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Abstract:
This paper considers the pracƟcal applicaƟon of the RGB-
D Simultaneous LocalizaƟon andMapping (SLAM) techni-
ques for localizaƟon ofmobile robots.We aƩempt to ans-
wer the quesƟon: how the quality of the esƟmated sensor
trajectory depends on the approach to RGB-D data pro-
cessing in the SLAM system when RGB-D frames acqui-
red on a real mobile robot are used. Experiments are per-
formed on data obtained from robots of different clas-
ses, and from different environment types to present the
problems characterisƟc to RGB-D data. Conclusions as to
the robustness of parƟcular architectures and soluƟons
applied in SLAM are drawn on the basis of experimental
results. Publicly available data sets and well-established
performance metrics are used to ensure that the results
are verifiable, reproducible and relevant.
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1. IntroducƟon
Recent progress in understanding the structure of

the Simultaneous Localization and Mapping problem,
and the availability of efϐicient non-linear optimiza-
tion algorithms in open-source software libraries ena-
bled a paradigmshift in SLAMresearch. In the last cou-
ple of years the traditional SLAM algorithms, based on
ϐiltration have been replaced bymethods based on op-
timization of some (often graph-like) representation
of the SLAM problem [33]. The introduction of com-
modity RGB-D (RGB andDepth) sensors shifted the fo-
cus of SLAM research from passive vision to more re-
liable systems exploring direct depth measurements
[23]. Also, the RGB-D sensors turned out to be practi-
cal in the localization of mobile robots, even those of
limited size, payload, and computing power [24]. Ho-
wever, no standard algorithm or a dominant SLAM ar-
chitecture has evolved, in both the visual and the RGB-
D SLAM domains [31].

Another new trend in SLAMresearch are the publi-
cly availableRGB-Ddata sets. Thesebenchmarks allow
for comparison of new architectures to the solutions
already known from the literature [4, 21, 22, 37]. This
kind of evaluation, however, usually involves RGB-D
data sequences acquired by handheld sensors (Kinect
or Xtion) in relatively conϐined spaces [35] or simu-
lated RGB-D images [14]. Thus, a comparative asses-
sment of the SLAM algorithms and architectures on
such benchmarks does not allow to select the soluti-
ons that are robust to such factors as motion blur in
images, sudden motions of the sensor, lack of texture

in the ϐield of view, occlusions, shadows, and illumina-
tion changes. These factors are to various extent pre-
sent whenever real mobile robots have to be localized
in real-time.

There are few examples of publicly available RGB-
D data sets obtained using mobile robots. In the TUM
RGB-D Benchmark [35] some sequences were taken
by a sensor mounted on the Pioneer wheeled robot.
However, in those sequences often no objects are pre-
sent within depth measurement range of the Kinect
sensor, rendering them unsuitable to evaluate SLAM
algorithms that rely on depth data. The large scale
MIT Stata Center data set [12] contains RGB-D frames
acquired using a Kinect sensor mounted on a mobile
robot, but the ground truth trajectories are obtained
by aligning 2D laser scans with a ϐloor plan of the buil-
ding, providing the accuracy of about 3 cm [12], which
is below the accuracy achieved by the state-of-the-art
SLAM systems [6,23].

Whereas the literature is rich in papers evaluating
feature detectors and descriptors, also with respect to
various aspects of mobile robot localization [7,16,28],
very few authors studied the inϐluence of particular
SLAM system architectures on the accuracy and re-
liability of robot trajectory estimation. Strasdat [34]
compared several versions of his visual SLAM system,
however, working mostly with the passive cameras.
Mur-Artal at al. extensively evaluated theirmonocular
ORB-SLAM [22], comparing it also to other architectu-
res, and pointing out advantages of the feature-based
approach. In the domain of RGB-D-based systems, we
have presented a comparative study on pose-based lo-
calization approaches [3], however, using typical ben-
chmark data sets. To the extent of our knowledge, no
study has been yet published evaluating and compa-
ring the recent approaches to SLAM in the speciϐic con-
text of real mobile robot localization.

