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Abstract:

To apply a spinning hemisphere as a mobile robot drive
is an unconventional idea. Equipping a mobile robot with
two such hemispheres brings to life a device with absolu-
tely novel properties. In this paper we derive kinematics
models of a mobile robot with two driving hemispheres,
analyse shortly their properties, and adopt a control al-
gorithm designed to follow a path. There are two kine-
matics models presented: the full model of the original
system, and the model of the simplified system, equiva-
lent to the original one. The second model is expressed
in two different coordinate systems — the later allowing
for the application of known control algorithms to drive
the robot. The performance of the analysed algorithm is
illustrated by computer simulations.

Keywords: Hemispherical Omnidirectional Gimbaled
wheel, hemispheres, mobile robot, path following

1. Introduction

In the late thirties of the last century there arose
a concept of an entirely new system of an automo-
bile drive resulting in a concept car, called “Hemisp-
here Drive Speedster” [10, 11]. This is a car which is
equipped with a Hemispherical Omnidirectional Gim-
baled wheel (HOG wheel) in a form of a spinning he-
misphere. So far this idea has not been applied in road
vehicles but a few implementations of small mobile ro-
bots equipped with such a drive system [1, 8] appea-
red there. These constructions with a layout of a ki-
nematic car having attached a single spinning hemis-
phere exhibit quite amazing dynamical properties -
constantly spinning, usually rather heavy hemisphere
constitutes a perfect reservoir of kinetic energy ready
to accelerate the vehicle. Moreover, a simple change of
the hemisphere tilt redirects the robot course, and the
actual motion speed can be changed by altering the tilt
angle while keeping the constant hemisphere spinning
speed.

To go further, two spinning hemispheres can be ap-
plied in a robot drive system [2,4]. Here, the capabili-
ties of changing the robot direction and its orientation
seem to be unlimited, however to efficiently utilise this
potential is a kind of art. To control the robot without
slip or with a controlled slip one has to apply adequate
mathematical models of the robot motion. To obtain
such models one needs to consider the robot as a mo-
bile platform being the subject to a set of velocity con-
straints.

In this paper we describe the structure of a mo-

bile robot equipped with two HOG wheels. Assuming
that the robot moves on a horizontal plane, we derive
models of its kinematics, analyse their properties, and
propose a control algorithm. The paper is composed
in the following way. Basic facts on nonholonomic ro-
bots modelling are outlined in the remaining part of
this section. Section 2 provides the robot kinematics
models, while Section 3 explains the robot control al-
gorithm. Results of numeric computations illustrating
the robot behaviour are shown in Section 4. Section 5
concludes the paper.

We will derive models of nonholonomic robots
using generalised coordinates and velocities ¢(t),
4(t) € R™, and assume that the robot motion is sub-
jecttoanumber!/ < n of phase constraints. These con-
straints are expressed in the Pfaffian form

Aq)q =0, (1)

where A(g) € R!™" is a full rank constraint matrix.
For wheeled mobile robots the constraints reflect the
motion without lateral (nonslip condition) and longi-
tudinal (pure rolling condition) slip of the robot.

The kinematics of the robot obeying the Pfaffian
constraints (1) can be described by a driftless control
system

i =Glom=_ gi(a)m, (2)
i=1

where ¢ € R”, n € R™, m = n — [, denote the state

variable and the control vector (auxiliary velocities)

respectively, and the matrix G(g) consists of vector

fields g;(q) spanning the kernel of A(q)

AlQ)gi(q) =0, i=1,...

(3)

,m.

