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Abstract:
To apply a spinning hemisphere as a mobile robot drive
is an unconvenƟonal idea. Equipping a mobile robot with
two such hemispheres brings to life a device with absolu-
tely novel properƟes. In this paper we derive kinemaƟcs
models of a mobile robot with two driving hemispheres,
analyse shortly their properƟes, and adopt a control al-
gorithm designed to follow a path. There are two kine-
maƟcs models presented: the full model of the original
system, and the model of the simplified system, equiva-
lent to the original one. The second model is expressed
in two different coordinate systems – the later allowing
for the applicaƟon of known control algorithms to drive
the robot. The performance of the analysed algorithm is
illustrated by computer simulaƟons.

Keywords: Hemispherical OmnidirecƟonal Gimbaled
wheel, hemispheres, mobile robot, path following

1. IntroducƟon
In the late thirties of the last century there arose

a concept of an entirely new system of an automo-
bile drive resulting in a concept car, called “Hemisp-
here Drive Speedster” [10, 11]. This is a car which is
equipped with a Hemispherical Omnidirectional Gim-
baled wheel (HOG wheel) in a form of a spinning he-
misphere. So far this idea has not been applied in road
vehicles but a few implementations of smallmobile ro-
bots equipped with such a drive system [1, 8] appea-
red there. These constructions with a layout of a ki-
nematic car having attached a single spinning hemis-
phere exhibit quite amazing dynamical properties –
constantly spinning, usually rather heavy hemisphere
constitutes a perfect reservoir of kinetic energy ready
to accelerate the vehicle. Moreover, a simple change of
the hemisphere tilt redirects the robot course, and the
actualmotion speed can be changed by altering the tilt
anglewhile keeping the constant hemisphere spinning
speed.

To go further, two spinning hemispheres can be ap-
plied in a robot drive system [2, 4]. Here, the capabili-
ties of changing the robot direction and its orientation
seem tobeunlimited, however to efϐiciently utilise this
potential is a kind of art. To control the robot without
slip orwith a controlled slip one has to apply adequate
mathematical models of the robot motion. To obtain
such models one needs to consider the robot as a mo-
bile platform being the subject to a set of velocity con-
straints.

In this paper we describe the structure of a mo-

bile robot equipped with two HOG wheels. Assuming
that the robot moves on a horizontal plane, we derive
models of its kinematics, analyse their properties, and
propose a control algorithm. The paper is composed
in the following way. Basic facts on nonholonomic ro-
bots modelling are outlined in the remaining part of
this section. Section 2 provides the robot kinematics
models, while Section 3 explains the robot control al-
gorithm. Results of numeric computations illustrating
the robot behaviour are shown in Section 4. Section 5
concludes the paper.

We will derive models of nonholonomic robots
using generalised coordinates and velocities q(t),
q̇(t) ∈ Rn, and assume that the robot motion is sub-
ject to a number l < n of phase constraints. These con-
straints are expressed in the Pfafϐian form

A(q)q̇ = 0, (1)

where A(q) ∈ Rl×n is a full rank constraint matrix.
For wheeled mobile robots the constraints reϐlect the
motion without lateral (nonslip condition) and longi-
tudinal (pure rolling condition) slip of the robot.

The kinematics of the robot obeying the Pfafϐian
constraints (1) can be described by a driftless control
system

q̇ = G(q)η =

m∑
i=1

gi(q)ηi, (2)

where q ∈ Rn, η ∈ Rm, m = n − l, denote the state
variable and the control vector (auxiliary velocities)
respectively, and the matrix G(q) consists of vector
ϐields gi(q) spanning the kernel ofA(q)

A(q)gi(q) = 0, i = 1, . . . ,m. (3)

2. Robot KinemaƟcs Models
The core element of the analysed construction con-

sists of two spinning hemispheres of radius R, that
drive the robot (see Figure 1). The hemispheres are
placed at the distance of 2l. Each hemisphere can
rotate independently around 3 axes: it can be tilted
about the axis parallel to themotionplane andperpen-
dicular to the axis connecting the hemispheres cen-
tres1, it can be tilted about the axis lying on its great
circle and parallel to the axis connecting the hemis-
phere centres, and ϐinally, it can spin around its axis
of symmetry. Structurally, in real constructions com-
plyingwith the describedmodel, the angles describing
the hemisphere tilts are limited,while spinning is unli-
mited. Themodelswe shall derive donot respect these
above limitations.
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Fig. 1. Model of the robot with two HOG wheels and its
configuraƟon coordinates