Therefore, in this article, we attempt to compare
the representative architectures of RGB-D SLAM sys-
tems in the context of indoor localization of real mo-
bile robots, extending our recent conference paper
[17]. We use two data sets that were recently publis-
hed by the Mobile Robots Lab of Poznań University of
Technology (PUT). One of these data sets was acqui-
red using awheeled robot in a typical laboratory room
[19], whereas the other one was obtained from a sen-
sor mounted on a six-legged robot traversing a simple
terrain mockup [5]. These data sequences are supple-
mented by one sequence from the TUM RGB-D Ben-
chmark, to show the difference between results on a
standard benchmark, and the robot-speciϐic data sets.
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Most of the SLAM systems that are included in the
comparative assessment exploit point features.Webe-
lieve that the feature-based approach ismore useful in
practical mobile robot localization than the direct ap-
proaches, which estimate the transformation between
images minimizing the difference between the actual
and the predicted measurement in the intensity or
depth domain [31]. The core of the comparison is con-
stituted by four SLAM systems: the PUT SLAM [4], the
ORB-SLAM2 [23], the CCNY_RGBD [9], and the RGB-D
SLAM v2 [11]. The ϐirst of these systems, PUT SLAM,
was developed at the Mobile Robots Lab at PUT spe-
ciϐically for localization of various mobile robots. The
remaining three systems represent signiϐicantly diffe-
rent approaches to the problem of SLAM with RGB-D
data. Besides these four SLAM systems, two other so-
lutions to the localization problem with RGB-D data
are evaluated. These are a RGB-D visual odometry sy-
stem, which represents the simplest possible solution
to the use of RGB-D data in the localization problem,
and the KinFu Large Scale system, which is a feature-
less approach, based on the recently popular Kinect-
Fusion architecture. All used in this research systems
are open-source. Also, used data sequences are publi-
cly available.

We analyze the results using the well-established
quantitative performance metrics introduced in [35],
but we also show qualitative results in the form of
dense, volumetric environment maps obtained from
the RGB-D frames registered by PUT SLAM. The PUT
SLAM system, developed in our lab, is of special inte-
rest in this study, and drawing conclusions from the
evaluation experiments we also deϐine the directions
for further development of PUT SLAM, to ensure its ef-
fectiveness in the localization of mobile robots belon-
ging to different classes.

The rest of this paper is structured as follows:
section 2 brieϐly presents the evaluated localiza-
tion systems, section 3 details used methodology to
obtain both the quantitative and the qualitative re-
sults, section 4 describes and comments these results,
and section 5 concludes this paper.

2. Systems and Their Architectures
2.1. RGB-D VO

The investigated architectures of localization sy-
stems are using various techniques to eliminate the
trajectory drift, which occurs in the Visual Odometry
(VO) [27]. In comparison to SLAM, the VO is a simpler
approach to localization based on the samedata. In or-
der to investigate and visualize how important are the
drift reduction techniques for achieving the accurate
trajectory estimation, a simple RGB-D VO pipeline has
been proposed, based on the procedures available in
the OpenCV library [16]. The RGB-D VO system sear-
ches salient point features in the RGB image from the
current frame and tries to match them with the fea-
tures from the previous frame. The position of these
points in the 3-D space is determined with the use
of the corresponding depth image. Next, the transfor-
mation [R, t]T ∈ SE(3) between the two sets of mat-

ched 3-D points is computed using a least squares es-
timation method [10]. The correctness of the estima-
ted transformation is veriϐied by applying the RANSAC
approach. Only those pairs of features are accepted as
inliers, for which the residual Euclidean error is smal-
ler than a given threshold. The threshold is increased
gradually if no transformation satisfying the criteria
can be computed. To calculate the ϐinal translation and
rotation estimation all accepted pairs of points (all in-
liers) are used. The block diagram of the RGB-D VO al-
gorithm is presented in Fig. 1.
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Fig. 1. Block scheme of the simple RGB-D VO system

2.2. PUT SLAM
The PUT SLAM system employs photometric as

well as depth images. From the RGB images, it only
extracts the keypoints with the use of the ORB detec-
tor [26], which was chosen due to the good trade-off
between the performance in visual navigation and the
computational efϐiciency [28]. The keypoints are ex-
tracted with respect to the scene depth data availabi-
lity at the given point, avoiding artifacts in depth ima-
ges [18]. In comparison with our earlier localization
systems [3,18], an entirely new SLAMarchitecture has
been introduced in [4].
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Fig. 2. Markov random field for the SfM problem (a).
Factor graphs for the pose-based SLAM (b), and the
Bundle Adjustment SLAM (c). Larger black circles are
sensor poses, smaller white circles are features, while
links denote measurements, and black rectangles
stand for factors. Elements shown in gray are either
marginalized or not used