2. Robot Kinematics Models

The core element of the analysed construction con-
sists of two spinning hemispheres of radius R, that
drive the robot (see Figure 1). The hemispheres are
placed at the distance of 2/. Each hemisphere can
rotate independently around 3 axes: it can be tilted
about the axis parallel to the motion plane and perpen-
dicular to the axis connecting the hemispheres cen-
tres!, it can be tilted about the axis lying on its great
circle and parallel to the axis connecting the hemis-
phere centres, and finally, it can spin around its axis
of symmetry. Structurally, in real constructions com-
plying with the described model, the angles describing
the hemisphere tilts are limited, while spinning is unli-
mited. The models we shall derive do not respect these
above limitations.
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Fig. 1. Model of the robot with two HOG wheels and its
configuration coordinates

In this section we compute two kinematics models
of the robot: the first fully reflecting the robot real be-
haviour, and the second, simplified, in which the spin-
ning hemispheres will be replaced by relevant variable
radius wheels.

2.1. Full Kinematics Model

We will assume that the robot moves on a hori-
zontal plane equipped with a global, Cartesian coordi-
nate frame. The robot configuration will be described
as shown in Figure 1 by the configuration vector

q:(may790a901,917¢17<ﬂ2,927¢2)T€R97 (4)

where z, y, 6y, describe the robot body position and
orientation, and ;, 0;, v;, i = 1, 2, are two tilt and one
spin angles of each of the hemispheres, respectively.
These angles become zero when hemispheres great ci-
rcles are parallel to the motion plane.

To derive a kinematics model it is convenient to in-
troduce the mounting points coordinate frames, which
are fixed to the robot body and originated at the hemis-
pheres centres. Their Z axes are perpendicular to the
motion plane, and the X axes are parallel to this plane
and perpendicular to the axis connecting the hemis-
pheres centres. The transformations from the global
coordinate system to these frames are given as

Agl = Trans(X,z)Trans(Y,y)Trans(Z, R)
Rot(Z,60), (5)

AY2 = Trans(X, x)Trans(Y,y)Trans(Z, R)
Rot(Z,00)Trans(Y,—21). (6)

The contact points Pg,, ¢ = 1,2 of the hemisphe-
res with the ground expressed in the corresponding
mounting points frames take the form

0
Pgi=1| 0 |, (7)
—-R

and the hemispheres movement is characterised by
a set of following transformations

AR = Rot(X, gi)Rot(Y, 0;)Rot(Z,4;).  (8)

Nonholonomic Constraints To derive a robot kinema-
tics model we assume, that the robot moves with no
lateral and longitudinal slip at the contact points Pk,
i = 1,2 of the hemispheres with the ground. It is
straightforward, that every change of the hemispheres
configuration displaces these points on the hemisphe-
res. To avoid slip the velocity of these displacements
must be equal to the linear velocity of the hemispheres
centres, which we will call the mounting points Py,
i=1,2.

To obtain the no slip conditions, one has to com-
pute the velocities of the hemispheres contact points
(relative to the global coordinates) expressed in their
mounting points local coordinate frames. They take
the form

R(éi COS ; — 1/)2 cos 6; sin ;)
—R(QOZ + 1); sin (91)
0

M
Prt =

i

L i=1,2.

(9)
The velocities of the hemispheres mounting points, ex-
pressed as above in the mounting points frames, are
given by

_ 2 cos By + y sin 0y
P]]&fll = | ycosbBy — xsinby |, (10)
0

2 cos by + ysinby + 2100
1y cos by — & sin by , (1D
0

SM2 _
PM2 =

respectively. A comparison of the velocities (9) with
(10) and (9) with (11) gives the equations of nonholo-
nomic constraints resulting from the no slip assump-
tion, which can be written in the Pfaffian form (1) as
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—cg, =56, 0 0 Re,, —Rcg, 54,

S0, —Co, 0 —R 0 —R891
—Chy — S0, =20 0 0 0
se, —Co, 0 0 0 0
T
y
0
0 0 0 <p01
0 0 0 0 | =0,

0 Rcy, —Rceg, 5, W
—R 0  —Rsy, !

P2
62
()
(12)
with standard abbreviations s, = sina and ¢, =

Cos .