In this section we compute two kinematics models
of the robot: the ϐirst fully reϐlecting the robot real be-
haviour, and the second, simpliϐied, in which the spin-
ninghemisphereswill be replacedby relevant variable
radius wheels.
2.1. Full KinemaƟcs Model

We will assume that the robot moves on a hori-
zontal plane equipped with a global, Cartesian coordi-
nate frame. The robot conϐiguration will be described
as shown in Figure 1 by the conϐiguration vector

q = (x, y, θ0, φ1, θ1, ψ1, φ2, θ2, ψ2)
T ∈ R9, (4)

where x, y, θ0, describe the robot body position and
orientation, and φi, θi, ψi, i = 1, 2, are two tilt and one
spin angles of each of the hemispheres, respectively.
These angles become zerowhen hemispheres great ci-
rcles are parallel to the motion plane.

To derive a kinematicsmodel it is convenient to in-
troduce themountingpoints coordinate frames,which
are ϐixed to the robot bodyandoriginatedat thehemis-
pheres centres. Their Z axes are perpendicular to the
motion plane, and the X axes are parallel to this plane
and perpendicular to the axis connecting the hemis-
pheres centres. The transformations from the global
coordinate system to these frames are given as

AM1

G = Trans(X,x)Trans(Y, y)Trans(Z,R)

Rot(Z, θ0), (5)

AM2

G = Trans(X,x)Trans(Y, y)Trans(Z,R)

Rot(Z, θ0)Trans(Y,−2l). (6)

The contact points PKi
, i = 1, 2 of the hemisphe-

res with the ground expressed in the corresponding
mounting points frames take the form

PMi

Ki
=

 0
0

−R

 , (7)

and the hemispheres movement is characterised by
a set of following transformations

AHi

Mi
= Rot(X,φi)Rot(Y, θi)Rot(Z,ψi). (8)

Nonholonomic Constraints To derive a robot kinema-
tics model we assume, that the robot moves with no
lateral and longitudinal slip at the contact points PKi

,
i = 1, 2 of the hemispheres with the ground. It is
straightforward, that every change of the hemispheres
conϐiguration displaces these points on the hemisphe-
res. To avoid slip the velocity of these displacements
must be equal to the linear velocity of the hemispheres
centres, which we will call the mounting points PMi

,
i = 1, 2.

To obtain the no slip conditions, one has to com-
pute the velocities of the hemispheres contact points
(relative to the global coordinates) expressed in their
mounting points local coordinate frames. They take
the form

ṖMi

Ki
=

R(θ̇i cosφi − ψ̇i cos θi sinφi)

−R(φ̇i + ψ̇i sin θi)
0

 , i = 1, 2.

(9)
The velocities of the hemispheresmounting points, ex-
pressed as above in the mounting points frames, are
given by

ṖM1

M1
=

ẋ cos θ0 + ẏ sin θ0
ẏ cos θ0 − ẋ sin θ0

0

 , (10)

ṖM2

M2
=

ẋ cos θ0 + ẏ sin θ0 + 2lθ̇0
ẏ cos θ0 − ẋ sin θ0

0

 , (11)

respectively. A comparison of the velocities (9) with
(10) and (9) with (11) gives the equations of nonholo-
nomic constraints resulting from the no slip assump-
tion, which can be written in the Pfafϐian form (1) as
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
−cθ0 −sθ0 0 0 Rcφ1 −Rcθ1sφ1

sθ0 −cθ0 0 −R 0 −Rsθ1
−cθ0 −sθ0 −2l 0 0 0
sθ0 −cθ0 0 0 0 0

0 0 0
0 0 0
0 Rcφ2

−Rcθ2sφ2

−R 0 −Rsθ2





ẋ
ẏ

θ̇0
φ̇1

θ̇1
ψ̇1

φ̇2

θ̇2
ψ̇2


= 0,

(12)
with standard abbreviations sα = sinα and cα =
cosα.

