or
simple method calls (i.e. lambda expressions and met-
hod calls are virtualized as references to symbols).

If a programmer wants to allow or deny usage of
some static Java member or member of Scala tople-
vel object, the reference to that member is put directly
into the block passed as input to allow or deny. If the

programmer wants to allow or deny usage of a non-
static member on some type, that reference must be
additionally put inside an on statement which speci-
fies the exact type on which the member is allowed or
denied.

Simple example of ACL created with symbol vali-
dation DSL:

val acl = allow {
String.valueOf (_: Int)

} ++ deny {

on { obj: java.lang.Object =>
obj.wait ()

obj.notify()

obj.equals _

}

}

In the example above, the acl value will have the
type List [MemberAccessSpec] which can be conca-
tenated with other ACL parts or eventually used to
create a symbol validator. The above example allows
usage of a static method valueOf that takes a single
Int argument of a class java.lang.String and de-
nies instance methods wait, notify and equals on
type java.lang.0Object.

As in all ACL-like structures, if more than one ele-
ment in the ACL matches invocation that is being vali-
dated, the element earlier in the list has a priority over
the latter one.

Symbol validator DSL also provides additional con-
venience constructs for allowing or denying the entire
sets of members with single statements. Below is pre-
sented a comprehensive list of all available constructs
in the DSL (examples are assumed to be inside allow
or deny block):

- static members (explicitly)
Integer.parselnt(_: String)

- instance members (explicitly) - either available di-
rectly or by an implicit view
on { str: String =>
str.substring(_: Int)
str.substring(_: Int, _: Int)

str.toString()
}

- all static members of some Java class
allStatic[String] .members

- all static members of some Java class with a given
name

allStatic[String] .membersNamed.valueOf
- all members available on a given type
on { str: String =>

str.all.members

}

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

This deliberately excludes members declared in top-
level types Any and AnyRef, i.e. equals, hashCode,
== etc. since they are available on all types (or all re-
ference types) and it’s not usually the intention of a
programmer to include them.

- allmembers available on given type with given name

on { str: String =>
str.all.membersNamed.substring

}

- all members available on a given type declared in
class representing that type

on { str: String =>
str.all.declared.members

}

This includes all members declared in that class di-
rectly and all members that this class overrides.

- all members available on a given type declared in a
class representing that type and not inherited from
supertypes

on { str: String =>
str.all.introduced.members

}

This includes all members declared in that class that
don’t override a member from superclass.

- all members available on given type by an implicit
view to some type

on { str: String =>
str.implicitlyAs[StringOps]
.all.members

}

- asingle constructor for a given type
new java.util.Date

- all constructors for a given type

on { str: String =>
str.all.constructors

3

- all bean getters, bean setters, scala getters or scala
setters available on a given type

on { jb: SomeJavaBean =>
jb.all.beanGetters
jb.all.beanSetters

}

on { sc: ScalaClass =>
sc.all.scalaGetters
sc.all.scalaSetters

3

Constructs listed above can be freely combined to form
more complex patterns, e.g.

on { o: SomeType =>
0.implicitlyAs[OtherType]
.all.introduced.beanGetters

3

Detailed Security Analysis Syntax and symbol valida-
tors provide means to achieve tight security enforce-
ment, but they must be used carefully and with full
awareness of possible vulnerabilities. Every security
feature protects only against some particular class of
attacks. This section describes possible security vul-
nerabilities that could be exposed by expression en-
gine and makes it clear which of them the Scala expres-
sion engine protects against. It also discusses which
security problems must be addressed separately, in ot-
her layers of the software that uses an expression en-
gine.

Exposing expressions to a malicious user could ge-
nerally cause three types of security breaches:

- unauthorized access to sensitive data

- unauthorized access to operations that could da-
mage or compromise the host system

- exhaustion of resources used by the host system or
abnormally high utilization of these resources

All of these breaches could obviously be caused by
exposing an expression API that is insecure by itself. It
is a responsibility of the programmer/administrator
to ensure that functions and operations that can be
used in an expression are internally secure. If they
aren’t, the engine itself has no way of knowing this,
since it only uses compile-time information for vali-
dation. So the most basic rule of designing secure ex-
pression API is to make sure each exposed method is
secure by itself.