Kinematics Model While deriving the kinematics
model of the two HOG wheel mobile robot, which ta-
kes a form of a driftless control system (2), one has
to choose control vector components. Since the di-
mension of the robot generalised coordinates vector
dimg(t) = n = 9, and the rank of the Pfaff matrix
in (12) rank A(g) = I = 4, the control vector contains
m = n — [ = b components. Naturally, the best choice
is to use controls feasible in the real robot. However,
in typical constructions there are 6 such controls, di-
rectly influencing ¢4, 61, ¢1, and ¢, 0, z/}Q velocities.
Thus, one has to select a velocity, which will not be
controlled directly. In view of the robot construction
symmetry, theoretically 3 velocity choices are possi-
ble [5]. Below, we abandon the direct control of one
of the spinning velocities, choosing as control vector
components ¢1, 01,11, o, B2. We will directly control
all of the tilts velocities and one spinning velocity -
the other spinning velocity will be computed automa-
tically so as to avoid slip.

An analysis of the equation (3) for the con-
straints (12) yields a robot kinematics model in the
form of a driftless control system (2) as follows

& = Rsg,mi + Rcoycp, M2 + R(S9,50, — CoyCoy 501 )13

0o = %(— COth25,,M1 — Cpy M2 + Co, Sy N3~
— €Ot 0259, S, 13 + COLH25,,M4 + Cpy15)

Y1 =1
9_12772
1 =13
P2 =14
02 = ns

e = %(771 +sin61n3 — na)

(13)
It should be noticed that this model is not well defined
for sp, = 0, thus one should avoid controls driving the
robot through these configurations.

2.2. Simplified Kinematics Model

It is a straightforward observation that the spin-
ning hemisphere behaves like a rotating, steering
wheel? with a variable radius3, which we will refer

Y= 7RC@0771 + R5900<P1772 - R(CQOSGL + 56,Co, 5991)773

Px,

Fig. 2. Equivalent wheel model

Y

Fig. 3. Simplified robot model — configuration
coordinates

to as an equivalent wheel (see Figure 2). Such an ob-
servation allows one to consider the robot with two
HOG wheels as a class (1,2) robot [3], equipped with
two steering, variable radius wheels, each described
by a spinning angle 1,,;, a steering angle 6,,;, and an ac-
tual radius r,;, 7 = 1,2, although such simplified mo-
del does not reflect the robot body movement caused
by the hemispheres tilting - the remaining model pro-
perties are maintained. Similarly to the full kinematics
model case, the configuration vector will be defined as
(see Figure 3)

q= (I, Y, 907 oula 7,[}u1, 0u2a q/}u27 Tul, TU,2)T7 (14)

where z,y — the robot body position, 6, - its orienta-
tion, 6,1, 6,2 - the wheel rotation angles, 1,1, 1,2 — the
wheels spin angles, 7,1, 7,2 — the wheel radii.

Equivalent Wheel To derive a kinematics model of
the robot equipped with two equivalent wheels one
has to determine transformations between the coor-
dinates describing a hemisphere and the coordinates
describing an equivalent wheel. One can see that for
fixed values of the hemisphere tilt angles (y;, 6;) the
spinning of the hemisphere will result in the motion of
the contact point along one of its parallels. This paral-
lel defines a circle which we call the equivalent wheel
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of radius 7,;. According to this definition the radius
r4i, and the angles of the wheel rotation 6,,; and spin
i can be computed as

Tui = R\/sin2 ©; + cos? ; sin? 6

— sin 6;
eui = arctan (m) ) (15)

Yui = Vi

where R stands for the hemisphere radius, and ¢;, 6;
and ; describe its configuration. The inverse trans-
formation to (15) takes the form

2

)
Tui
R2—r2 sin? 0,

(p; = £ arccos (

0; = +arcsin (44 (16)

The sign in (16) is specified by 6,,; angle (plus in the
first and fourth quadrants, minus otherwise). Using
(16) one is able to transfer solutions of path following
problem obtained for the simplified kinematics mo-
del (20) to the original system moving on hemisphe-
res (13).