The typical approach to graph-based SLAM, which
dates back to 2D SLAM systems employing laser scan-
ners [13], is based on the optimization of a graph of
sensor poses and explicit detection of loop closures.
Instead, PUT SLAM is based on a map of 3-D point fe-
atures and borrows ideas from purely visual mapping
systems. As shown in [33] the SLAM problem can be
considered in terms of inference on a graph. The most
general form, which is known in the computer vision
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community as the Structure from Motion (SfM) pro-
blem assumes that all the historic poses of the sen-
sor are related to the observed features by measure-
ments. This canbevisualized as a randomMarkov ϐield
with the pose variables x and feature variables f (Fig.
2a). However, if SLAM is used for robot localization
this graph grows when new poses are added as the
robot moves, while more features appear whenever
the robot explores new parts of the environment. To
avoid the need to process a very large graph of con-
straints the pose-based SLAM systems marginalize all
historic features (thus no explicit map), and keep only
a graph of poses with the constraints between them
(Fig. 2b). These constraints stem from the motion of
the robot computed upon the locally co-observed fea-
tures (shown in gray in Fig. 2b). The constraints may
also represent loop closures, i.e. relations between lo-
cations that are distant in the chain of historic poses
but are spatially close enough to co-observe some fe-
atures. These loop closure constraints are essential is
SLAM, as they enable the system to reduce the trajec-
torydrift. The constraints are represented in the graph
as factors, shown in Fig. 2b by small black rectangles.

The new algorithm implemented in PUT SLAM,
presented in more detail in [4] and [6], uses also the
non-linear estimation techniques from the g2o library
[20] to optimize a graph of constraints. It exploits, ho-
wever, a much larger number of factors directly bin-
ding the positions of point features with the poses of
the sensor (Fig. 2c). The graph of constraints has two
kinds of vertices: x representing sensor poses, and f
representing point features. The tij ∈ R3 edge re-
presents a constraint resulting from the RGB-D sensor
measurement between the i-th pose and the j-th point
feature. The uncertainty of each constraint is repre-
sented by its information matrix Ω, which can be de-
termined by inverting the covariancematrix of a parti-
cularmeasurement [6]. The PUTSLAMcloses loops lo-
cally by frequent matching of the incoming RGB-D fra-
mes to themap, without identifying explicitly the alre-
ady seen places. This approach is similar to the Bundle
Adjustment (BA) method used to efϐiciently solve the
SfM problem [36] and applied recently to real-time vi-
sual SLAM [22] and RGB-D-based reconstruction [21].
However, an important difference between the typical
BA algorithm and the approach taken in PUT SLAM is
that in PUT SLAM the Euclidean errors in the positi-
ons of features are minimized, whereas in vision-only
BA the re-projection error of features onto images is
minimized.

A number of original concepts have been imple-
mented in the PUT SLAM architecture. The most im-
portant of them is the use of a computationally efϐi-
cient VO pipeline for the frame-to-frame tracking of
the sensor pose. This subsystem is based on the Lucas-
Kanade algorithm [1] and uses only the RGB images
[18]. This solution allows to better estimate the sen-
sor pose with respect to the map than a camera mo-
tionmodel applied inmost of the visual SLAM systems
[22]. A novel solution is also the use of several ORB
descriptors [26] for each feature in themap. On the ba-

sis of the RGB images collected during the sensor mo-
tion, a number of descriptors are established for a sin-
gle point feature, which represent this feature as seen
from different views [4]. This solution improves the
robustness of the feature-to-map matching process if
a feature is re-observed from a signiϐicantly different
angle than the original angle of observation.
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Fig. 3. Block scheme of the PUT SLAM system

The architecture of PUT SLAM system takes an
advantage of multi-thread processing (Fig. 3), which
ensures good efϐiciency for contemporary multi-core
processors. The system is divided into the front-end
implementing RGB-D data processing, sensor tracking
(employing VO), and matching between the current
frame and the map, and the back-end storing the
map structure and implementing optimization of the
graph. The synchronization of threads for data ex-
change occurs only at deϐined events, e.g. the end of
an optimization cycle by g2o. The PUT SLAM, thanks
to such an architecture, works in real-timewithout the
needof hardware acceleration. ThePUTSLAM is open-
source software available at GitHub1.