However, sometimes it may not be obvious that
some operation is insecure. For that reason, we give
examples of common ways in which a member of ex-
pression API may become a security hole.

- Exposing toString()

Allowing toString() calls is an easy way to leak
sensitive information. The toString() method
should only be allowed on simple data types that
have an obvious implementation of toString().
Therefore, one should be extremely careful when al-
lowing calling toString() on:

- classes encapsulating something else than immu-
table data, e.g. some internal state

- classes and interfaces that are a base of an open
type hierarchy - even if the base type itself is se-
cure, any of its subtypes may no longer be so

- generic containers, e.g. collections

For example, allowing calling toString() on
type List[Any] is an obvious security issue.
List’s toString() implementation internally calls
toString() on its elements and the expression en-
gine doesn’'t know about it, because this information
is not available in compile time. This effectively gi-
ves us access to results of toString() on any value
that could be inside a list. List [Any]#toString()
is therefore as insecure as Any#toString ().

- Exposing API that internally uses toString ()

In any API which exposes string manipulation met-
hods, there usually are some functions and opera-

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

tors which take arbitrary values as their arguments
and call toString() on them internally. The + ope-
rator for concatenation of strings and arbitrary va-
lues is perhaps the most apparent example of such
API. Therefore, when exposing these API fragments,
one must be as careful as with the toString ()

- Exposing untyped operations

It is highly recommended that the exposed expres-
sion API is as strongly, statically typed as possible.
This way we have much more information to work
with in compile time and we can be vastly more pre-
cise when defining security rules using symbol vali-
dator DSL.

- Exposing API with non-constant time or memory
complexity.

This could lead to easy exhaustion of host system re-
sources, especially considering the fact that expres-
sions are meant to be evaluated massively, on multi-
ple pieces of input data.

Even more dangerous than exposing methods with
just non-constant (e.g. linear) complexity is expo-
sing APIs with complexity determined by runtime
values passed to them. For example, Scala standard
library provides an * operator on the String class
which takes an integer argument and replicates a
string given number of times. Simply by passing a
large integer value, e.g. "abc"*10000000, expres-
sion writer can easily cause allocation of very large
amounts of memory:.

Apart from securing the API itself, one must also
take some measures to secure the syntax. Scala is a
general-purpose programming language, but the Scala
expression engine enables only a small portion of its
syntactic constructs. This is done on purpose, to disal-
low elements which could easily exhaust resources of
the host systems (e.g. loops). Although it is possible
to provide custom syntax validator and allow more,
it is highly recommended to stay with the predefi-
ned simple-expression syntax subset of Scala. In ot-
her words, we should keep the expression engine an
expression engine and not make it a scripting engine,
which is much harder to secure.

Exhaustivity of security heavily depends on the
language constructs exposed. That's why it's impor-
tant to keep them minimal. The simpliest general ex-
ample of an API secured with our evaluation expres-
sion would be exposing desired subset of some Java
class and forbidding usage of common methods that
could lead to information leaking (toString, concate-
nation with Strings, getClass, etc.) or low-level operati-
ons that could disrupt the entire process (wait, notify,
etc.).

Finally, one must be aware that usage of CPU and
memory during expression evaluation is at least pro-
portional to the overall complexity of the expression.
Therefore, some limits must be enforced in this area.
For example, one may want to limit the textual length
of an expression or maximum depth of its syntax tree.
The latter case can be easily implemented with a cus-
tom syntax validator.

7. Usage Example

This section outlines a typical use case for Scala ex-
pression engine and explains how its features make it
a viable solution that retains good performance and
enforces tight security.

