
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

C½Êç� CÊÃÖçã®Ä¦ SçÖÖÊÙã ¥ÊÙ ã«� Mç½ã®-A¦�Äã RÊ�Êã N�ò®¦�ã®ÊÄ SùÝã�ÃC½Êç� CÊÃÖçã®Ä¦ SçÖÖÊÙã ¥ÊÙ ã«� Mç½ã®-A¦�Äã RÊ�Êã N�ò®¦�ã®ÊÄ SùÝã�ÃC½Êç� CÊÃÖçã®Ä¦ SçÖÖÊÙã ¥ÊÙ ã«� Mç½ã®-A¦�Äã RÊ�Êã N�ò®¦�ã®ÊÄ SùÝã�ÃC½Êç� CÊÃÖçã®Ä¦ SçÖÖÊÙã ¥ÊÙ ã«� Mç½ã®-A¦�Äã RÊ�Êã N�ò®¦�ã®ÊÄ SùÝã�Ã

SubmiĴed: 2nd January 2017; accepted: 11th April 2017

Wojciech Dudek, Wojciech Szynkiewicz, Tomasz Winiarski

DOI: 10.14313/JAMRIS_2-2017/18

Abstract:
This paper presents a navigaƟon system structure formo-
bile service robots in the agent-based distributed archi-
tecture. The proposed navigaƟon system is a part of the
RAPP framework. The RAPP framework is an open-source
soŌware plaƞorm to support the creaƟon and delivery of
roboƟc applicaƟons, which are expected to increase the
versaƟlity and uƟlity of robots. All key navigaƟon tasks
are defined and divided into separate components. The
proper allocaƟon of navigaƟon components, in the four-
agent structure of the RAPP infrastructure, enables high-
demanding computaƟons offloading and was the main
goal of this work. NavigaƟon system components were
implemented using ROS framework. Experimental results
for the NAO robot execuƟng risks detecƟon task proved
the validity of the proposed approach.

Keywords: robot navigaƟon system, cloud compuƟng,
service robot

1. IntroducƟon
Service and social robots operate in human envi-

ronment and support us in our everyday tasks. One
of the core abilities of service mobile robots is au-
tonomous navigation in unstructured environments.
Such an area of operation requires from mobile ro-
bots additional effort during self-localization, environ-
ment map building, planning and motion execution
tasks. In case of the environment change, robot con-
troller needs to replan pre-planned motion path or
in some situations even whole task. To satisfy above
constrains, robot systems are aimed to gather great
amount of data, that describe current state of the
unstructured environment. In turn, processing such
amount of data requires high computational power
and massive storage capacity to compute and collect
essential knowledge [16]. Navigation system is the
core unit of everymobile robot controller, thus almost
any decision it makes in complex control systems, is
a result of a big data processing algorithm work.

To overcome above issues, robotic researchers de-
velop multiple platform control systems. Authors of
the survey [6] present current state of robot-cloud
cooperation. They distinguish four potential proϐits of
the Cloud in robotic systems:
- Big data – access to large packages of images, trajec-
tories or descriptive data,

- Cloud computing – parallel grid computing, lear-
ning, planning,

- Collective Robot Learning – sharing trajectories and
outcomes in multiple robot systems,

- Human Computation – image and video analysis,
classiϐication, learning and error recovery.

Among other robot behaviours, the Cloud is also
used in robot navigation. The work [12] presents the
C2TAM system that is used to process visual SLAM –
vSLAM. In this solution the environmentmap building
task, using heavy computational power algorithms,
process RGB-D data sent from multiple robots to the
cloud. In work [13] authors focus on different appro-
aches to processing distribution among build-in robot
computer and the cloud. They consider stereo pair ca-
meras image processing in the mobile robot teleope-
ration task. They present processing and transmission
time of data in different image resolution and different
wireless communication cases. The work shows that
the proper distribution of processing has a crucial in-
ϐluence to stability and robustness of the robot cont-
rol system. DAvinCi [1] project developers based the
cloud system on ROS (Robot Operating System [4,11])
communication mechanisms and the Hadoop cluster
[15]. It was used to process the FastSLAM (Fast Simul-
taneous Localization AndMapping) – algorithm in pa-
rallel. Rapyuta platform [10] allows dynamic alloca-
tion of robot safe processing environments (that are
based on ROS). These environments are strictly con-
jugated one to another to allow information and ser-
vices exchange between robots. In this solution bidi-
rectional communication is based on WebSockets.