2.3. ORB-SLAM2
The ORB-SLAM2 is the newest variant of the vi-

sual SLAM system presented in [22]. The ORB-SLAM
emerged as a monocular SLAM that used the BA con-
cept and point features optimization. The second ver-
sion [23] can, however, use RGB-D data, thus it avoids
a typical problemof initializingmap fromphotometric
features, for which the depth information is not avai-
lable. The factor graph optimization is implemented
in ORB-SLAM2 with the use of g2o library, likewise in
PUT SLAM. Also very similar is the overall architecture
of both systems, which is divided into the front-end
and the back-end. Themost important differences bet-
ween these two architectures result from the fact, that
ORB-SLAM2retains all properties ofmonocular SLAM,
taking into account features lackingdepth information
and optimizing the map using only the re-projection
error. This allows to substantially increase the num-
ber of features used in the matching process between
the map and the current perception, e.g. including fe-
atures lying beyond the depth measurement range of
a RGB-D sensor. Moreover, in ORB-SLAM2 the loop
closure detection is implemented using appearance-
based place recognition, applying the bag-of-words
technique [22]. This allows for closing loops of an arbi-
trary size, not only local ones, though this process for
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very large loops is not real-time. In the ORB-SLAM2
the modiϐied, fully multi-scale ORB features are used
in the whole system: to track the sensor motion, to
match the current perception to the map (creating
constraints), and in the loop closure procedures. Ho-
wever, tracking uses a simple sensor motion model,
assuming constant speed motion, which makes ORB-
SLAM2 (and the vision-only ORB-SLAM) vulnerable to
sudden changes in the motion of the robot.
2.4. CCNY_RGBD

This algorithm, presented in [9] uses the photome-
tric information only to detect keypoints without cre-
ating their descriptors (one can choose different de-
tectors – in the presented evaluation the ORB detec-
tor was used). On the basis of the keypoints and in-
formation of scene depth, a global map of 3-D point
features is created. Each feature has assigned uncer-
tainty of its position expressed by a covariance ma-
trix. The keypoints obtained from successive frames
are matched to the features in the map with the use
of the sparse Iterative Closest Points (ICP) algorithm.
This allows determining the sensor motion. In order
to improve the quality of feature matching, a method
of estimating the depth image uncertainty from theKi-
nect sensor model was proposed in [9]. Matches bet-
ween new feature points and the map are used to up-
date the positions of features in the map with the use
of a Kalman ϐilter. The yet unmatched, new features
are added to the map. In the CCNY_RGBD system an
additional, off-line sensor pose graph optimization is
available. This optimizationmay signiϐicantly improve
the quality of themap, if accurate map building is con-
sidered as the task at hand [38]. However, as we are
focused on robot localization, and we assume that all
the investigated SLAM systems work in real-time, this
possibilitywas not used, and results of the direct, real-
time Kalman-ϐilter-based approach are demonstrated.
2.5. RGB-D SLAM v2

The algorithm presented in [11] employs the color
information as well as depth measurements. Similarly
to PUT SLAM it uses point features and their descrip-
tors but assumes a different concept of a map, which
is a graph of poses. In the front-end, frame-by-frame
visual odometry is used to estimate the sensor displa-
cement between the successive RGB-D frames. To eli-
minate the mismatched feature pairs in VO the RAN-
SAC approach is applied. To reduce the error accumu-
lation (drift), the current frame is compared with pre-
vious frames to ϐind possible loop closures. This al-
lows for closing relatively large loops and setting con-
straints between distant frames, to suppress the drift.
However, the search for loop closures is heuristic, still
without explicit appearance-based place recognition.
The preliminary trajectory obtained by VO (but with
loop closures) is transformed into a pose graph with
motion-related factors and optimized with the use of
the g2o library. In the RGB-D SLAM v2, it is possible
to use several different detector/descriptor pairs. In
the experiments the SURFdetector/descriptor [2]was
used, as the preliminary tests with the ORB features

demonstrated that ORB is inefϐicient for loop closures.
This result was also independently conϐirmed in [7].

2.6. KinFu Large Scale
This algorithm, available in the PCL library [25],

is an open-source re-implementation of the Kintinu-
ous [37] algorithm, which, in turn, is an improved ver-
sion of the well-known KinectFusion concept. In con-
trast to the rest of the evaluated systems, this one uses
only the depth information from RGB-D frames and
does not use any features. It creates a dense, volume-
tric map of the local environment, which is a cube of
8 m3 volume. This map is created using the Truncated
Signed Distance Function (TSDF) and is stored in the
graphic card memory (GPGPU accelerator is essential
for this system to work). The sensor pose is determi-
ned with respect to the volumetric map with the use
of a modiϐied ICP algorithm. If the sensor moves close
to the limits of the map area, a new cube around the
current sensor pose is created, to enable mapping of
larger space. Data, which do not ϐit in the new map
are transformed into a triangular mesh, is used to re-
construct the volumetric representationwhenever the
sensor re-enters the already mapped area.

