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Abstract:
In this paper we present an applica on of fuzzy approxi-
ma on operators in suppor ng medical diagnosis. These
operators are composi ons of fuzzymodal operators. The
underlying idea is based on the observa on that approxi-
ma ons of fuzzy setsmay be viewed as intui onis c fuzzy
sets. Reasoning scheme is determined by distances bet-
ween intui onis c fuzzy sets proposed by Szmidt and Ka-
cprzyk.

Keywords: Fuzzy modal operators, Fuzzy set approxima-
ons, Intui onis c fuzzy sets, Medical diagnosis

1. Introduc on
In real-life problems we deal with information

which is usually incomplete. The reasons are generally
twofold. First, it follows from the fact that only partial
data about the problem under consideration can be
obtained. Second, the available data are often given in
an imprecise form, for example when expressed using
linguistic terms like “quite good” or “rather cold”. The-
refore, new information derived from incomplete data
is in general uncertain.

Inmany applications the available information has
a form of a set of objects and a set of their proper-
ties. Formal methods of analysis of such information
were extensively developed within rough set theory
(see, for example, Demri and Orłowska [5] and Orłow-
ska [8]). While descriptions of objects are explicit in-
formation, relationships between objects/properties
are new data that can be derived and constitute impli-
cit information about domains in discourse. Such re-
lationships are represented by information relations.
A typical example of an information relation is an in-
discernibility relation: two objects are indiscernible
whenever they have the same selected properties. Ap-
proximation techniques, usually based on modal (or
modal-like) operators, are applied in reasoning sche-
mes.

Fuzzy set theory, originally introduced by Zadeh
[33], offers a variety of methods for representing and
processing imprecise (or vague, fuzzy) information.
Therefore, when information of such a kind is admit-
ted, fuzzy generalizations of traditional techniques are
to be applied. Fuzzy information relationswerewidely
investigated by Radzikowska and Kerre [19, 25, 27].
Logical systems capable to reason about these relati-
ons were considered by Radzikowska [14]. Compre-
hensive expositions of logical and algebraic aspects
of information relations and knowledge and approx-

imation operators were presented by Orłowska, Rad-
zikowska, and Rewitzky [9].

Fuzzy sets allow for representation of graded in-
formation in the sense that degrees of memberships
are given, yet one is unaware to what extend non-
membership refers. For instance, if we know that a pa-
tient 𝑝 suffers from pneumonia up to the degree 0.7,
we can only say that this disease is excluded for 𝑝 at
most to the degree 0.3. Atanassov [1, 2] generalized
fuzzy sets by providing two parameters for each ele-
ment of the universe in discourse: the degrees ofmem-
bership and the degree of non-membership. This al-
lows us for stating that, e.g., 𝑝 suffers from pneumonia
up to the degree 0.7 and pneumonia is excluded for 𝑝
up to the degree 0.1, thus 0.2 is the hesitation degree
i.e., our lack of knowledge. In consequence,weobtain a
more lexible tool for representing vague information.

In this paperwe present an application of relation-
based approximation techniques to medical diagnosis
problem. Assume that we are given a set 𝑃 of patients,
a set 𝐷 of some diseases, and a set 𝑆 of symptoms of
diseases from 𝐷. Each patient 𝑝 ∈𝑃 is characterized
by symptoms 𝑠 ∈ 𝑆, and each disease 𝑑 ∈𝐷 is descri-
bed in terms of its symptoms 𝑠 ∈ 𝑆. Our aim is to derive
the propermedical diagnosis for each patient. For this
purpose it is necessary to use information obtained
from medical tests made for patients as well as medi-
cal knowledge about diseases. Medical knowledge ac-
tually occurs in two forms: as an explicit information
given in the formof descriptions of diseases, and impli-
cit knowledge that can be derived from these descrip-
tions. Our methodology involves approximation met-
hods that allow us to determine to what extend parti-
cular patient (resp. disease)at least and atmost shows
(resp. is characterized by) particular symptoms. Ha-
ving applied these techniques we determine two in-
tuitionistic fuzzy relations representing descriptions
of patients and diseases, respectively, in terms of their
symptoms. Following the idea proposedby Szmidt and
Kacprzyk [29,32], medical diagnosis is determined by
distances between intuitionistic fuzzy sets.

The paper is organized as follows. In Section 2 we
recall basic notions of fuzzy sets, fuzzy relations, fuzzy
logical connectives and intuitionistic fuzzy sets. Next,
in Section 3, we present fuzzy approximation opera-
tors based on fuzzy relations. An application of these
operations for supportingmedical diagnosis is discus-
sed in Section 4. Concluding remarks complete the pa-
per.

21



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N∘ 1 2017

2. Preliminaries
In this section we recall basic notions of fuzzy set

theory which are used in our presentation.
2.1. Fuzzy Sets

Let 𝑋 be a non-empty domain. A fuzzy set in 𝑋 is
any mapping 𝐹 ∶ 𝑋→ [0, 1]. For every 𝑥 ∈𝑋, 𝐹(𝑥) is
the degree to which 𝑥 belongs to 𝐹. Given two fuzzy
set 𝐴, 𝐵 ∈ℱ(𝑋),

– 𝐴 is (totally) included in 𝐵, written 𝐴⊆𝐵, if
𝐴(𝑥)⩽𝐵(𝑥) for every 𝑥 ∈𝑋;

– 𝐴 is (totally) equal to 𝐵, written 𝐴=𝐵, if
𝐴(𝑥)=𝐵(𝑥) for every 𝑥 ∈𝑋.