Dynamic Serving of Configuration Files Scala expres-
sion engine could be used in a system for mass ma-
nagement and configuration of devices, e.g. telecom-
munication devices like routers. These devices usually
require dynamic, remote reconfiguration. This may be
easily done with configuration files periodically fet-
ched by devices from the management system. Howe-
ver, contents of configuration files may need to be ge-
nerated dynamically, based on some data associated
with particular device asking for configuration. Additi-
onally, the exact format of each config file may need to
be different for various device types. Above all this, sy-
stem operators may want to change the contents and
structure of served configuration files on a regular ba-
sis, without reconfiguring and restarting the manage-
ment system itself.

This problem can be easily addressed with an ex-
pression engine: operators could use some user inter-
face to define configuration file templates. Each tem-
plate may have placeholders that would be filled by
some data associated with the device when that de-
vice asks for configuration file. In other words, each
template would be an expression that evaluates to ex-
act configuration file contents based on particular de-
vice data.

For example, let’s assume that the data associated
with a device is represented by following Scala trait:

trait DeviceData {

def id: String

def currentIP: String

def modelName: String

def manufacturer: String
def wifiSSID: String

def wifiPassword: String
def wifiEncryption: String
3

This data is either sent by the device when it asks
for configuration file (e.g. current IP) or is stored in
the system database (e.g. WiFi parameters to be set).
It may also come from some external systems.

Let's assume that we need to send configuration
file to a group of home routers in order to setup the
WiFi network. The configuration file format accepted
by devices may look like this:

[wifi]

ssid=homeWifi
password=secretPassword
encryption=WPA2

System operator could then define a template for
such configuration file. This template would be a SCEX

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

expression that could look like below. This is assu-
ming that the programmer has defined the expres-
sion API for this particular purpose to contain a value
deviceData which is of type DeviceData

[wifi]

ssid=${deviceData.wifiSSID}
password=${deviceData.wifiPassword}
encryption=${deviceData.wifiEncryption}

However, some types of devices may not accept the
values in the same format as they are stored in the sy-
stem database. For example, let’s assume that encryp-
tion mode saved in database is exactly "WPA2”, but the
device accepts only lowercase "wpa2”. System opera-
tor can quickly define a separate template for this par-
ticular type of device and adjust to device behavior:

encryption=
${deviceData.wifiEncryption.toLowerCase}

Thanks to the fact that an expression engine allows
us to dynamically define small snippets of code, the
operator has very detailed control over what exactly
is being sent to devices. Also, since such strange issues
may be very unpredictable, it is very hard to preconfi-
gure the management system to handle all device ty-
pes properly. The possibility of dynamic loading and
redefinition of templates is very useful here.

Use case described above has all the important
needs that SCEX addresses:

- templates (expressions) are defined and loaded dy-
namically

- templates are defined by system users, possibly
using graphical interfaces - security enforcement is
needed

- single template is typically evaluated and applied on
large number of devices - evaluation performance is
important

8. Performance

A set of performance tests was carried out to con-
firm that the evaluation of expressions in the new en-
gine is comparable to performance of raw bytecode.
The engine was compared with statically compiled
Scala code and engines described earlier - JUEL, SpEL
and MVEL. Also, a simple compilation performance
test was carried out.

The purpose of tests is not to give any precise nu-
meric coefficients since evaluation and compilation
performance greatly depend on what kind of expres-
sions are actually compiled and evaluated.

The tests consisted of series of evaluations or com-
pilations of expressions in a loop. Tables below pre-
sent the results. The numbers are in milliseconds and
serve only for comparison with each other.