Above systems, apart from using the robot compu-
ter, beneϐit from the second platform – the Cloud. This
solution has many advantages. It not only supplies
robot controllers with additional computation power
and storage capacity, but also reduces robot platform
cost. Among the advantages of the Cloud computing,
researchers note also: the reliability, largememory ca-
pacity, energy-saving, stable power supply, better use
of resources and easier modernization of the Cloud
then the on-board robot platform.

Most of known robot systems that are supported
by the Cloud, are dedicated to a robot type, an applica-
tion, an algorithm or perform a single service. We as-
sume, that the proposed system is distributed among
hardware platforms and modular to be able to extend
its capabilities. In addition it enables robots to:
- store large packages of data,
- process data and draw conclusions,
- request computationally heavy services,
- learn objects,

67



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

- share robotic applications even if the robot typesdif-
fer,

- share abilities and data with other robots.
The Cloud part of the RAPP system can handle many
robots at once – it is composed of multi-threaded ser-
vices. Furthermore, we assume that the navigation sy-
stem will allow different type robots share the same
task applications. Such applications (RApps) can be
implemented by non-experienced programmer using
the RAPP API and are stored in the Cloud. When a ro-
bot requires a certain ability, the robot downloads the
RApp and interprets the RAPP API methods depen-
ding on the speciϐic robot platform controller imple-
mentation.

The RAPP navigation system, as a part of the RAPP
system that is oriented on the robot navigation tasks,
is distributed across whole RAPP system structure.
Our approach beneϐits from the theory of the embo-
died agent [18] and utilizes paradigms of this theory
in the distributed navigation system structure synthe-
sis. The system structure synthesis is one of the main
issues of the presentedwork. In [2] the robot on-board
part of the navigation system is presented. In this ar-
ticle we present the design, development and execu-
tion process of the cloud part of the RAPP navigation
system. As a speciϐication and modelling description
standard, the SystemModelling Language (SysML) [5]
is used. Firstly, in Section 2, the general structure
of the RAPP system is presented. In Section 3.1 we
show constrains and requested behaviours (abilities)
of our navigation system. Section 3.2 describes system
components, that are responsible for the system abili-
ties execution. The communication between the robot
controller and the Cloud is described in Section 3.3.
Succeeding Section 4 reveals the navigation system
implementation and veriϐication in the example task.
Summary of the work is given in the Section 5.

2. RAPP System Structure
Development of a variable structure robot control-

ler, that operates both in the robot and in the cloud
platform, is the main goal of the RAPP project [9, 17].
We merge cloud services with on-board computing
into one robot controller structure making the cloud
essential for proper robot operation. In this article we
present a navigation system that is a part of the dis-
tributed multi-agent robot control system. The Core
Agent (acore) operates in the onboard robot compu-
ter and is responsible for the direct control of the ro-
bot effectors and receptors. Depending on the user
command, the acore is able to launch additional agents
or use services of Repository Agent (arep) that loca-
ted in the cloud. Life cycle of a typical application –
Dynamic Agent (adyn) is presented in Fig. 1. Imple-
mented and built applications for all supported ro-
bots are stored in the RAPP Store in arep(step = 0).
While a user requests the robot to realize a desi-
red task (step = 1), the acore downloads appropri-
ate adyn from the RAPP store (step = 2). If the robo-
tic application – RApp, is composed of two agents –
Cloud Agent (acloud) and Dynamic Agent, the acloud is

launched in the cloud (RAPP platform) and the adyn in
the Robot platform (step = 3). Next the adyn as a mas-
ter agent takes control over the Robot platform and
using arep and acloud services is responsible for the
user task completion (step = 4). Finally when the task
is ϐinished, the adyn and the corresponding acloud are
terminated (step = 5). Detailed speciϐication of the ge-
neral structure of the RAPP system was presented in
[17].