sin 6,;|)

Nonholonomic Constraints Again, we assume that
the robot moves without lateral and longitudinal slips.
For the configuration vector (14), the constraints re-
flecting no slip of the wheel 1 are given as

@sin (6p + 0,1) —ycos (0o + 0,1) =0
@ cos (0o + 0u1) + ysin (0o + Ou1) — ru1tur =0
(17)
Similarly, for the wheel 2 one gets

zsin (0p + Ou2) — g cos (Bg + Gu2)+
+ 2l sin (9u2)90 =0
T COS (90 + oug) + y'sin (90 + 0u2)+
+ 2l cos (6u2)90 — ’I“uzdllug =0

(18)
These constraints can be given the Pfaffian form (1)
Soul  —Coul 0 0 0 0
Coul  Soul 0 0 —rum O
Sou2  —Couz 2lsy2 0 0 0
Cou2  Souz 2lce 0 0 0
T
y
0
0 0 0 90
o o0 of ]
0 0 0 ’(gul *07
—Tu2 0 O .U2
wu2
7.au1
”.‘u2
(19)
where s, = sinf,2, cya = €0S0u2, Sow =

sin (6p + 0y), cow = cos (g + 0y,), w € {ul,u2}.

Kinematics Model As in the case of full kinematics
model, the dimension of the robot generalised coor-
dinates vector dim ¢(¢) = n = 9, the rank of the Pfaff

matrix rank A(g) = | = 4, and thus the control vector
contains m = n — [ = 5 components. Again, as previ-
ously, the deficiency of one control input in relation to
the number of controls feasible in the real robot (éul,
91L2, zﬁul, 1/}u2, 741, Tu2) €can be observed. To include the
radii derivatives 7,1, 7,2 in the control vector is an ob-
vious choice. The analysis of the remaining coordina-
tes relationship described by (3) leads to a conclusion,
that in this case the only possible solution is to control
directly two rotation angles 6,1, 6,2 and one spinning
1,1, While the other spinning angle v,,5 will be compu-
ted automatically. Consequently, for constraints (19)
the equation (3) allows one to determine the matrix
G(q) defining the control system (2) in the form

I = cosS (80 + 0u1)"’u1"72

1 = sin (90 + Hul)rqu

) i eu _9u u

o = G e

e'ul =M

Yu1 = 12 . (20)
Ouz =113

ua = 82,

Tul = 14

7;u2 =15

As in (13), the model is not well defined for sp, = 0,
so we assume that controls driving the robot through
these configurations are restrained.

Now, having the system (20), instead of solving the
path following problem for the original system (13),
one can solve the problem for this simplified system,
and transform the obtained solution via (16) to the
original system solution. This procedure, called the
control transfer, is described in Section 3.

It is worth noticing that, according to the relati-
ons defined in the model (20), a change of the robot
body linear speed can be caused by both, a change of
the wheels spinning speed, as well as a change of the
wheels radii - the body linear speed is a product of the
spinning speed and the radius. In consequence, identi-
cal robot trajectories can be achieved by the spinning
speed change at a constant wheel radius, and by the
wheel radius variation at a constant spinning speed.
While the first case seems to be more intuitive, typi-
cally the second should be applied, since the equiva-
lent wheel spinning speed transforms via (16) directly
to the HOG wheel spinning speed. It is recommended
to keep it constant - robot accelerating and decelera-
ting should result from the radius changes, which ex-
plicitly reflects the HOG wheel tilt.