KinemaƟcs Model While deriving the kinematics
model of the two HOG wheel mobile robot, which ta-
kes a form of a driftless control system (2), one has
to choose control vector components. Since the di-
mension of the robot generalised coordinates vector
dim q(t) = n = 9, and the rank of the Pfaff matrix
in (12) rankA(q) = l = 4, the control vector contains
m = n− l = 5 components. Naturally, the best choice
is to use controls feasible in the real robot. However,
in typical constructions there are 6 such controls, di-
rectly inϐluencing φ̇1, θ̇1, ψ̇1, and φ̇2, θ̇2, ψ̇2 velocities.
Thus, one has to select a velocity, which will not be
controlled directly. In view of the robot construction
symmetry, theoretically 3 velocity choices are possi-
ble [5]. Below, we abandon the direct control of one
of the spinning velocities, choosing as control vector
components φ̇1, θ̇1, ψ̇1, φ̇2, θ̇2. We will directly control
all of the tilts velocities and one spinning velocity –
the other spinning velocity will be computed automa-
tically so as to avoid slip.

An analysis of the equation (3) for the con-
straints (12) yields a robot kinematics model in the
form of a driftless control system (2) as follows

ẋ = Rsθ0η1 +Rcθ0cφ1η2 +R(sθ0sθ1 − cθ0cθ1sφ1)η3
ẏ = −Rcθ0η1 +Rsθ0cφ1

η2 −R(cθ0sθ1 + sθ0cθ1sφ1
)η3

θ̇0 = R
2l (− cot θ2sφ2

η1 − cφ1
η2 + cθ1sφ1

η3−
− cot θ2sθ1sφ2

η3 + cot θ2sφ2
η4 + cφ2

η5)φ̇1 = η1
θ̇1 = η2
ψ̇1 = η3
φ̇2 = η4
θ̇2 = η5
ψ̇2 = 1

sθ2
(η1 + sin θ1η3 − η4)

.

(13)
It should be noticed that thismodel is not well deϐined
for sθ2 = 0, thus one should avoid controls driving the
robot through these conϐigurations.
2.2. Simplified KinemaƟcs Model

It is a straightforward observation that the spin-
ning hemisphere behaves like a rotating, steering
wheel2 with a variable radius3, which we will refer

Fig. 2. Equivalent wheel model

Fig. 3. Simplified robot model – configuraƟon
coordinates

to as an equivalent wheel (see Figure 2). Such an ob-
servation allows one to consider the robot with two
HOG wheels as a class (1,2) robot [3], equipped with
two steering, variable radius wheels, each described
by a spinning angleψui, a steering angle θui, and an ac-
tual radius rui, i = 1, 2, although such simpliϐied mo-
del does not reϐlect the robot body movement caused
by the hemispheres tilting – the remainingmodel pro-
perties aremaintained. Similarly to the full kinematics
model case, the conϐiguration vectorwill be deϐined as
(see Figure 3)

q = (x, y, θ0, θu1, ψu1, θu2, ψu2, ru1, ru2)
T , (14)

where x, y – the robot body position, θ0 – its orienta-
tion, θu1, θu2 – thewheel rotationangles,ψu1, ψu2 – the
wheels spin angles, ru1, ru2 – the wheel radii.

Equivalent Wheel To derive a kinematics model of
the robot equipped with two equivalent wheels one
has to determine transformations between the coor-
dinates describing a hemisphere and the coordinates
describing an equivalent wheel. One can see that for
ϐixed values of the hemisphere tilt angles (φi, θi) the
spinning of the hemispherewill result in themotion of
the contact point along one of its parallels. This paral-
lel deϐines a circle which we call the equivalent wheel
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of radius rui. According to this deϐinition the radius
rui, and the angles of the wheel rotation θui and spin
ψui can be computed as

rui = R
√

sin2 φi + cos2 φi sin2 θi
θui = arctan

(
sin θi

cos θi sinφi

)
ψui = ψi

, (15)

where R stands for the hemisphere radius, and φi, θi
and ψi describe its conϐiguration. The inverse trans-
formation to (15) takes the form

φi = ± arccos
(√

R2−r2ui

R2−r2ui sin2 θui

)
θi = ± arcsin

(
rui

R | sin θui|
)

ψi = ψui

. (16)

The sign in (16) is speciϐied by θui angle (plus in the
ϐirst and fourth quadrants, minus otherwise). Using
(16) one is able to transfer solutions of path following
problem obtained for the simpliϐied kinematics mo-
del (20) to the original system moving on hemisphe-
res (13).