Destroy

RApp 
Cloud Agent

Launch
RApp 

Dynamic Agent

Launch

Robot platform

Core Agent

RApp

Download

RAPP platform

RApp RApp

RApp RApp

C
o
m
p
ila
ti
o
n

RAPP store

Repository Agent

RApp

Application 
Download 

Service

Application 
Download 

Service

user

Time

0

1

2

3

4

Command

Operate

5

Fig. 1. Life cycle of a RApp – Dynamic Agent

3. NavigaƟon System
3.1. System Requirements and Services

Distributed systems have to be designed under
well deϐined general structure, otherwise the complex
structure will be fuzzy or even the system can behave
in nondeterministic way. The most common approach
in distributedmodular systems design is to separate it
into modules and distribute them among hierarchical
structure elements. Software of the presented naviga-
tion system is divided into three levels (Fig. 2). At the
top in the hierarchy (level 3) is the navigation system,
which is composed of agents (level 2). Each type of an
agent is designed according to the speciϐication pre-
sented in section 2. We use system components as the
lowest hierarchical element (level 1), whereas design
of the latter heavily depends on the implementation.
However, a component implementation have to obey
its higher level structure element constrains and exe-
cute one or more elementary system services.

RAPP navigation system (level 3)

Agent Agent Agent

component1 component2
component4
component5 component6

component3

(level 2) (level 2) (level 2)

(level 1) (level 1)(level 1)

Fig. 2. Layers in the RAPP navigaƟon system structure

According to the RAPP system speciϐication, our
navigation system should respond to every possible
navigation related request of every possible task in the
RAPP store. As ourwork focuses on the distributed na-
vigation system design, we propose a limited number
of services, that handle core navigation tasks:

68



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

- pathPlanning2d – plan collision-free path through
the environment,

- getTransform – return state of the given robot joint
or pose of the given receptor in the requested coor-
dinate frame,

- getMarkerMap – return localization markers map,
- markerLocalization – return transformation from
the localization marker to the robot camera coordi-
nate frame,

- relativeLocalization – using sensor data, up-
date transformation from the current robot pose to
the robot initialization pose,

- computeGlobalPose – return robot global pose,
considering localization marker map, transforma-
tion from the robot camera to the robot coordinate
frame and the markerLocalization service trans-
formation,

- computeCurrentPose – return current robot
pose in the global coordinate frame using poses
from the computeGlobalPose service and the
relativeLocalization service,

- lookAtPoint – orient the robot camera to the point
given in the global coordinate frame,

- moveAlongPath – move robot base along the given
path,

- common_motion – group of the core robot mo-
vements (such as:move robot using relative or abso-
lute velocity values, robot joints control and set ro-
bot predeϐined posture).

The navigation system abilities are divided hierarchi-
cally (Fig. 3(a)). We distinguish elementary services
that are executed by the system components (gray el-
lipses) and a complex services that are composed of
a speciϐic set of elementary services (white ellipses).
To take advantage of the distributed system structure,
proper services allocation to the system agents is re-
quired. We distinguish:
- Core services – depend on the robot type, or re-
quire fast feedback from the robot platform,

- Repository services – do not belong to above
group, are common in robot applications and re-
quire high computational resources,

- Cloud services – do not belong to above groups,
are task speciϐic and require high computational re-
sources,

- Dynamic services –donot belong to above groups.
Each of the above groups should be realized in the cor-
responding agent, thus we distributed our navigation
system services as shown in the Fig. 3(b). Localization
of a mobile robot is an algorithm speciϐic service.
We focused our system speciϐication on landmark
(QR-code) based global localization and Extended
Kalman Filter relative localization. The complex
service is composed of some elementary services that
are robot type dependent (relativeLocalization,
getTransform, computeCurrentPose) and some
that are global localization algorithm speciϐic. One

of the latter requires high computational power
(markerLocalization) and two of them don’t
(computeGlobalPose, getMarkerMap).

