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Abstract:

Reaction and driving forces may be non-unique in many
robotic systems. This may pose a problem during robot
design or its control synthesis. Hence, it is useful to de-
tect which reaction or actuation forces are non-unique.
Previously developed methods are designed for reactions
uniqueness analysis only. These methods studied the con-
straint Jacobian matrix. The kinetostatics-based appro-
ach, presented in this paper, enables the simultaneous
study of reactions and driving forces uniqueness. It allows
the application of the criteria derived from the concepts
of linear algebra, e.g. direct sum or nullspace. In this pa-
per only the nullspace method is presented. Moreover, in
order to illustrate the approach, five examples are provi-
ded.

Keywords: kinetostatics, nullspace method, uniqueness
analysis

1. Introduction

Redundant systems are commonly used in robo-
tics. In this field, redundancy is often considered from
the task point of view. This approach defines redun-
dant systems as structures which have more degrees
of freedom (DOFs) than are needed to perform a spe-
cific task [2,25]. Some interesting examples of redun-
dant manipulators are shown in [2], e.g. human-arm-
like manipulators, DLR lightweight robot or - of par-
ticular interests - hyperredundant manipulators. Ap-
parently, in such cases, reaction and drive unique-
ness analysis may be very useful. However, redun-
dancy in robotics may be defined in another ways [3].
In our article, a more general - structural - appro-
ach is used. In the present paper we treat all consi-
dered mechanisms as constrained multibody systems,
and the system is regarded as redundant (overcon-
strained/redundantly constrained) if it has at least
one redundant constraint. This approach is used, e.g.
in [4,7,20]. It is worth noting that task and structural
approaches may be equivalent in some cases.

Mechanical systems (including the redundant
ones) may be composed of rigid or flexible bodies.
This paper is devoted to rigid body systems only. Ri-
gid body assumption, commonly adopted in analysis of
robotic systems, exhibits certain limitations. Joint re-
action forces in some robots treated as mechanical sy-
stems of rigid bodies cannot be uniquely determined
by standard methods of dynamic or kinetostatic analy-
sis. This feature of redundant systems results entirely
from the structure of such mechanisms, and thus does

not depend on coordinates describing the considered
system [7,19-23]. Moreover, it should be pointed out
that redundantly constrained multibody systems are
also problematic in modelling, i.e. special approaches,
invulnerable to Jacobian matrix rank deficiency, must
be adopted - see, e.g. [11,12].

The problem of non-uniqueness of reactions in me-
chanisms (modeled as rigid multibody systems), e.g.
in robotic manipulators, is an important but often ig-
nored issue. Reaction non-uniqueness may be the rea-
son for incorrect results received from simulations. To
obtain the correct results in such cases, the considered
system should be modeled as deformable [7, 19-23].
Unfortunately, an analysis of flexible systems involves
much larger modelling effort and higher computatio-
nal cost [7,19-22].

However, some joint reactions may be uniquely de-
termined despite the non-uniqueness of the global re-
action solution [7, 19-23]. There are methods which
allow to determine unique reactions (if such exist) in
the redundant robots. These methods use two con-
cepts of the linear algebra - direct sum [7,19-23] and
nullspace [4,5]. Such methods analyze Jacobian matrix
of constraints. Moreover, they are limited to systems
described in absolute (Cartesian) or natural coordina-
tes, because for such coordinates, the Jacobian matrix
describes all the joint constraints simultaneously, and
consequently, all the joint reactions. Note that this pa-
per is devoted to presentation of a method which uses
nullspace approach and is based on a kinetostatics for-
mulation.

In this paper, the related issue is also discussed -
the analysis of uniqueness of driving forces. The pro-
pulsion non-uniqueness is usually introduced intenti-
onally, e.g. in order to eliminate gear backlash and cle-
arances [18], in order to improve the performance of
the system [24] or in order to reduce torques acting in
kinematic joints [8]. In such cases, it is usually known
in advance, which driving forces are non-unique. Mo-
reover, it is worth to point out that, using the presen-
ted method, driving force uniqueness problem may be
studied together with reaction uniqueness test.