3. Control Algorithm

To control the two HOG wheels mobile robot we
shall adopt the method designed for controlling a two
steering wheels robot [7]. In this method rather than
writing the system equations with respect to a fixed
reference frame, the robot state is parametrised to the
followed path, in terms of distance and orientation
(see Figure 4 - position of the point M is described
with coordinates (y., 5.)”). With 6. describing the an-
gle of the line tangent to the path at point P(s.) and
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Fig. 4. Point position description

¢c(s) denoting the path curvature, we have

GC(SC(t)) = CC(SC(t))S.C(t)- (21)

The derivative of the curvature with respect to s is gi-
ven as g.(s), so

Ce(s(t)) = ge(s(t))5(t). (22)

Conditions for which such a representation is well
defined without ambiguity and limitations resulting
from its local nature are given in [9].

Now, the first three equations of the simplified mo-
del (20), describing the state of the robot body, can be
written as

. COy—0o+6 ]
Se = 0= %Y1 ¢u1

1—ccye
Yo = 509 —0.+0,1 Vul (23)
0o = othu1

where o = %(sin 0,1 — tan f,2 cos 6,,1) is the inverse

of the distance to the robot instant centre of rotation.
According to [7], we assume a constant speed of the
firstrobot wheel ¢,,; = v, and take into accountno slip
conditions. With these we can complement the equa-
tions (23) to obtain the complete control system
Co0—0c+6u1
1—ccye
Yo = VS0—0c+0.1
0y = vo
Qul ="
9' _ éu1(1—2la sin 0,,1)—215 cos 0,1 s (24)
u2d = (2lo—sin Oul)2+4-cos? 0,1
- k9u2 (9u2 - equ)

Ot (1—2lo sin 0,,1)—215 cos 0,1
(2lo—sin Qul)2+cos? 6,1

Se =0

9u2 =

¢u1 =0
Yuz = v/ (2l — sin0,1)2 + cos2 0,1

where 1 and & play the role of control in-
puts, and the configuration vector contains
(Sca Ye, 907 eula 9u2d; 0u27 wula ¢u2)T with 9u2d being
an auxiliary variable; kp,, is a non-negative gain.
Since the algorithm proposed in [7] does not allow
the varying radii of wheels we do not include them
into the robot configuration vector, and the model.

To control the system one has to determine a cont-
rol function, such that the distance y. goes to zero, and

the angle § = 6y — 6., being the difference between
the robot body orientation and the path tangent angle,
approaches a desired value 6. For the robot with two
steering wheels this task can by solved with the cont-
rol algorithm proposed in [7]. This method utilises the
feedback linearisation, which for the system (24) can
be written as*
S = VI
Yo = V5040, .
— 0+0u1
Z 3(009563*‘36%333 .
ut = vy e t=c r (Gesoro.
+ S50+6.,1 (0(159+9u1 B
— ky, 09+9u15ign(%)) +¢e] —vo
0,1 (1—2lo sin0,,1)—216 cos 0,1

—kp, )+

9u2d = ~ (2lo—sinBul)2+cos? f,1

A _ 0,1(1—2losinb,1)—215 cos H,,1 - _

ng - (2lo—sin Oul)24cos? O, k9u2 (9u2 0u2d)
Yy1 =V

’(/.Jug = U\/(QZU — sin 9u1)2 + cos? 9u1
C0+0y1 {M [,kpeg + gc} +

o= Ul_ccyc 1—ccye

+o {%yc (9609+9u1 + kpy 89+9u1) +

—CcYe

1—ccye

_kvg [O’ — chfs_tizlc} Sign(%e_tizlc ) }
(25)

where c¢yig,, = cos (0 + 0u1), So+o,, =
sin (6 + 60,1), 6 = 6 — 0, - the orientation er-
ror, kg, kp, ko, , Kpe, kv, — NON-negative gains, and v
a constant, desired spinning velocity of the first wheel.
It is shown in [7] that with the algorithm (25) the
distance y. and the orientation error 0 asymptotically
converge to zero.