navigation

global_localization

pathPlanning

moveAlongPath

lookAtPoint

computeCurrentPose

path_planning
robot_motion

computeGlobalPose

relativeLocalization

common_motion

getTransform

markerLocalization

getMarkerMap

localization

mapBuilding

<<Include>>

<<Require>>
<<Require>>

<<Include>>

<<Require>>

<<Require>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>
<<Include>>

<<Include>>

<<Require>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

(a) Hierarchical structure of the services

core_agent

dynamic_agent cloud_agent repository_agent

RAPP navigation system

getTransform

markerLocalization

computeCurrentPose

getMarkerMap path_planning

robot_motion

computeGlobalPose

relativeLocalization

mapBuilding

<<allocate>>

<<allocate>>

<<allocate>>

<<allocate>>

<<allocate>>

<<allocate>>

<<allocate>>

<<allocate>><<allocate>>

(b) Distribution of the services in the general structure of RAPP sy-
stem

Fig. 3. Core navigaƟon system services

3.2. System Components
Components are the executive parts of the naviga-

tion system, thus they have to satisfy restrictions gi-
ven by the system speciϐication and remain feasible
in the sense of software implementation. We assume
that one component can execute part of one or more
elementary services within one agent subsystem only.
The latter implies that a single component comprise
a single subsystem of an agent. Real receptors and real
effectors components are robot hardware drivers. Vir-
tual receptors and effectors components gather data
using real receptors and effectors respectively. Cont-
rol subsystem components implement services of the
agent and enable other agents components to request
them.

69



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

Taking into consideration above rules, we determi-
ned several system components and distributed them
among agents as shown in Fig. 4. As the acore speci-
ϐication and implementation depends heavily on the
considered robot platform, we present the acore of the
NAO robot as an example.

The pathPlanning complex service is executed
using four components:
- rapp_map_server – loads the environment map and
provide its data to the other arep components,

- rapp_costmap2d – computes two dimension cost
map of the given robot type motion in the given two
dimension occupancy grid map. Component allows
to conϐigure the map parameters,

- global_planner – calculates collision-free path using
the data downloaded from rapp_costmap2d and the
requested start and goal robot poses. As the com-
ponent is based on the known ROS package – glo-
bal_planner [8], it is able to use two different algo-
rithms: A* and Dijkstra’s. It computes the path along
the given grid edges, orwith use of the Simple Poten-
tial Calculation algorithm,

- rapp_path_planning – receives the pathPlanning ser-
vice requests and responds to them using servi-
ces of the rapp_costmap2d, rapp_map_server, glo-
bal_planner components.

The global_localization service, as a distributed
service, has to be composed of several components lo-
cated in adequate agents:
- qrCodeDetection – implements markerLoc-

alization service in the acloud agent,
- camera_server – implements captureImage service
in the acore agent; delivers images from the robot ca-
mera,

- estimator_server – implements getTransform ser-
vice in the acore agent,

- localization – implements computeGlobalPose and
getMarkerMap services as a dynamic-link library in-
cluded to adyn agent (RApp).

The robot_motion complex service is executed by the
following components located in the acore agent:
- move_server – implements interface between API
calls and acore agent subsystems; it is located in the
acore control subsystem,

- execution_server – implements motion requests in-
terface from theacore control subsystem to the robot
real effectors; it is located in theacore virtual effector
subsystem,

- obstacle_server – gathers data from acore real recep-
tors and delivers information about detected obsta-
cles to the acore control subsystem.

The computeCurrentPose service is integratedwith the
getTransform service in the estimator_server compo-
nent. The last service – the relativeLocalization
– is executed by cooperation of the following compo-
nents allocated in the acore agent subsystems:
- state_server – gathers data from the robot intero-
receptors (real_receptors), computes the robot cur-
rent state and delivers it to the control_subsystem,

- robot_localization – using data from the state_server
estimates current pose of the robot (relative to
the robot initial pose) and delivers it to the cont-
rol_subsystem.