3. Concept and Methodology of Experiments
In order to assess the performance of the tested sy-

stems in the context of mobile robot localization three
experiments have been performed. Two of them invol-
ved data collected by a real wheeled or crawling ro-
bot2. To show the difference in performance between
the localization task of real robots, and a typical ben-
chmark task, the fr3_long_office_hausehold sequence
from the TUM RGB-D Benchmark [35] was used as
well. This sequence, called experiment no. 1, is charac-
terizedbya considerable lengthof 2486 frames, howe-
ver, the Kinect sensor moved by hand observes only
a small area in a room, while its motion is slow and
smooth (Fig. 4a). The experiment no. 2 refers to the se-
quence putkk_1 (1537 frames) obtained by a wheeled
robot with the Kinect sensor moving in the laboratory
as a part of the data set described in [19]. A set of tra-
jectories encompassing considerable part of the room
and including closed loops have been registered – the
robot returns to its start position (Fig. 4b). Data used
in the experiment no. 3 have been registered on the
six-leggedwalking robotMessor II with the Asus Xtion
PRO Live sensor. The robot was traversing a simple
terrain mockup with small bumps, following a trajec-
tory of a roughly square shape (Fig. 4c). The registered
trajectories differ in theusedgait type and speedof the
robot. A thorough analysis of the inϐluence of the gait
type on the trajectory estimation results for the PUT
SLAM system has been presented in [5]. Thus, herewe
consider only the messor2_2 sequence (1500 frames),
whichwas obtained using the default tripod gait of the
robot at the translational speed of 0.09 m/s.

Ground truth trajectories for the RGB-D data sets,
collected by mobile robots were obtained from the
multi-camera vision system PUT Ground Truth (PUT
GT) [29]. This system uses ϐive high-resolution came-

60



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017

a

-3

-2

-1

0

1

-1
-0.5

0
0.5

1

0.5

start

stop
z [m]

x [m]

y [m]

-0.8
-0.6

-0.4
-0.2

0
0.2

0.4
0.6 -1.6

-1.4
-1.2

-1
-0.8

-0.6
-0.4

-0.2
0

0.2

-1.0 start/stop

2

b

z [m]

x [m] y [m]

1.5

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

2.5

0

0.5

1

1.5

c

z [m]

x [m]
y [m]

start

stop

Fig. 4. Ground truth trajectories: for the handheld
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ras mounted to the ceiling of a lab room and requi-
res a passive marker in the form of a chessboard to be
mounted on the tracked object (robot). The transfor-
mations between the coordinate system of the came-
ras, the coordinate systemof themarker, and the coor-
dinate system of the sensor are obtained through ap-
propriate calibration [30]. The calibration procedure
that involves at least two cameras seeing the mar-
ker at the same time ensures high accuracy of the re-
sulting transformation, and eventually, together with
the large size of the multi-ϐield chessboard marker,
contributes to the accuracy of the ground truth trajec-
tories. The PUT GT system ensures tight time synchro-
nization between the images from the cameras, and
the RGB-D frames collected from the on-board sensor
of the robot [19].

To evaluate the accuracy of the recovered trajec-
tories the methods of assessing the Absolute Trajec-
tory Error (ATE), and Relative Pose Error (RPE) are
applied. These methods, and the error metrics rela-
ted to them, have been introduced in [35], and now
are commonly used in the robotics community. The
ATE value is the Euclidean distance between the cor-
responding points of the estimated, and the ground
truth trajectory. Thus, the ATE metrics allows to de-
termine how far away from the reference pose is the
estimated pose on the trajectory. For the whole tra-
jectory, the Root Mean Squared Error (RMSE) of the
ATEmetrics is calculated. The RPE value determines a
relative translational or rotational error between the
successive RGB-D frames on the estimated trajectory.
Assuming that we have two trajectories: the ground

truth Tgt = {Tgt
1 ,T

gt
2 , . . . ,T

gt
n}, and the estimated one

T = {T1,T2, . . . ,Tn}, with the same number of n po-
ses. andTi andTgt

i are given as 4×4 homogeneousma-
trices, we can compute the ATE metrics for the i-th
frame:

EATE
i =

(
Tgt
i

)−1 Ti, (1)
and then obtain the ATE value for the whole trajec-
tory from the RMSE of (1) for all nodes. Note that to
obtain correct ATE, the trajectories have to be allig-
ned prior to computing (1) by ϐinding a transforma-
tion that minimizes the distance between the two ri-
gid sets of points representing these trajectories [35].
Similarly, the RPE metrics for i-th frame is given by:

ERPE
i =

(
(Tgt

i )
−1Tgt

i+1

)−1 (T−1
i Ti+1

)
. (2)

Taking the translational or rotational part of ERPE
i

we obtain the translational RPEt(i) or the rotational
RPEθ(i), respectively. The RMSE of the RPEt or RPEθ

metrics for the whole trajectory are computed from
the respective part of (2) for all nodes.

Although in this experimental study we focus on
the accuracy of robot trajectory estimation, the accu-
rate information about the pose is usually not enough
for robot operation. Unfortunately, the sparse maps
generated by feature-based SLAM cannot be used for
motion planning or object recognition. Thus, separate
densemapping frameworks areused [38], typically re-
lying for data registration on the accurate pose esti-
mates from SLAM. Therefore, to demonstrate that the
achieved localization accuracy is sufϐicient for dense
environment mapping we produce textured triangle
mesh 3-Dmaps from all the RGB-D sequences used for
trajectory recovery.

The dense maps are computed using the FastFu-
sion system described in [32]. FastFusion uses the
octree data structure, which efϐiciently represents the
volumetric data at different scales, as in the OctoMap
algorithm [15]. However, in contrast to the OctoMap
framework voxels are created only in a narrow band
around the surface of the observed objects, whichma-
kes the map much more compact and allows it to
grow dynamically as new RGB-D frames arrive. This
approach runs in real-time on a standard CPU,without
any hardware acceleration, whichmakes it well suited
for mobile robots with limited computational power.
Map visualization in FastFusion is based on a triangle
mesh generated from the Signed Distance Function
[8], which is continuously updated within the octree
representation. The trianglemesh is computed in a se-
parate thread to enable real-time rendering.

4. Experimental Results
Results of the ϐirst experiment provide a reference

for the tests based on data obtained from mobile ro-
bots. In this experiment, all SLAM systems using point
features (PUT SLAM, ORB-SLAM2, CCNY_RGBD, RGB-
D SLAM v2) correctly recovered the sensor trajectory
with ATE error within 10 cm (numerical results are
presented in Tab. 1). SLAMarchitectures using optimi-
zation of amap of features, i.e. PUT SLAM (Fig. 5b) and
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ORB_SLAM2 (Fig. 5c) achieved very high trajectory es-
timation accuracywithATEerror at the level of the un-
certainty in the Kinect sensor measurement range.

a b

c d

e f

Fig. 5. EsƟmated trajectories for
fr3_long_office_household: RGB-D VO (a), PUT SLAM
(b), ORB-SLAM2 (c), CCNY_RGBD (d), RGB-D SLAM v2
(e), KinFu LS (f)

The slight advantage of the ORB-SLAM2 system re-
sults probably frommore accurate feature localization
through the modiϐied, multi-scale ORB detector. Both
feature-based systems, that do not use feature map
optimization, the CCNY_RGBD relying on Kalman ϐil-
tering (Fig. 5d), and the RGB-D SLAM v2, which uses
pose graph optimization (Fig. 5e) recorded larger er-
rors,what demonstrates the beneϐits of the BA-like ap-
proach that jointly optimizes the sensor poses and the
feature positions. The KinFu Large Scale system (he-
reinafter called KinFu LS), despite the small ATE er-
ror at the beginning of the run, was not able to reco-
ver the entire trajectory, losing sensor tracking during
the dynamic motion of the sensor (this point is mar-
ked by the arrow in Fig. 5f). The trajectory was enti-
rely recovered by the simple RGB-D VO system (Fig.
5a), for which, however, the accumulating drift led to
very large ATE error, while the translational RPE is
still comparable to the results of the other systems.