As mentioned before, the considered method is
based on kinetostatics. It uses a free-body diagram
(FBD) [1]. Such approach allows to analyze rigid sy-
stems described in any set of coordinates (which
was not possible when the previous approach to re-
action analysis was used). It is worth noting that the
kinetostatics-based method was considered in a series
of conference publications [10, 13, 14]. This particular
article is an extension of the 14" National Conference
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on Robotics paper [10].

In order to illustrate the method, five examples of
rigid redundant robotic systems are considered: three
cases of a gripper [7, 9, 19] (without actuation, ac-
tuated and overactuated), a redundant manipulator
[9] and an overactuated redundant manipulator. Note
that the presented systems are not in singular positi-
ons, and the friction is neglected.

The structure of this article is as follows. Section 2
presents the kinetostatic method, section 3 formulates
the uniqueness criterion based on nullspace, section 4
shows the practical examples, and section 5 contains
conclusions.

2. Kinetostatics

Starting point for considerations is the formula-
tion of kinetostatics equations. In order to perform
this task, the considered system is virtually decompo-
sed into a set of unconnected bodies. Then, active for-
ces (actuation and external loads) and passive forces
(joint reactions) acting on all the bodies are introdu-
ced. This produces a free-body diagram (FBD) of the
system [1]. Subsequently, a set of equilibrium equa-
tions for all the bodies is written. Eventually, the set
of m equilibrium equations is obtained (where m = 3p
for planar systems or m = 6p in spatial cases, and pisa
total number of the bodies in the considered system).
For the body 7, these equations have the following form

Fy; +F; + Z Z(Sjik +Fgjir) =0
k J

Z Z[f'k(sjik +Fajin) +Mjip +Mgjiz] + (1)
E 7
+Tc;(Fp; +F;) +My; +M; = 0,

where the first equation of this set is the equation of
forces equilibrium, while the second is the equation of
torques equilibrium. Moreover, ¢ € {1,2,...,p} is an
index specifying the body, j € {0,1,...,p}: j # ¢
is an index describing the remaining bodies (where
the base of the system is taken into account and it
is denoted 0), k is an index depicting the joint, S;;;
and M;;;, are the reaction force and reaction torque
(that body j exerts on body ¢ in the joint k), respecti-
vely. Fy; and M;; are the inertia forces of the body
i (force and torque, respectively), Fg;;; is a driving
force, My;;1, is a driving torque, F; is a vector contai-
ning the remaining external forces reduced to the cen-
ter of mass of the body ¢, M; is a sum of the other ex-
ternal torques acting on the body i, while rj and r¢;
are skew-symmetric matrices associated with the po-
sition vectors of the joint £ (r;) and the center of mass
of the body ¢ (r¢;), respectively. Note that the skew-
symmetric matrix (for any vector r = [r, 7, r.]7) is
defined as

0 -7, 1y
r= r, 0 —ry |. (2)
—Ty Tz 0

It should be pointed out that the equilibrium equa-
tions contain unknown reaction forces (which are re-
sponsible for the effect of the constraints) and driving

forces. Note that the uniqueness of these two compo-
nents will be studied. Subsequently, the equilibrium
equations may be rewritten in the following form

Amxnxnxl = brn><17 (3)

where column vector X,,»; contains unknown reacti-
ons and driving forces (S;ix, Mjik, Faji and Mg;;r),
A« is a coefficient matrix containing the geometry-
related quantities (ry and r¢;), and b, includes
the remaining forces. Moreover, system of equations
(3) takes into account that S;; = =S5, My = -M,jz,
Fajir = -Faijr and Mg, = -Mg;,. It is worth noting
that the uniqueness of selected components of vector
x will be determined by examining matrix A and its
submatrices. Therefore, there is no need to compute
vector b.

3. Nullspace Method

To verify whether the studied component (or a set
of components) of vector x is uniquely determined, the
following procedure may be performed.