The components layer of the complex navigation sy-
stem architecture is presented in the Fig. 4.

core_agent

dynamic_agent cloud_agent

repository_agentRAPP navigation system

virtual_effector

parts
 : execution_server
 : state_server
 : robot_localization

virtual_receptors

parts
 : camera_server
 : obstacle_detector

Acore-control_subsystem

parts
 : estimator_server
 : move_server

real_effectors

parts
 : motors
 : IMU

real_receptors

parts
 : camera
 : bumpers
 : sonars

Adyn-control_subsystem

parts
localization : RAPP dynamic API
 : hazard-detection RApp

Acloud-control_subsystem

parts
qrCodeDetection : RAPP dynamic API

Arep-control_subsystem

parts
 : rapp_path_planning
 : rapp_map_server
 : rapp_costmap2d
 : global_planner

Fig. 4. DistribuƟon of the system components in the
RAPP general structure [2]

3.3. Cross Component CommunicaƟon
Both the embodied agent theory and RAPP system

structure [17], restrict connections between compo-
nents. Communication among agent subsystems is ba-
sed on the speciϐied buffers, thus one subsystem can
communicateonlywith speciϐic subsystemswithin the
same agent. Furthermore, the RAPP system speciϐica-
tion restricts communication between agent, in order
to keep the system stable after particular agent launch
or destroy action. The rules above were taken into
account in the components distribution procedure to
avoid forbidden connections.We present the general
communication structure of distributed system com-
ponents, that are required to perform robotic tasks.
Distributed systems, especially that involve robots, re-
quire secured communication between their compo-
nents. As one of the main topics of our ongoing rese-
arch, we consider to implement well established net-
work communications security techniques [7, 14], to
solve the problem of the secure communication bet-
ween distributed system components. In this Section
we present used cross component communication in
the example services operation. Operation of a com-
plex service allocated in the cloud requires speciϐic
communication between components that execute the
elementary operations of that service. There are two
complex navigation services that use the cloudproces-
sing – path_planning and global_localization.

The ϐirst one – the path_planning service – ope-
rates in the arep only. Therefore, the service does not

70



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

need to follow the inter-agent communication rules.
However, the arep, as an agent that serves for many
different robots, sets additional communication regu-
lations:
- internal communication of the arep is realized using
RPC requests/reply interactions,

- there must be the possibility to request the service
multiple times at once.

The activity diagram that describes the internal
communication between components during the
path_planning service execution is presented in the
Fig. 5. As the Fig. 4 and Fig. 5 show, the arep is compo-

plan collision-free path

start_pose planned_pathgoal_pose

repository_agent

rapp_path_planning rapp_map_server rapp_costmap2d global_planner

confPlanningSeq

loadMap

calculateCost
map

makePlan

grid_map_IDrobot_type

sendMapToCost
map

path_planning

makePlan_request
path

costmap

obs_map_path

costmap_config

algorithm_config

map
plan_seq

map

planning_algorithm

requestMakePlan

Fig. 5. Internal communicaƟon of the arep during the
path_planning service execuƟon

sed of the rapp_map_server, the rapp_costmap2d, the
global_planner, and the rapp_path_planning compo-
nents. During the arep initialization process, the given
number of each component instances are launched.
The adyn starts the service by sending the request to
the arep. The request includes several parameters:
- robot_type – ID of the robot type, deϐines robot size
and kinematics,

- planning_algorithm – ID of one of the available plan-
ning algorithms,

- grid_map_ID – ID of the occupancy map of the envi-
ronment pre-stored in the cloud,

- start_pose – the initial pose of the required path,
- goal_pose – the end pose of the required path.
Next, the rapp_path_planning component interprets
the request and conϐigures the appropriate (cur-
rently unused) instances of the other components.
Afterwards, it loads the occupancy grid map using
the elementary service (load specified map) of the
rapp_map_server component. The map is sent to the
calculate costmap elementary service of theproper
instance of the rapp_costmap2d component. Next, the
makePlan elementary service of the proper instance
of the global_planner component gets the costmap
from the rapp_costmap2d component instance. After
this sequence, the rapp_path_planning component re-
quests the makePlan elementary service to plan the
path. Finally, the makePlan service calculates the path

and sends it to the rapp_path_planning component to
translate it to the RAPP object.

The second complex navigation service that
takes advantage of the cloud processing is the
global_localization service. Apart from the other
services this one is realized by three cooperating
agents – acloud, adyn and acore. The component that
is responsible for the service execution is the RApp
(adyn). It uses other agents elementary services
and integrates obtained responses. The integration
process of the elementary services is presented in
the Fig. 6. As the global_localization service
requires interactions with the robot type dependent
acore agent, the example was presented using the NAO
robot instance of the acore.