Nonholonomic Constraints Again, we assume that
the robotmoveswithout lateral and longitudinal slips.
For the conϐiguration vector (14), the constraints re-
ϐlecting no slip of the wheel 1 are given as{
ẋ sin (θ0 + θu1)− ẏ cos (θ0 + θu1) = 0

ẋ cos (θ0 + θu1) + ẏ sin (θ0 + θu1)− ru1ψ̇u1 = 0
.

(17)
Similarly, for the wheel 2 one gets
ẋ sin (θ0 + θu2)− ẏ cos (θ0 + θu2)+

+ 2l sin (θu2)θ̇0 = 0
ẋ cos (θ0 + θu2) + ẏ sin (θ0 + θu2)+

+ 2l cos (θu2)θ̇0 − ru2ψ̇u2 = 0

.

(18)
These constraints can be given the Pfafϐian form (1)
s0u1 −c0u1 0 0 0 0
c0u1 s0u1 0 0 −ru1 0
s0u2 −c0u2 2lsu2 0 0 0
c0u2 s0u2 2lcu2 0 0 0

0 0 0
0 0 0
0 0 0

−ru2 0 0





ẋ
ẏ

θ̇0
θ̇u1
ψ̇u1

θ̇u2
ψ̇u2

ṙu1
ṙu2


= 0,

(19)
where su2 = sin θu2, cu2 = cos θu2, s0w =
sin (θ0 + θw), c0w = cos (θ0 + θw), w ∈ {u1, u2}.

KinemaƟcs Model As in the case of full kinematics
model, the dimension of the robot generalised coor-
dinates vector dim q(t) = n = 9, the rank of the Pfaff

matrix rankA(q) = l = 4, and thus the control vector
containsm = n − l = 5 components. Again, as previ-
ously, the deϐiciency of one control input in relation to
the number of controls feasible in the real robot (θ̇u1,
θ̇u2, ψ̇u1, ψ̇u2, ṙu1, ṙu2) can be observed. To include the
radii derivatives ṙu1, ṙu2 in the control vector is an ob-
vious choice. The analysis of the remaining coordina-
tes relationship described by (3) leads to a conclusion,
that in this case the only possible solution is to control
directly two rotation angles θu1, θu2 and one spinning
ψu1, while the other spinning angleψu2 will be compu-
ted automatically. Consequently, for constraints (19)
the equation (3) allows one to determine the matrix
G(q) deϐining the control system (2) in the form

ẋ = cos (θ0 + θu1)ru1η2
ẏ = sin (θ0 + θu1)ru1η2
θ̇0 = sin (θu1−θu2)

sin θu2

ru1

2l η2
θ̇u1 = η1
ψ̇u1 = η2
θ̇u2 = η3
ψ̇u2 = sin θu1

sin θu2

ru1

ru2
η2

ṙu1 = η4
ṙu2 = η5

. (20)

As in (13), the model is not well deϐined for sθ2 = 0,
so we assume that controls driving the robot through
these conϐigurations are restrained.

Now, having the system (20), instead of solving the
path following problem for the original system (13),
one can solve the problem for this simpliϐied system,
and transform the obtained solution via (16) to the
original system solution. This procedure, called the
control transfer, is described in Section 3.

It is worth noticing that, according to the relati-
ons deϐined in the model (20), a change of the robot
body linear speed can be caused by both, a change of
the wheels spinning speed, as well as a change of the
wheels radii – the body linear speed is a product of the
spinning speed and the radius. In consequence, identi-
cal robot trajectories can be achieved by the spinning
speed change at a constant wheel radius, and by the
wheel radius variation at a constant spinning speed.
While the ϐirst case seems to be more intuitive, typi-
cally the second should be applied, since the equiva-
lentwheel spinning speed transforms via (16) directly
to the HOG wheel spinning speed. It is recommended
to keep it constant – robot accelerating and decelera-
ting should result from the radius changes, which ex-
plicitly reϐlects the HOG wheel tilt.

3. Control Algorithm
To control the two HOG wheels mobile robot we

shall adopt the method designed for controlling a two
steering wheels robot [7]. In this method rather than
writing the system equations with respect to a ϐixed
reference frame, the robot state is parametrised to the
followed path, in terms of distance and orientation
(see Figure 4 – position of the point M is described
with coordinates (yc, sc)T ). With θc describing the an-
gle of the line tangent to the path at point P (sc) and
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Fig. 4. Point posiƟon descripƟon

cc(s) denoting the path curvature, we have

θ̇c(sc(t)) = cc(sc(t))ṡc(t). (21)

The derivative of the curvature with respect to s is gi-
ven as gc(s), so

ċc(s(t)) = gc(s(t))ṡ(t). (22)

Conditions for which such a representation is well
deϐined without ambiguity and limitations resulting
from its local nature are given in [9].