1) Determine the nullspace basis of matrix A,,,.,. This
step leads to a nullspace matrix N,,,_,) which
contains the set of independent vectors spanning
the nullspace [15, 16]. Note that matrix N may be
obtained using, e.g. Gauss-Jordan Elimination or
Singular Value Decomposition (SVD) [16]. More-
over, it may be pointed out, that in well-known
MATLAB® environment, the nullspace basis may
be computed using function null, which uses SVD
[17]. Note also that if the nullspace contains only
zero vector (nullspace matrix N is empty), then the
solution of the linear equation is unique. Other-
wise, nonzero rows of matrix N indicate the exis-
tence of non-unique reactions or drives. It is use-
ful to point out that empty nullspace matrix occurs
in the case of non-redundant system with unique
drives. For such systems it is not necessary to per-
form the uniqueness analysis presented in this pa-
per, because all its reactions and drives are unique.

2) Select a subset of unknowns S={z,},
ne{l,...,n} for the uniqueness test. Note
that this subset will be named studied element
further. For the studied element, suitable sub-
matrices are specified, i.e. vector xg containing
components z,, submatrix Ag corresponding to
X5 (and formed from the columns of matrix A) and
submatrix Ng created analogously, but from the
rows of nullspace matrix N.

3) Check an orthogonal condition in the form
AsNg =0. 4)

If this condition is fulfilled, a linear combination
Asxs =bg is uniquely determined (which cannot
be transferred directly to the uniqueness of xg).

4) Examine the rank of submatrix Ag. If this subma-
trix has full rank, then xg may be uniquely determi-
ned (because Agxg = bg has exactly one solution).
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In the examples described below, the rank of ma-
trix Ag is determined, however usually it is no need
to designate its rank in fact. Note that in the most of
quite common cases it can be proved, that the exami-
ned submatrix Ag will have full rank. In the examples
considered in this paper, appropriate selection of the
studied components of xg (which are linearly inde-
pendent) always causes the full rank of submatrix Ag.
Hence, the uniqueness of Agxg implies the uniqueness
of vector xg.

4. Examples

In order to verify our method, five examples of ro-
botic systems are provided: three introductory exam-
ples of a planar gripper [7,9, 19], a redundant mani-
pulator [9] and an overactuated redundant manipula-
tor. Firstly, for each example, figures presenting struc-
ture and free-body diagram (FBD) are shown, follo-
wed by a brief description of the system and the con-
figuration, in which the uniqueness is analyzed. Sub-
sequently, vector X, coefficient matrix A and the struc-
ture of nullspace matrix N are shown and discussed.
Presentation of the obtained results concludes each
example.

4.1. Gripper without Actuation

The first of the considered examples is a planar
gripper, similar to the mechanism previously conside-
red in [7,9,19], i.e. its structural diagram is the same.
The kinematic scheme of this system is presented in
Fig. 1, and its FBD is shown in Fig. 2. The considered
mechanism consists of four rigid bodies connected by
six joints. Note that three of the joints are revolute, and
the remaining three kinematic pairs are translational.
Moreover, the system has only one degree of freedom
(DOF), which is not actuated in this case. This example
is considered in order to show that our method may
be applied when only reaction uniqueness analysis is
performed. Note that it is analogous to the previous
method of reaction uniqueness analysis, based on the
study of constraint Jacobian matrix (see, e.g. [7,19]).

Fig. 1. Kinematic scheme of the gripper

Itis assumed that the system is in the position des-
cribed by 4 = - rad (see Fig. 1).

Fig. 2. Free-body diagram of the gripper without
actuation

This is the first example, hence the algorithm will
be presented in detail, i.e. step by step.

After creating the FBD (presented in Fig. 2), the
equations of kinetostatic equilibrium may be written
as (see eq. (1)):

- for body 1

[9] So1pt - [1] S120t -S135r +Fo1 = 0
e [0] Souse Foe [1] S12pt ForSispr + (5)
+Mo1Bt -Mi2p¢ +Tc1Fp1 + My =0

for body 2

(o] Sozct + [1] Si2pt -S2acr +Fir2 =0
foi [ o] Sozct +Fpe [ 1] Siz2pe -ForSaacr + (6)
+Moact +Miapt +Fo2Fug + Mz =0