To determine the control function for the original
model (13), the solution obtained with (25) has to be
transformed to the one for (13). To this end, after ap-
plying control algorithm (25) one obtains the motion
trajectory of the simplified model (20). Now, with the
relationship (16) one transforms this trajectory to the
trajectory of the original system (13). Finally, deriva-
tives computation of suitable components of the ori-
ginal system trajectory gives the controls for the ori-
ginal model. Such a procedure will be referred to as
“offline” mode control transfer. Admittedly, this pro-
cedure is simple, but unfortunately it does not allow to
correct the control values in a closed-loop form while
applying them to a real system.

4. Computer Simulations

To illustrate the performance of the proposed con-
trol method we shall provide an application example.
As an example desired path (z4(s),y4(s))? we have
chosen a Lissajous curve

{ x4(s) = sin . 26)

which forms a lemniscate line. In simulations we have
assumed ! = 0.1,and R = 0.03.

The algorithm (25) ensures the convergence of the
error (y., ) to zero, which causes the simplified mo-
del to follow the path. Here, to illustrate the algorithm

)

. C,
+8040,1 |:CCCQ+9u1 + kvy Sg.t,_gulszgn(m)} } _
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Fig. 5. Control algorithm results

performance for the full model (including the controls
transfer procedure), as a path tracking error the dif-
ference between the actual robot position and desired
path will be shown (e, =z — x4, e, = ¥y — yq). All the
simulations were performed with use of Mathematica
system [6].

For the controller parameters we have cho-
sen kg, 1, kp, = ko, = kp, = ky, = 500,
the desired angle 0; = g — 0.4, the desired velo-
city v = 0.2, and the initial conditions ¢(0) =
(Z‘(O), y(0)7 90 (0)7 Hul (0)7 ¢u1 (O)’ 9u2 (O)a ¢u2 (O)) =
(0,0,—%,%2 — 0.4,0,7 — 0.4,0)". Simulating the
system (20)-(25), and transferring the controls in
the “offline” mode we obtain the results shown in
Fiugres 5 and 6. In these figures the system desired
path is drawn in black, while the robot real position
(x,%)T in red. As one could expect, the path tracking
errors converge to a vicinity of zero, however it
never reaches it. Such behaviour occurs since the
simplified model does not reflect the properties of
the original robot model utterly, causing differences
in resultant trajectories, and the control transfer is
performed “offline”, consequently preventing any
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Fig. 6. Control algorithm results (continued)

“online” corrections to these differences. Increasing
the control gains makes the errors convergence
faster, nevertheless they still do not become zero. To
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deal with this problem one should think of designing
an “online” methodology for the controls transfer.
Though, from the practical point of view the obtained
steady state errors for many applications stay at an
acceptable level.

5. Conclusion

In this paper two kinematics models of the mo-
bile robot equipped with two HOG wheels are deri-
ved, under the assumption that the robot moves wit-
hout slip on a horizontal plane. The first model fully
reflects the robot kinematic properties, while the se-
cond exploits the HOG wheels robot similarity to a ro-
bot with two steering, variable radius wheels. The re-
lations between HOG wheels coordinates and the equi-
valent wheels coordinates are studied. The models si-
milarity prompts an adaptation of the class (1,2) mo-
bile robot control algorithm to the considered case.

The performance of the control algorithm has been
tested in computer simulations. The results agree
with expectations. Additionally, both kinematics mo-
dels behave as it was anticipated, demonstrating ea-
sily predicted differences. What is important the dif-
ferences do not prevent on adaptation of the usual
wheeled robot control algorithm. Nonetheless, the ad-
ditional analysis is desirable. First of all, the possibi-
lity of “online” controls transfer should be investiga-
ted. Further, the applicability of alternative control al-
gorithms should be examined.
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Notes

1By the hemisphere centre we will understand the centre of its
great circle.

2To unify the terminology hereinafter the wheel rotating will be
called the spinning, like in the case of the hemisphere.

3In this simplified case we neglect the tilting of a wheel defined
this way.

4Please notice, there are some minor differences between the
model (20) and this introduced in [7] - in [7] the wheels radii are
constant, and initial values of the robot body and its wheels orien-
tations are set differently.
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