QRmap

global_localization

captureImage

moveHead

getTransform

qrCodeDetection

qrCodeLocalization

qrCodeDetected

head limit

[true]

[false]

[false]

[true] - qrCode pose

qrCode pose

camera pose
image

status

Fig. 6. AcƟvity diagram of the global_localizaƟon
service – NAO robot case

The adyn agent starts the service execution
by requesting the acore for the picture (calls the
captureImage elementary service), and for the
current transformation from the camera to the robot
coordinate frame (calls getTransform elementary
service). Next, the adyn sends the obtained data to the
acloud, to the qrCodeDetection service. This service
is responsible for ϐinding a QR-code in the picture
and if one was found, it calculates the pose of the
QR-code in the robot coordinate frame and sends it
as a response to the adyn. Next, the transformation
is being converted by the adyn elementary service
(the qrCodeLocalization). This service gets the
pre-composed QRmap, that deϐines the pose of each
QR-code in the global coordinate frame. Finally, the
pose of the robot in the global frame is computed
using the map and the transformation from the
QR-code to the robot coordinate frame. However, if
the qrCodeDetection service returns lack of QR-code
in the obtained picture, the adyn requests the acore to
change the robot head orientation (requests the
moveHead service). Then, the next picture is captured
and checked. The described loop ends in two situa-
tions, either the QR-code is found in the picture or
the robot head reached its extreme orientation (head
limit = true).

71



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

4. NavigaƟon System ImplementaƟon and Ve-
rificaƟon
The system implemented observing the rules and

diagrams presented in the preceding sections. As the
acore of the system depends on the robot type, the
acore of the NAO robot was implemented. Virtual re-
ceptors of the system interactwith the robot hardware
using the robot producer NAOqi framework. We used
some well-known libraries and modules of the Robot
Operating System (ROS) [11]:
- global_planner – as the global_planner compo-
nent of our system,

- robot_localization – as the robot_localiz-
ation component of our system,

- costmap_2d–equippedwith theRAPPspeciϐic plug-
in as the rapp_costmap_2d component of our sy-
stem,

- map_server – enhanced with on-the-ϐly
change of the published map function as the
rapp_map_server component of our system.

As the communication between the robot and the
cloud platform is based on request/response pat-
tern, we implemented the communication usingHTTP
protocol. In both platforms, ROS service reque-
sts/responses are transformed to the HTTP reque-
sts/responses.

Veriϐicationof the systemwas conductedby testing
each service separately during example RApp execu-
tion. The hazard detection task [2,3]was chosen as the
veriϐication task and was implemented as the RApp.
The hazard detection task is the sequence of some ser-
vices requests:
1) standUp – sets the predeϐined posture of the

robot (one of the elementary services of the
common_motion complex service). The robot pre-
pares to the localization and the motion execution.

2) global_localization – execution of the
global_localization service. The system
deϐines the robot current pose.

3) hazard detection loop – executed for every hazard
in the environment:
a) path_planning – execution of the path_plan-

ning service. The adyn requests the cloud
for the collision-free path and forwards it to
the acore as the request for motion (Fig. 7(a)).

b) moveAlongPath – execution of the
moveAlongPath service (robot_motion
complex service). The robot moves to the next
hazard detection pose.

c) lookAtPoint – execution of the lookAtPoint
service (robot_motion complex service). The
robot points its camera to the next hazard de-
tection point.

d) checkHazard – execution of the checkHazard
service (it’s one of the arep services). The cloud
returns status of the next object to the RApp
(Fig. 7(b)).

e) global_localization – execution of the
global_localization service.

The RApp is implemented using NAO robot speciϐic
acore. In the environment there were two hazards –
the door status (opened/closed) and the lamp status
(on/off). As the RApp governs the robot platform and
is aware of the current state of the system, it is respon-
sible for handling any unexpected situation e.g. com-
munication error, module crash or hardware failure.
In our veriϐication task we use the robot voice to com-
municate any encounteredunexpected situation. If the
voice is disabled,we send instructions to the user in an
email and light up red lights around the robot eyes.