- for body 3
S13Br -S34pr tFp3 =0 %
IB,S13Br -TErS34p, +Fc3Fy3 +Myz3 =0

- for body 4
Soscr +8S34Er tFps =0 )
ForSaacr T ErS3apr +FcaFpa +Mps =0

where So15¢:, So2c+ and Siap; are translational joint
reaction values, which are perpendicular to axes of the
joints. Moreover, index k is written with two charac-
ters. The first of them represents the position point of
the joint, while the second means its type. For exam-
ple, S345, means the reaction force acting from body
3 to 4 in a joint located at a point E, which is revo-
lute (note that the following abbreviations are used
in order to specify the type of the joint: 7 - revolute
joint, ¢ - translational joint, ¢ - cylindrical joint). Auxi-
liary vectors: [01]", [11]" and [1 0]" are used in or-
der to define directions of the appropriate reaction
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forces. Moreover, in the case of planar systems, skew-
symmetric matrix is replaced by a row vector defined
as f‘l = [—’I“iy Tiw], where r,= [Tm ’I“iy]T

These equations should be written in the matrix
form specified by eq. (3). Hence, it is useful to assem-
ble them in one set of equations as

[9] So1pt - [1] S120t -S138r = -Fun

(0] So2ct + [1] S12pt -S2acr = “Feo

S138r -S3apr = -Fp3

Soacr +S34Er = -Foa

i [V] Soise Foe [1] S12pt “FBrS13mr +Moipe +
-Miape = -Fc1Fp1 -Mypy

fci (3] Soact +Fpe [1] S12pt -ForSaacr +Moacr +
+Miaps = -Te2Fee -Mpo

r5:S138r TErS34Er = -To3Fp3 -Mpz

IorSoacr *TErS3apr = -ToaFpa -Mps

9)

Note that these equations are arranged such that
on the top, there are equations of forces equilibrium,
while on the bottom - equations of torques equili-
brium. Obviously, the order of these equations may be
arbitrary. Moreover, on the left-hand side of the set,
there are components containing unknowns, while on
the right-hand side, there are the remaining compo-
nents.

These equations may be written now in the matrix
form (3). In the further considerations, only vector of
unknowns x and coefficient matrix A (corresponding
to x) are used (and consequently, right-hand side vec-
tor b is omitted). In this example, vector of unknowns
x has the following form

X121 = [So1mt So2ct S12pt Sizpr Sacr
T
Siipr Moipe Mozce Miopi] . (10)
while coefficient matrix Ajsx;2 is defined as
[}]  02a  -[1]

00 [o]  [i]
021 02 02

Iox2 0252 0242 0251 0251 0251
022 ~Ix2 0252 0251 0251 0251
Ioo 022 -I2y2 021 0251 02x1

021 020 02 020 Inee Ioxo 02410241021

s [0 0 Fpe[l] FBr0be O0ne 1 0 -1

0 Foi[p] Foe[]] One ForOpe 0 1 1

0 0 0 g, O T 0 0 O
0 0 0 Ouefer Fgr 0 0 0 |
(11)

where 0;; is a zero matrix of size ¢ X j, and Iy is
an identity matrix of size 2 x 2. That matrix has rank
r(A) =11
The nullspace matrix N1ox; (which represents the
nullspace basis of matrix A) has the following struc-
ture
N=[0po o o o, (12)

where e is introduced to denote non-zero elements of
matrix N. Note that the structure of nullspace matrix
N is given only, because its values may be different de-
pending on an algorithm used for its calculation.

Now, it is necessary to select studied elements. In
Tab. 1 the studied elements, their components and the
columns of coefficient matrix A used to create subma-
trices Ag are presented. Hence, it is possible to create
the suitable submatrices Ag and Ng, and check ortho-
gonality condition (4). In Tab. 2 the obtained results
are presented. Note that, in the column 'Result’, two
abbreviations are used: ‘U’ informing that the studied
element is unique and ‘N’ indicating non-unique ele-
ment. As mentioned earlier, column 'Rank of Ag’ was
added only to complete the presentation, because the
method of analysis guarantees full rank of submatrix
Ag, so the uniqueness of linear combination Agxg im-
plies uniqueness of vector xg (describing studied ele-
ment).