Now, the ϐirst three equations of the simpliϐiedmo-
del (20), describing the state of the robot body, can be
written as 

ṡc =
cθ0−θc+θu1

1−ccyc
ψ̇u1

ẏc = sθ0−θc+θu1
ψ̇u1

θ̇0 = σψ̇u1

(23)

where σ = 1
2l (sin θu1 − tan θu2 cos θu1) is the inverse

of the distance to the robot instant centre of rotation.
According to [7], we assume a constant speed of the
ϐirst robotwheel ψ̇u1 = v, and take into account no slip
conditions. With these we can complement the equa-
tions (23) to obtain the complete control system

ṡc = v
cθ0−θc+θu1

1−ccyc

ẏc = vsθ0−θc+θu1

θ̇0 = vσ

θ̇u1 = η

θ̇u2d = θ̇u1(1−2lσ sin θu1)−2lσ̇ cos θu1

(2lσ−sin θu1)2+cos2 θu1

θ̇u2 = θ̇u1(1−2lσ sin θu1)−2lσ̇ cos θu1

(2lσ−sin θu1)2+cos2 θu1
− kθu2

(θu2 − θu2d)

ψ̇u1 = v

ψ̇u2 = v
√
(2lσ − sin θu1)2 + cos2 θu1

, (24)

where η and σ̇ play the role of control in-
puts, and the conϐiguration vector contains
(sc, yc, θ0, θu1, θu2d, θu2, ψu1, ψu2)

T with θu2d being
an auxiliary variable; kθu2

is a non-negative gain.
Since the algorithm proposed in [7] does not allow
the varying radii of wheels we do not include them
into the robot conϐiguration vector, and the model.

To control the system one has to determine a cont-
rol function, such that the distance yc goes to zero, and

the angle θ = θ0 − θc, being the difference between
the robot body orientation and the path tangent angle,
approaches a desired value θd. For the robot with two
steering wheels this task can by solved with the cont-
rol algorithmproposed in [7]. Thismethod utilises the
feedback linearisation, which for the system (24) can
be written as4

ṡc = v
cθ+θu1

1−ccyc

ẏc = vsθ+θu1

θ̇ = v(σ − cc
cθ+θu1

1−ccyc
)

θ̇u1 = v
cθ+θu1

1−ccyc
[yc

cθ+θu1

1−ccyc
(gcsθ+θu1

− kpy
)+

+ sθ+θu1
(ccsθ+θu1

−
− kvycθ+θu1

sign(
cθ+θu1

1−ccyc
)) + cc]− vσ

θ̇u2d = θ̇u1(1−2lσ sin θu1)−2lσ̇ cos θu1

(2lσ−sin θu1)2+cos2 θu1

θ̇u2 = θ̇u1(1−2lσ sin θu1)−2lσ̇ cos θu1

(2lσ−sin θu1)2+cos2 θu1
− kθu2(θu2 − θu2d)

ψ̇u1 = v

ψ̇u2 = v
√

(2lσ − sin θu1)2 + cos2 θu1
σ̇ = v

cθ+θu1

1−ccyc

{
cθ+θu1

1−ccyc

[
−kpθ

θ̃ + gc

]
+

+σ
{

cθ+θu1

1−ccyc
yc

(
gccθ+θu1 + kpysθ+θu1

)
+

+sθ+θu1

[
cccθ+θu1

+ kvysθ+θu1
sign

(
cθ+θu1

1−ccyc

)]}
−

−kvθ
[
σ − cc

cθ+θu1

1−ccyc

]
sign

(
cθ+θu1

1−ccyc

)}

,

(25)
where cθ+θu1

= cos (θ + θu1), sθ+θu1
=

sin (θ + θu1), θ̃ = θ − θd – the orientation er-
ror, kθu2 , kpy , kvy , kpθ

, kvθ – non-negative gains, and v
a constant, desired spinning velocity of the ϐirst wheel.
It is shown in [7] that with the algorithm (25) the
distance yc and the orientation error θ̃ asymptotically
converge to zero.