(a) Path planned using the path_planning service and sent to
the acore for execution. Black areas represent restricted areas, gray
areas inϐlate black areas to increase distance between robot and ob-
stacles, white areas represent area that is available for robot motion

(b) NAO robot during the hazard detection task (video: https://
vimeo.com/141078577) – checking the door status

Fig. 7. VerificaƟon task execuƟon

The conducted experiments showed that the ro-
bot localized itself with proper accuracy and the inter-
platform (robot↔ cloud) communicationwas correct.
The paths planned by the arep were returned to the ro-
bot platform and their execution in the environment
was collision-free. The latter is the result of:
- sufϐiciently accurate global localization,

- proper relative localization during each path execu-
tion,

- correct motion execution between points of each
path.

The largest distance between the actual robot path
and the desired path was 19 cm and is considered as
relatively small in the NAO robot case.

Implemented code is stored in the repositories
(https://github.com/rapp-project/). The code is
compatible with ROS indigo version and contains the
core_agent of the NAO robot

72

https://vimeo.com/141078577
https://vimeo.com/141078577
https://github.com/rapp-project/


Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

5. Summary
In this paper the distributed robot navigation sy-

stemwas described. It is based on the embodied agent
theory and enables distribution of the robot control
software between two separate processing platforms
– anymobile robot and a cloud platform. Furthermore,
a proposed software structure allows robots to ex-
change knowledge and abilities between themselves.
Presented navigation system cloud services support
multiple requests at once, thus one cloud platform is
able to satisfy many robots needs for additional me-
mory and processing power. The system was tested
using the NAO robot to verify that the cloud proces-
sing enable robots with low computation capabilities
to realize quite complex service task. Thanks to four
agent cooperation, the system is able, amongothers, to
localize robot properly, build an occupancy map, plan
a collision-free path, execute robot motion along the
desired path. In this paper we mainly focused on de-
tail description of two in-cloud services – robot path
planning and global localization. The ϐirst of these two
operates in the cloud only and the second is realized
by cooperation of both platforms (the cloud and ro-
bot platform). The navigation system allows to conϐi-
gure in-cloud services in such a way that, diverse ro-
bot types are supported. The proposed system was
implemented and veriϐied with use of the NAO robot.
The conducted experiments showed that every ser-
vice of the system acts properly and a quite complex
task can be fulϐilled by a robot platform equippedwith
low on-board computational power. In addition the
system allows to speed up and simplify robotic ap-
plication development. The presented system requi-
res from a developer familiaritywith the available ser-
vices only. Robotic application programmers do not
need to know, neither speciϐic communication rules,
nor complex robot control frameworks like ROS.

Acknowledgements
This work is funded by the FP7 Collaborative Pro-

ject RAPP (Grant Agreement No. 610947), funded by
the European Commission. The work is supported
by the Polish Ministry for Science and Higher Educa-
tion scientiϐic research funds for the years 2014–2016
granted for the realizationof co-ϐinanced international
project.

AUTHORS
Wojciech Dudek∗ – Institute of Control and Com-
putation Engineering, Warsaw University of Techno-
logy, 00–665 Warszawa, ul. Nowowiejska 15/19,
e-mail: wojciech.dudek.mail@gmail.com, www:
https://www.robotyka.ia.pw.edu.pl/.
Wojciech Szynkiewicz – Institute of Control and
Computation Engineering, Warsaw University of
Technology, 00–665 Warsaw, Nowowiejska 15/19,
e-mail: W.Szynkiewicz@elka.pw.edu.pl .
Tomasz Winiarski – Institute of Control and Compu-
tation Engineering, Warsaw University of Technology,

00–665Warsaw, Nowowiejska 15/19, e-mail: tmwini-
arski@gmail.com.
∗Corresponding author

REFERENCES
[1] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun,

K. Baskaran, F. F. Kong, A. S. Kumar, K. D. Meng,
and G. W. Kit, “DAvinCi: A cloud computing fra-
mework for service robots”. In: Robotics and Au-
tomation (ICRA), 2010 IEEE International Confe-
rence on, 2010, 3084–3089.

[2] W. Dudek, K. Banachowicz, W. Szynkiewicz,
and T. Winiarski, “Distributed NAO robot na-
vigation system in the hazard detection ap-
plication”. In: 21th IEEE International Con-
ference on Methods and Models in Automa-
tion and Robotics, MMAR’2016, 2016, 942–947,
10.1109/MMAR.2016.7575264.