Tab. 1. Studied elements of the gripper without
actuation

Studied element | Elements of x COh_lmnS
forming Ag
Reaction Bt So1Bt, Mo1Bt 1,10
Reaction C't So2ct) Mooci 2,11
Reaction Dt S12pt, M1ap¢ 3,12
Reaction Br Si3Br 4-5
Reaction C'r Soucr 6-7
Reaction Er S34rr 8-9

Tab. 2. Results of the analysis of the gripper without
actuation

Crite-
Studied element I‘(lZ;’l (I:-){fa Xls( Result
value
Reactions: Bt, Ct, Dt #0 2(full)
Reactions: Br, Cr, Er =0 2(full) U

Note that in this example, uniqueness of reactions
is not easy to guess. Eventually, it turns out that the
reactions in revolute joints are unique, while in trans-
lational joints the reactions cannot be uniquely deter-
mined. Note that it is consistent with the previous pu-
blications [7,19].

4.2. Actuated Gripper

The second example discusses an actuated planar
gripper. The investigated mechanism is the same as in
the previous example, however, the actuation torque
is introduced into the revolute joint C'r. Hence, the ki-
nematic scheme of this system is the same as previ-
ously, and it is shown in Fig. 1, whereas the FBD of the
actuated gripper is presented in Fig. 3.

It is assumed that the system is in the same posi-
tion as previously. In this example, vector of unkno-
wns X can be written as (note the driving torque re-
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Fig. 3. Free-body diagram of the actuated gripper

presented by the last component of x)

_ T T
Xi13a = [So1Bt So2ct Si20t Sizp, Sascy

T
Siimr Mois:e Moact Miape Mazacy] - (13)

For this vector, coefficient matrix Aj2,q 3 is created.
Since the first 12 elements of vector x are the same
as in the previous example, the first 12 columns of A
are identical to the coefficient matrix from the previ-
ous example (hence, these columns are not repeated
here). The last column of the new coefficient matrix A
has the following form

Ajs=[0p9 -1 0 1]7. (14)

Note that this matrix has rank r (A) =12, and null-
space matrix N3, corresponding to A has the struc-
ture

N=[0o o o o 0. (15)

In Tab. 3 data analogous to those in Tab. 1 are pro-
vided, i.e. the studied elements, their components and
the columns of A used to form submatrices Ag. More-
over, Tab. 4 contains the results. As expected (since

Tab. 3. Studied elements of the actuated gripper

Studied element | Elements of x Coll.lmns
forming Ag
Reaction Bt So1Bt, Mo1Bt 1,10
Reaction C't Soz2ct, Mooci 2,11
Reaction Dt S120t, M1apt 3,12
Reaction Br Si3B: 4-5
Reaction C'r Soscr 6-7
Reaction E'r S34Er 8-9
Drive Cr Maoacr 13

the system has one DOF and one drive), driving force

Tab. 4. Results of the actuated gripper analysis

Crite-
Studied element r(lz)rl (P){fa Xl; Result
value
Reactions: Bt, Ct, Dt #0 2(full)
Reactions: Br, Cr, Er =0 2(full)
Drive Cr =0 1(full)

in joint C'r is identified by the algorithm as uniquely
determined. Moreover, uniqueness analysis of reacti-
ons gave the same results as in the previous example.
Hence, the algorithm may be used also for actuated
rigid-body mechanisms.

4.3. Overactuated Gripper

The third example presents a study of an over-
actuated planar gripper. The mechanism is the same
as in the previous examples. Therefore, the kinematic
scheme did not change and is presented in Fig. 1. An
actuator is added in the translational joint B¢, which
makes the 1-DOF system redundantly actuated. Note
that the FBD of the gripper had to be modified (the ad-
ditional force is applied to body 1), and it is shown in
Fig. 4.

Macr M
b4

Fig. 4. Free-body diagram of the overactuated gripper

It is assumed that the system is in the same posi-
tion as in the previous examples, and vector of unkno-
wns X has the following form

Xiaa = [So1e So2ct S12pt Sispr Saacr Ssumr
Moyt Moaci Mispi Masacr Faopil” , (16)

where Fyp1p: is a value of driving force applied in
translational joint Bt (this force is parallel to the axis
of the kinematic pair).