The second experiment using data from awheeled
robot revealed the role of loop closing in the SLAM ar-
chitecture. Visual odometry, despite the efϐicient ma-
tching of successive frames (small RPEt, Tab. 1) pro-
duced large ATE error caused by the drift (Fig. 6a). A
similar ATE value was observed for the CCNY_RGBD
(Fig. 6d), what suggests that the pose correction for
measurements of individual features without optimi-
zation of thewholemap ismuch less effective than the
optimization-based approach for amapencompassing

a larger area,where feature re-observations take place
after accumulating a signiϐicant trajectory drift. The
RGB-D SLAM v2 was not able to recover the whole
trajectory in this experiment. This system stopped to
track features at the place, where the incoming RGB
frames were characterized by a small number of fea-
tures (the place is marked by an arrow in Fig. 6e). Ho-
wever, while processing next frames the RGB-D SLAM
v2 detected a loop closure when the robot entered the
area near the start position, and then resumed sen-
sor tracking (Fig. 6e). The ATE value for the entire tra-
jectory is, in this case, unreliable and was omitted in
Tab. 1. The PUT SLAM system (Fig. 6b) achieved ATE
of about 10 cm using the BA-like architecture, wit-
hout explicit loop closures. However, in this case, ORB-
SLAM2 (Fig. 6c) achieved a deϐinitely better trajectory
estimation accuracy. This result is caused by two fac-
tors – the use of explicit, appearance-based loop clo-
sure detection, which allowed this system to correct
the trajectory in its ϐinal fragment, and the ability to
exploit features without associated depth data, which
enabledORB-SLAM2 touse very distant features in the
large room. The KinFu LS system (Fig. 6f) recovered
only a part of the trajectory, breaking off tracking at
the ϐirst turn.

c d

ba

e f

Fig. 6. EsƟmated trajectories for putkk_1 sequence:
RGB-D VO (a), PUT SLAM (b), ORB-SLAM2 (c),
CCNY_RGBD (d), RGB-D SLAM v2 (e), KinFu LS (f)

The third experiment allowed us to determine the
robustness of the investigated systems to the pro-
blems related to sudden sensor motions, in this case,
caused by the discrete nature of the legged robot mo-
tion and the unavoidable slippages. The blurred RGB
images frequently caused inaccurate sensor motion
estimation between successive frames. In the case of
the simple RGB-D VO, this effect caused the recon-
struction of an entirely wrong trajectory (Fig. 7a).
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Tab. 1. Comparison of absolute trajectory error (ATE RMSE) and relaƟve pose errors (RPE RMSE) for the evaluated
systems

Localization exp. 1 exp. 1 exp. 1 exp. 2 exp. 2 exp. 2 exp.3 exp.3 exp.3
system RPEt [m] RPEθ [◦] ATE [m] RPEt [m] RPEθ [◦] ATE [m] RPEt [m] RPEθ [◦] ATE [m]
RGB-D VO 0.025 10.95 1.098 0.011 0.45 0.612 0.514 22.99 1.384
PUT SLAM 0.009 0.59 0.023 0.016 0.33 0.104 0.041 5.66 0.069
ORB-SLAM2 0.004 0.25 0.009 0.004 0.12 0.018 – – –
CCNY_RGBD 0.028 1.07 0.106 0.033 1.95 0.529 0.118 6.39 0.307
RGB-D SLAM v2 0.030 9.8 0.095 – – – 0.116 10.54 0.210

Also, the ORB-SLAM2 was unable to recover the full
trajectory, losing sensor tracking after the ϐirst sharp
turn, when a sequence of successive blurred RGB ima-
ges appears in the data (Fig. 7c). The ORB-SLAM2 sy-
stem uses only the image re-projection error while es-
tablishing the constraints in the map (like monocular
SLAM), ignoring the depth data. This causes increa-
sed sensitivity to such factors as motion blur and rol-
ling shutter. The PUT SLAM system, always using full
RGB-D data, recovered the entire robot trajectory (Fig.
7b). Also, the CCNY_RGBD (Fig. 7d) and RGB-D SLAM
v2 (Fig. 7e) were successful, but in their case, ATE er-
rors were signiϐicantly larger. The KinFu LS system
does not use point features, so RGB image blur does
not have any impact on its performance. However, also
this time KinFu LS did not recover the entire trajec-
tory, losing the ability to track sensor at the ϐirst turn
(Fig. 7f).

e f

a b

c d

Fig. 7. Trajectories esƟmated for the messor2_2
sequence: RGB-D VO (a), PUT SLAM (b), ORB-SLAM2
(c), CCNY_RGBD (d), RGB-D SLAM v2 (e), KinFu LS (f)

The ATE trajectories and the numerical results
summarized in Tab. 1 are supplemented by the qua-
litative analysis of dense mapping results. We show
the FastFusion maps produced from the RGB-D data
registered by PUT SLAM in Fig. 8. Although no scene

geometry ground truth (such one as provided in [14])
is available for the used sequences, the well-deϐined
object shapes and sharp edges in these maps indicate
the accuracy of the sensor trajectory estimation. This
accuracy suggests that dense maps registered with
PUT SLAM trajectories could be used to support vari-
ous tasks of the mobile robot in all the conducted ex-
periments3.