Following configuration was used in the test case:
- processor Intel Core i7-3520M 2.90GHz

- Microsoft Windows 7 64bit
- Oracle DK 8 update 20 64bit

- Scala2.11.1
Comparison was done against:
- SpEL for Spring Framework 4.0.6

- JUEL 2.2.7
- MVEL 2.2.1
Evaluation
Scala 1312
Scala engine | 2312
SpEL 150565
JUEL 161567
MVEL 14627
Compilation
Scala engine | 115868
SpEL 51
JUEL 56
MVEL 1039

The tests show that evaluation performance is in-
deed close to raw Scala code compiled statically, but
the price is a heavyweight compilation process. This is
however well-suited for requirements defined in this
article - a single, compiled expression is expected to
be evaluated massively, on multiple inputs. It is also
worth mentioning where differences between SpEL,
JUEL and MVEL come from. In SpEL and JUEL expressi-
ons are interpreted fully dynamically and compilation
step involves only basic parsing of an evaluation. As a
result their compilation time is better but evaluation
significantly worse.

9. Summary

We have presented a new approach to imple-
menting an expression evaluation engine for the JVM.
The key goals of that approach is high evaluation per-
formance and secure compilation and evaluation of
expressions so that they can be safely created by po-
tentially malicious users, possibly using graphical sy-
stem interfaces. These properties should not result in
a less rich or flexible expression language than ones
provided by existing solutions.

We have shown that already existing solutions, re-
presented primarily by engines JUEL, SpEL and MVEL
do not meet these requirements. We have also evalu-
ated already existing, general purpose programming
languages for suitability of building an expression en-
gine on top of them. The language of choice was Scala.
Its primary advantage over other languages is sta-
tic type system which guarantees good performance
and makes it possible to statically analyze code using
macros, a compile metaprogramming facility. Despite
being statically typed, Scala still retains much of the
flexibility and conciseness of dynamically typed lan-
guages.

We have described how exactly Scala features can
be leveraged for an expression language and presen-
ted a quick overview of its metaprogramming capabi-
lities. Then we have outlined the most important ele-
ments of API and architecture of the new expression
engine. As one of the most important elements, a DSL

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11, N°3 2017

for specifying what invocations are allowed inside ex-
pression code was presented in more detail.

Finally we have shown that the new expression
engine meets its performance requirements by being
comparable to statically compiled Scala code.

AUTHORS

Arkadiusz Janik* - AGH University of Science and
Technology, al. Mickiewicza 30, 30-059 Krakow, Po-
land, e-mail: arkadiusz.janik@agh.edu.pl.

Roman Janusz - AGH University of Science and
Technology, al. Mickiewicza 30, 30-059 Krakow, Po-
land, e-mail: romegjanoosh@gmail.com.

*Corresponding author

REFERENCES

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Java Unified Expression Language.
http://juel.sourceforge.net/juel.pdf
access: September 2014.

R.Johnson etal. Spring Framework Reference Do-
cumentation, 3.2.4.RELEASE, 2013.

MVFLEX Expression
http://mvel.codehaus.org/
access: September 2014.

Language.

K.M. Chung JavaServer Pages™Specification Ver-
sion 2.3, Maintenace Release 3. May 2013.

M. Grogan JSR-223 - Scripting for the Java Plat-
form. Final Draft Specification, version 1.0. Sun
Microsystems, 2006.

E. Burns JavaServer™Faces Specification, Version
2.2. 0racle America, Inc, March 2006.

J. Gosling et al. The Java®Language Specification,
Java SE 7 Edition Oracle America, Inc, February
2013.

M. Odersky Scala Language Specification, Version
2.8. Programming Methods Laboratory, EPFL,
September 2013.

The Groovy programming language
http://groovy.codehaus.org/

access: September 2014.

Groovy - Safe Navigation Operator

http://groovy.codehaus.org/Operators
#0perators—-SafeNavigationOperator
%287.%29

access: September 2014.

Groovy - Elvis Operator
http://groovy.codehaus.org/0Operators
#0perators-ElvisOperator’287:%29

access: September 2014.

M. Odersky Scala by Example Programming Met-
hods Laboratory, EPFL, June 2014.

M. Odersky, L. Spoon, B. Venners Programming
in Scala: a comprehensive step-by-step guide, 1st
edition. Artima Press, 2008.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Overview of Scala Compiler Phases
https://wiki.scala-lang.org/display
/SIW/0verviewtof+Compiler+Phases
access: September 2014.