The coefficient matrix A is of size 12 x 14. Its first
13 columns are the same as the whole matrix A from
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the previous example while the 14™ column may be

T T T
0 r O
0 1x6 Bt O 1x3

Moreover, the rank of matrix A is r (A) =12. The
nullspace matrix N2, corresponding to A, has the
following structure

A= (17)

N=[0q N|”, (18)

where Nj is a submatrix of size 2 x 13 which contains
nonzero elements. Note that precise values of these
matrices are not presented, since (as in the previous
examples) they may be different.

Tables 5 and 6 contain the data used for the uni-
queness analysis and the results, respectively. As ex-

Tab. 5. Studied elements of the overactuated gripper

Studied element | Elements of x fo(:r(r)rlllilrrlr;n[ig
Reaction Bt So1Bt Mo1Bt 1,10
Reaction C't So2ct, Mooac 2,11
Reaction Dt S12pt, M12pt 3,12
Reaction Br Si3B- 4-5
Reaction C'r Soucr 6-7
Reaction E'r S34Er 8-9

Drive C'r Maoacr 13
Drive Bt Fa01Bt 14

Tab. 6. Results of the overactuated gripper analysis

Criterion Rank of
Studied element (4) Result
As
value
Reactions: Bt, Ct,
Dt, Br,Cr, Er 70 2(full) N
Drives: Cr, Bt #0 1(full) N

pected, driving forces in joints Cr and Bt are non-
unique. Moreover, the additional driving force caused
the non-uniqueness of all the reactions, which is an
interesting outcome. Note that the change in the re-
action uniqueness is caused by overactuation.

4.4. Redundant Manipulator

To show that the kinetostatic method is also appli-
cable to spatial systems, a redundant manipulator (ta-
ken from [9]) is examined. Kinematic scheme of this
system and its FBD are shown in Figs. 5 and 6, re-
spectively. The mechanism consists of seven bodies
connected by nine joints (seven revolute and two cy-
lindrical). The manipulator has three DOFs.

Fig. 5. Kinematic scheme of the redundant manipulator

The study of uniqueness of reaction and dri-

ving forces is conducted in the position, where

T Jis 5717
q= [po1 P12 P23 = [0 37 F]

Assume that z is the axis of rotation of the kine-
matic pair. Hence, it is possible to make the use of
facts that for a revolute joint M}, = [OOM(’fljkz]T,

for a cylindrical joint ka—[Sljkr Sfixy 07 and

Fii. =00 Fj ;.17 while for both types of the joints

(revolute and cylindrical) M, = [M},  MF, 0]". As

a result, vector of unknowns x has the following form

rad.

_ T Ar Ar T Br
X46x1 = [Somr Mo are MOlA'ryl Siur MiiBrs

14Bry| 51207 M12CT"I‘ 12Cry| S25D’I" M25Drr 25D7y|

Er Er Fr Fr
S23E7‘ MQSET:I: MZSET’L/' SZGFT M26Fr:z: M26F7‘y| Sd?Gr

Hc
M 7G7‘J,

7Gry| S45H(‘ac S45H('y 45H cx 5H('y| Sﬁ?l(‘x

T
SG?I(:y M67Ic:c M67clcy‘ MdOlArz| Fd4gH(:z| Fd67Icz] ’
(19)

where | is a separator introduced to improve readabi-
lity.