[3] W. Dudek, W. Szynkiewicz, and T. Winiarski,
“Nao Robot Navigation System Structure Deve-
lopment in an Agent-Based Architecture of the
RAPP Platform”. In: R. Szewczyk, C. Zieliń-
ski, and M. Kaliczyńska, eds., Recent Advances
in Automation, Robotics and Measuring Techni-
ques, vol. 440, 2016, 623–633, 10.1007/978-3-
319-29357-8_54.

[4] O. S. R. Foundatioin. “Robot Operating System”.
http://ros.org/. [Online; accessed 10-April-
2016].

[5] S. Friedenthal, A. Moore, and R. Steiner, A practi-
cal guide to SysML: The systems modeling lan-
guage. 3rd ed., Elsevier,MorganKaufmann, 2015.

[6] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg,
“A survey of research on cloud robotics and
automation”, IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, 2015,
398–409, 10.1109/TASE.2014.2376492.

[7] R. L. Krutz and R. D. Vines, Cloud Security: A Com-
prehensive Guide to Secure Cloud Computing, Wi-
ley Publishing, 2010.

[8] E. Marder-Eppstein, E. Berger, T. Foote, B. Ger-
key, and K. Konolige, “The ofϐice marathon: Ro-
bust navigation in an indoor ofϐice environment”.
In: International Conference on Robotics and Au-
tomation, 2010.

[9] P. Mitkas, “Assistive robots as future caregivers:
The rapp approach”. In: R. Szewczyk, C. Zieliński,
andM. Kaliczyńska, eds., Progress in Automation,
Robotics and Measuring Techniques. Vol. 2 Robo-
tics., vol. 351, 2015, 171–179.

[10] G. Mohanarajah, D. Hunziker, R. D’Andrea, and
M. Waibel, “Rapyuta: A cloud robotics plat-
form”, IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, 2015, 481–493,
10.1109/TASE.2014.2329556.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-

73

http://ros.org/


Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

source Robot Operating System”. In: ICRA works-
hop on open source software, vol. 3, no. 3.2, 2009.

[12] J. Riazuelo, J. Civera, and J. M. M. Montiel,
“C2TAM: A cloud framework for cooperative
tracking andmapping”,Robotics andAutonomous
Systems, vol. 62, no. 4, 2014, 401–413.

[13] J. Salmerón-Garcıa, P. IƵñigo Blasco, F. D. del Rıo,
and D. Cagigas-Muñiz, “A tradeoff analysis of a
cloud-based robot navigation assistant using ste-
reo image processing”, IEEE Transactions on Au-
tomation Science and Engineering, vol. 12, no. 2,
2015, 444–454, 10.1109/TASE.2015.2403593.

[14] J. Sen, “A survey on wireless sensor network se-
curity”, CoRR, vol. abs/1011.1529, 2010.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,
“The hadoop distributed ϐile system”. In: 2010
IEEE 26th symposium on mass storage systems
and technologies (MSST), 2010, 1–10.

[16] M. Tenorth andM. Beetz, “Knowrob—knowledge
processing for autonomous personal robots”. In:
2009 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2009, 4261–4266.

[17] C. Zieliński, W. Szynkiewicz, M. Figat, M. Szlenk,
T. Kornuta, W. Kasprzak, M. Stefańczyk, T. Zieliń-
ska, and J. Figat, “Reconϐigurable control archi-
tecture for exploratory robots”. In: K. Kozłow-
ski, ed., 10th International Workshop on Robot
Motion and Control (RoMoCo), 2015, 130–135,
10.1109/RoMoCo.2015.7219724.

[18] C. Zieliński, T. Kornuta, and T. Winiarski, “A sy-
stematic method of designing control systems
for service and ϐield robots”. In: 19-th IEEE In-
ternational Conference on Methods and Models
in Automation and Robotics, MMAR, 2014, 1–14,
10.1109/MMAR.2014.6957317.

74


	Introduction
	RAPP System Structure
	Navigation System
	System Requirements and Services
	System Components
	Cross Component Communication

	Navigation System Implementation and Verification
	Summary