Scala Reflection API: Symbols, Trees and Types
http://docs.scala-lang.org/overviews
/reflection/reflection/
symbols-trees-types.html

access: September 2014.

E. Burmako, M. Odersky Scala Macros, a Techni-
cal Report. Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), July 2012.

Y. Coppel Reflecting Scala. Laboratory for pro-
gramming methods, EPFL, January 2008.

E. Burmako Scala Macros: Let Our Powers Com-
bine! EPFL, July 2013.

J. Cooper, S. McKeever A model-driven appro-
ach to automatic conversion of physical units Soft-
ware: Practice and Experience, vol. 38, no 4, 10
April 2008, 337--359. DOI: 10.1002/spe.828.

P. Kilpelainen Using XQuery for problem sol-
ving Software: Practice and Experience, vol.
42, no.12, December 2012, 1433--1465. DOI:
10.1002/spe.1140.

V. Karakoidas, D. Spinellis FIRE/]—optimizing
regular expression searches with generative
programming Software: Practice and Expe-
rience, vol. 38, no. 6, May 2008, 557--573. DOI:
10.1002/spe.841.

J. H. M. De Vet A practical algorithm for evalua-
ting database queries Software: Practice and Ex-
perience,vol. 19, no. 5,, October 2006, 491--504.
DOI: 10.1002/spe.4380190505.

C. Hoffman, M. O’donnell, R. Strandth Imple-
mentation of an interpreter for abstract equa-
tions Software: Practice and Experience, vol.
15, no. 12, October 2006, 1185--1204. DOI:
10.1002/spe.4380151205.

C. Hassan, Z. DeVito, A. Moors, T. Rompf,
A. Sujeeth, P. Hanrahan, M. Odersky, K. Olu-
kotun, "Language Virtualization for Hetero-
geneous Parallel Computing”. In: Proceedings
of the ACM international conference on Ob-
ject oriented programming systems langua-
ges and applications, 2010, 835-847. DOI:
10.1145/1869459.1869527.

K. Sujeeth, Arvind, Lee, HyoukJoong,]. Brown,
Kevin, et al. OptiML: an implicitly parallel dom-
ainspecific language for machine learning. In:
Proceedings of the 28th International Conference
on Machine Learning, ser. ICML, Pages 609-616,
2011.

Rompf, Tiark, Amin, Nada, Moors, Adriaan
et al. Scala-Virtualized: linguistic reuse for
deep embeddings Higher-Order and Symbo-
lic Computation, March 2012, 165-207. DOI:
10.1007/s10990-013-9096-9,

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 11,

N°3 2017

[27]

[28]

[29]

[30]

Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown,
HyoukJoong Lee, Hassan Chafi, Kunle Olukotun.
Surgical precision JIT compilers. In Proceedings
of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
(PLDI’14). ACM, New York, NY, USA, 41-52.,2014
DOI: 10.1145/2594291.2594316,

Yannis Klonatos, Christoph Koch, Tiark Rompf,
Hassan Chafi. Building efficient query engi-
nes in a high-level language.In: Proc. VLDB
Endow. 7, 10 June 2014, 853-864. DOI:
10.14778/2732951.2732959.

N. Perez-Diaz, F. Fdez-Riverola,]. Mendez Wire-
brush4SPAM: a novel framework for improving
efficiency on spam filtering services Software:
Practice and Experience, vol. 43, no. 11, Novem-
ber 2013, 1299-1318. DOI: 10.1002/spe.2135,

G. French,]. Kennaway, A. Day Programs as visual,
interactive documents Software: Practice and Ex-
perience, Volume 44, Issue 8, pages 911-930, Au-
gust 2014. DOI: 10.1002/spe.2182,

	Introduction
	Related Work
	Language Comparison
	Scala as Expression Language
	Metaprogramming in Scala
	Scala Expression Engine Implementation
	Usage Example
	Performance
	Summary