Coefficient matrix Agoxs6 has rank r (A) = 42. Be-
cause of the large size of this matrix, only the rows for
body 1 are presented here. The rows corresponding to
the equations of equilibrium of forces may be written
as

A6 = 3 030 -Isg 030 -Isg 0sa3), (20)

where I3, is an identity matrix of size 3 x 3. The rows
corresponding to the equations of equilibrium of tor-
ques have the form

[fAr RE)MZ 'fBr -ROBTZ -f'cr
-R$,z 0305 RO,W 030], (21)

1M _
A3><46 -
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SZéFr

Yo\ )
b6 -Sg7e M., . M;oc,

'Fd45Hc

S12Cr

Fig. 6. Free-body diagram of the redundant
manipulator

where z= [ u v |, is a matrix composed of ver-

3X2
sorsu=[100]" and v=[010]7, RY is a rotation ma-
trix that transforms the coordinates form the global to
the local coordinate system associated with joint & [6].
Note that the remaining rows of matrix A are created
analogously, by writing the equilibrium equations for
all the other bodies. Subsequently, the corresponding
nullspace matrix N has size 46 x 4. This matrix has the
following structure

N=[046 Ni 041 N2 O4q N3 04 Ny Ogq Ns
041 Ng 041 N7 0451 Ng 0451 Ng 0451 N1g 0451
Ni1 04 Nig 040 Nig 00 Npy Ops]” . (22)

where N;, :=1,2,...14 are submatrices containing
nonzero elements (analogously to the previous exam-
ple). Moreover, these matrices are of sizes: (N1)ax1,
(N2)ax2, (N3)axa, (Na)axe, (Ns)axa, (Ne)axe, (N7)ax,
(Ng)ax2, (No)asct, (N10)ax2, (N11)axt, (N12)ax3, (N13)ax2,
(N14)ax1-

Tab. 7 shows studied elements, their components
and columns used to create submatrices Ag. The re-
sults of the procedure are presented in Tab. 8. Note
that these outcomes are consistent with intuition, i.e.
the uniqueness of the driving forces results from their
obvious linear independence, while the uniqueness of
reaction in the revolute joint located at point A results
from the fact thatitis a total reaction between the base
and the manipulator. Hence, it must be also uniquely
determined.

Tab. 7. Studied elements of the redundant manipulator

Studied Columns
Elements of x .
element forming Ag
. So1.4r MG\
Reaction Ar 01’?\}14, OlArz 1-5
01Ary
) , MBr ,
Reaction Br 5145];\}& 14Brz 6-10
14Bry
Cr
Reaction C'r Smcj\}é\:’[ucm’ 11-15
12Cry
S25Dr)
. D -~
Reaction Dr My, o 16-20
MZDSTDTy
. S , ME
Reaction Er 23}5\}& 23Bre 21-25
23Ery
Fr
Reaction Fr | S26Fr %%FW 26-30
M26Fry
. Sararm MG,
Reaction Gr 871G - 87Gra 31-35
‘]\/[37G7'y
Sﬁ)(j{cr’
SHc
Reaction He AoHey 36-39
M4]3ch'
(&
M45Hcy
I I
SG?Icm' SG?Icy'
Reaction I¢c M. 40-43
I -
M67CIcy
. A,.
Drive Ar Mt ars 44
: He
Drive Hc Fiitmes 45
. I -
Drive Ic Fi6ores 46

Tab. 8. Results of the redundant manipulator analysis

Criterion Rank of
Studied element (4) A Result
value S
Reaction Ar =0 5(full) §)
Reactions: Br,
Cr, Dr, Er, Fr, #0 5(full) N
Gr
Reactions: He, Ic #0 4(full)
Drives: Ar, He, Ic =0 1(full)
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4.5. Overactuated Redundant Manipulator

The last example discusses an overactuated redun-
dant manipulator. Kinematic scheme of the manipula-
tor is presented in Fig. 7, and its FBD is shown in Fig.
8. The considered system was created by adding a sup-
plementary actuator (consisting of bodies 8 and 9) to
the redundant manipulator examined in the previous
example. Hence, the redundancy of drives is introdu-
ced, since the two actuators (4-5 and 8-9) are parallel
to each other.