To determine the control function for the original
model (13), the solution obtained with (25) has to be
transformed to the one for (13). To this end, after ap-
plying control algorithm (25) one obtains the motion
trajectory of the simpliϐied model (20). Now, with the
relationship (16) one transforms this trajectory to the
trajectory of the original system (13). Finally, deriva-
tives computation of suitable components of the ori-
ginal system trajectory gives the controls for the ori-
ginal model. Such a procedure will be referred to as
“ofϐline” mode control transfer. Admittedly, this pro-
cedure is simple, but unfortunately it does not allow to
correct the control values in a closed-loop form while
applying them to a real system.

4. Computer SimulaƟons
To illustrate the performance of the proposed con-

trol method we shall provide an application example.
As an example desired path (xd(s), yd(s))

T we have
chosen a Lissajous curve{

xd(s) = sin s
2

yd(s) = cos (s+ π
4 )

, (26)

which forms a lemniscate line. In simulations we have
assumed l = 0.1, andR = 0.03.

The algorithm (25) ensures the convergence of the
error (yc, θ̃) to zero, which causes the simpliϐied mo-
del to follow the path. Here, to illustrate the algorithm
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Fig. 5. Control algorithm results

performance for the full model (including the controls
transfer procedure), as a path tracking error the dif-
ference between the actual robot position and desired
path will be shown (ex = x− xd, ey = y − yd). All the
simulations were performed with use of Mathematica
system [6].

For the controller parameters we have cho-
sen kθu2 = 1, kpy = kvy = kpθ

= kvθ = 500,
the desired angle θd = π

2 − 0.4, the desired velo-
city v = 0.2, and the initial conditions q(0) =
(x(0), y(0), θ0(0), θu1(0), ϕu1(0), θu2(0), ϕu2(0)) =
(0, 0,−π

2 ,
π
2 − 0.4, 0, π2 − 0.4, 0)T . Simulating the

system (20)-(25), and transferring the controls in
the “ofϐline” mode we obtain the results shown in
Fiugres 5 and 6. In these ϐigures the system desired
path is drawn in black, while the robot real position
(x, y)T in red. As one could expect, the path tracking
errors converge to a vicinity of zero, however it
never reaches it. Such behaviour occurs since the
simpliϐied model does not reϐlect the properties of
the original robot model utterly, causing differences
in resultant trajectories, and the control transfer is
performed “ofϐline”, consequently preventing any
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Fig. 6. Control algorithm results (conƟnued)

“online” corrections to these differences. Increasing
the control gains makes the errors convergence
faster, nevertheless they still do not become zero. To
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deal with this problem one should think of designing
an “online” methodology for the controls transfer.
Though, from the practical point of view the obtained
steady state errors for many applications stay at an
acceptable level.

5. Conclusion
In this paper two kinematics models of the mo-

bile robot equipped with two HOG wheels are deri-
ved, under the assumption that the robot moves wit-
hout slip on a horizontal plane. The ϐirst model fully
reϐlects the robot kinematic properties, while the se-
cond exploits the HOG wheels robot similarity to a ro-
bot with two steering, variable radius wheels. The re-
lationsbetweenHOGwheels coordinates and the equi-
valent wheels coordinates are studied. The models si-
milarity prompts an adaptation of the class (1,2) mo-
bile robot control algorithm to the considered case.

Theperformance of the control algorithmhas been
tested in computer simulations. The results agree
with expectations. Additionally, both kinematics mo-
dels behave as it was anticipated, demonstrating ea-
sily predicted differences. What is important the dif-
ferences do not prevent on adaptation of the usual
wheeled robot control algorithm. Nonetheless, the ad-
ditional analysis is desirable. First of all, the possibi-
lity of “online” controls transfer should be investiga-
ted. Further, the applicability of alternative control al-
gorithms should be examined.
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Notes
1By the hemisphere centre we will understand the centre of its

great circle.
2To unify the terminology hereinafter the wheel rotating will be

called the spinning, like in the case of the hemisphere.
3In this simpliϐied case we neglect the tilting of a wheel deϐined

this way.
4Please notice, there are some minor differences between the

model (20) and this introduced in [7] – in [7] the wheels radii are
constant, and initial values of the robot body and its wheels orien-
tations are set differently.
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