5. Conclusions
The presented experiments4 have shown that not

all RGB-D SLAMarchitectures considered as represen-
tative for the state-at-the-art are dealing well with the
data collected under real working conditions of a mo-
bile robot. Most important problems were caused by
sudden and unpredictable motions of the sensor, par-
ticularly in the walking robot experiment. Dynamic
motion usually invalidates common assumptions as to
the availability of point features precisely located on
images (because of motion blur), and as to the mathe-
matical motion model used to predict the sensor pose
(as the one used in ORB-SLAM2). Problems speciϐic to
the second experiment in a large room were frames
lacking point features because of the character of the
environment (white walls) or due to the insufϐicient
Xtion’s depth measurement range. The SLAM archi-
tecture exploiting dense depth data – KinFu LS tur-
ned out to be extremely unreliable for robot localiza-
tion. This approach was designed mostly for augmen-
ted reality applications and does not cope well with
fast sensor/robotmotion (especially sharp turns). Ap-
parently, if the distances between the incoming depth
images are too large, the ICP-based approach cannot
match correctly thenew frames to the volumetricmap.

In comparison with other systems, PUT SLAM has
shown its effectiveness in all experiments. The fast
VO subsystem allowed for more accurate tracking of
the sensor poses than themathematicalmotionmodel
in the cases when the motion was difϐicult to predict,
e.g. for the walking robot (slippages, body vibrations).
Also the relatively sudden view changes while turning
(the second experiment) were not a challenge. Howe-
ver, in the simpler cases, the PUT SLAM gives way in
the trajectory estimation accuracy to the ORB-SLAM2
system. Further development of PUT SLAM will, the-
refore, aim at implementing loop closures based on
appearance-basedplace recognition, and at improving
themanagement of point features, in order to limit the
uncertainty of their location in themap [6]. In the furt-
her research, we will also consider the use of features
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a

b

c

Fig. 8. FastFusion textured triangle mesh produced
from RGB-D frames registered by PUT SLAM:
fr3_long_office_hausehold (a), putkk_1 (b), and
messor2_2 (c)

without depth information, which can be substantial
in practical applications, due to the limited range of
the commercially available RGB-D sensors.
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[32] F. Steinbrücker, J. Sturm, D. Cremers, ”‘Volume-
tric 3D mapping in real-time on a CPU”. In:
Proc. IEEE Int. Conf. on Robotics & Automation,
Hong Kong, 2014, 2021–2028. DOI: 10.1109/I-
CRA.2014.6907127.

[33] H. Strasdat, J. M. M. Montiel, A. J. Davison,
”Visual SLAM: Why ϐilter?”, Image and Vision
Computing, vol. 30, no. 2, 2012, 65–77. DOI:
10.1016/j.imavis.2012.02.009.

[34] H. Strasdat,Local accuracy andglobal consistency
for efϔicient visual SLAM, PhD Dissertation, Impe-
rial College, London, 2012.

[35] J. Sturm, N. Engelhard, F. Endres, W. Burgard,
D. Cremers, ”A benchmark for the evaluation
of RGB-D SLAM systems”. In: Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems,

Vilamoura, 2012, 573–580. DOI: 10.1109/I-
ROS.2012.6385773.

[36] B. Triggs, P. F. McLauchlan, R. I., Hartley, A. W.
Fitzgibbon, ”‘Bundle adjustment – a modern
synthesis”, In: Vision Algorithms: Theory and
Practice, LNCS 1883, Springer, 2000, 298–372.
DOI: 10.1007/3-540-44480-7_21.

[37] T. Whelan, M. Kaess, H. Johannsson, M. Fal-
lon, J. J. Leonard, J. B. McDonald, ”Real-time
large-scale dense RGB-D SLAM with volu-
metric fusion”, Int. Journal of Robotics Rese-
arch, vol. 34, no. 4–5, 2015, 598–626. DOI:
10.1177/0278364914551008.

[38] A. Wilkowski, T. Kornuta, M. Stefańczyk, W. Kas-
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