Fig. 7. Kinematic scheme of the overactuated
redundant manipulator

The uniqueness test is performed in the same posi-
tion as for the manipulator from example 4.4. The vec-
tor of unknowns, X, has the following form

_ T T Br
X61x1 = [501Ar JV[OlAm: MOlAry| SiuBr MiiBra

Dr
14Bru| SlQCT 12C7‘x M].QCT"L]‘ S25Dr M25Drm ]\/125D7‘1/‘

23Ery| S26Fr J\/[26Frm 26F7‘y| S37GT

H(’
45H cx

23Er M23Erm

M 37Grx

7Gr1/| S45ch S45Hcy 45Hcy‘ S67Icw

Sﬁ7lcy 7Icz 7Icy| OlArz‘ d45ch‘ d67Icz|Sl8Jr

Kr
MlSer 18J7‘y| SQQKT 29Krz 29K7‘u| SSQLcw SSQLcy
T
MSQLcw 9LC’L]| d89ch] ’ (23)

wherein the first 46 elements come directly from the
previous example. Coefficient matrix A corresponding
to this vector may be created analogously to the pre-
vious example. Moreover, it has size 54 x 61 and a full
row rank r (A) = 54. Subsequently, nullspace matrix N
of size 61 x 7 has been computed. It has the following
structure

N=[075 N1 071 Ny O7q N3 O7q Ny O7g
N5 071 Ng 071 N7 071 Ng 071 Ng 072 Ny
072 Nij 070 Nio 070 Nis 070 Niyl™ . (24)

sOlAr

Fig. 8. Free-body diagram of the overactuated
redundant manipulator

Moreover, submatrices N;, i=1,2,...14 (with
nonzero elements) are of sizes: (Ni)7xs, (N2)7a,
(N3)7x7, (Na)7sa, (Ns)7x2, (Ng)7xa, (N7)7x2, (Ng)7saa,
(No)7x3,  (Nio)m2s  (N11)mxa,  (Ni2)wa,  (Niz)man,
(N14) 70

Since the first elements of vector x are defined as
in the previous example, the information contained
in Tab. 7 is also applicable here. Moreover, the ana-
logous data for the remaining elements are given in
Tab. 9. Finally, the results of the procedure are presen-
ted in Tab. 10. Note that they are consistent with intui-
tion, i.e. the reaction in revolute joint A remained uni-
que, and the introduction of a redundant drive resul-
ted only in the non-uniquely determined driving for-
ces in the parallel actuators.
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Tab. 9. Additional studied elements of the
overactuated redundant manipulator

Studied Columns
Elements of x .
element forming Ag
. Sy MIT
Reaction Jr 18Jr) o 18Jre 47-51
Mgy,
So9xrs
Reaction Kr MEr- 52-56
K
Af29;(ry
Le Le
SSQCL(:w' 589(Lcy’
Reaction Lc ML 57-60
Lec
MSQ(.Lcy
Drive Lc FdLS%LCZ 61

Tab. 10. Results of the overactuated redundant
manipulator analysis

Criterion Rank of
Studied element 4) Result
As
value
Reaction Ar = 5(full) U
Reactions: Br,
Cr, Dr, Er, Fr, #0 5(full) N
Gr,Jr, Kr
Reactions: He, I¢, £0 4(full) N
Lc
Drives: Ar, Ic =0 1(full)
Drives: He, Lc #0 1(full)

5. Conclusions

This paper shows that the problem of non-
uniqueness of joint reactions in overconstrained me-
chanisms should be extended by acknowledging simi-
lar problems resulting from redundant actuation. A
new - Kinetostatics-based - approach, combined with
developed methods of nullspace analysis, was utilized
to verify uniqueness of joint reactions and driving for-
ces. The same procedure, outlined herein, may be car-
ried out for both passive (reactions) and active (actu-
ation) forces analysis.

The method presented in this article consists in
analysis of the nullspace basis created for the coef-
ficient matrix resulting from kinetostatics equations.
This method is applicable both to planar and spatial
systems. To illustrate the approach, five examples have
been considered: three cases of a gripper [7,9,19],are-
dundant manipulator [9] and an overactuated redun-
dant manipulator. In general, the results - with regard
to joint reactions - are in accordance with the intui-
tion and the results known from other publications.
The novelty consists in taking driving forces into ac-
count.

It should be pointed out that, in example 4.3, over-
actuation of the gripper caused non-uniqueness of all

the reactions. It is an interesting observation which
demands further studies. Hence, the analysis of uni-
queness of driving forces should always be performed
together with the reaction uniqueness test.
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