The family of all fuzzy sets in 𝑋 will be denoted by
ℱ(𝑋).

A fuzzy relation in 𝑋 and 𝑌 is a fuzzy set in 𝑋×𝑌.
For 𝑥 ∈𝑋 and for 𝑦 ∈𝑌, 𝑅(𝑥, 𝑦) is the degree to which
𝑥 is 𝑅-related with 𝑦. A fuzzy relation 𝑅 in 𝑋 and 𝑌
is called crisp if 𝑅(𝑥, 𝑦) ∈ {0, 1} for all 𝑥 ∈𝑋 and for all
𝑦 ∈𝑌. The family of all fuzzy relations in𝑋 and𝑌will be
writtenℛ(𝑋, 𝑌). For𝑅 ∈ℛ(𝑋, 𝑌), the converse relation
𝑅 ∈ℛ(𝑌, 𝑋) is de ined as 𝑅 (𝑦, 𝑥)=𝑅(𝑥, 𝑦). For
every 𝑅 ∈ℛ(𝑋, 𝑌) and for every 𝑥 ∈𝑋, we write 𝑥𝑅 to
denote the fuzzy set in 𝑌 de ined as (𝑥𝑅)(𝑦)=𝑅(𝑥, 𝑦).
Analogously, for any 𝑦 ∈𝑌, 𝑅𝑦 ∈ℱ(𝑋) is de ined as
(𝑅𝑦)(𝑥)=𝑅(𝑥, 𝑦). A fuzzy relation 𝑅 ∈ℛ(𝑋, 𝑋) is a
fuzzy relation on 𝑋.
2.2. Fuzzy Logical Connec ves

Fuzzy logical connectives are generalizations
of logical connectives of classical logic. Triangular
norms generalize classical conjunction. Speci ically,
a triangular norm (t-norm, for short) is a mapping
⊗ ∶ [0, 1] → [0, 1], commutative (𝑥⊗𝑦=𝑦⊗𝑥,
𝑥, 𝑦 ∈ [0, 1]), associative (𝑥⊗(𝑦⊗𝑧)= (𝑥⊗𝑦)⊗𝑧,
𝑥, 𝑦, 𝑧 ∈ [0, 1]), increasing in both arguments
(𝑥 ⩽𝑧 implies 𝑥⊗𝑦⩽𝑧⊗𝑦 and 𝑦⊗𝑥⩽𝑦⊗𝑧,
𝑥, 𝑦, 𝑧 ∈ [0, 1]), and satisfying the boundary condition
𝑥 ⊗ 1=𝑥 for every 𝑥 ∈ [0, 1]. The most popular
t-norms are:

– the standard t-norm (the largest t-norm)

𝑥⊗ 𝑦= min(𝑥, 𝑦)
– the product operation

𝑥⊗ 𝑦=𝑥𝑦
– the Łukasiewicz t-norm

𝑥⊗ 𝑦= max(0, 𝑥 + 𝑦 − 1).

A t-norm ⊗ is left-continuous whenever it is left-
continuous on both arguments. For the extended stu-
dies on t-norms we refer a reader to Klement, Mesiar
and Pap [7].

A fuzzy implication is a [0, 1] − [0, 1]map→with
decreasing 1 and increasing 2 partial mappings
(𝑥 ⩽𝑧 implies 𝑧→𝑦⩽𝑥→𝑦 and 𝑦→𝑥⩽𝑦→𝑧 for all
𝑥, 𝑦, 𝑧 ∈ [0, 1]) and satisfying 1→1=0→0=0→1=1
and 1→0=0. The most popular fuzzy implications
are

– the Kleene-Dienes implication

𝑥→ 𝑦= max(1 − 𝑥, 𝑦)

– the Łukasiewicz implication

𝑥→ 𝑦= min(1, 1 − 𝑥 + 𝑦)

– the Gödel implication

𝑥→ 𝑦= 1 for 𝑥 ⩽𝑦
𝑦 elsewhere.

A special class of fuzzy implications are residual impli-
cations: given a left-continuous t-norm⊗ its residual
implication (also called the residuum of⊗) is de ined
for all 𝑥, 𝑦 ∈ [0, 1],

𝑥→𝑦 = sup{𝑧 ∈ [0, 1] ∶ 𝑥⊗𝑧⩽𝑦}.

The Łukasiewicz and the Gödel implications are exam-
ples of residual implications based on⊗ and⊗ , re-
spectively, while Kleene-Dienes implication is not a re-
sidual one. Fuzzy implications were extensively inves-
tigated by Baczyński and Jayaram [3].

A fuzzy negation is a mapping ¬ ∶ [0, 1]→ [0, 1],
decreasing and satisfying ¬0=1 and ¬1=0. The
standard fuzzy negation is ¬ 𝑥=1 − 𝑥 for every
𝑥 ∈ [0, 1]. Residual implications lead to fuzzy negati-
ons:¬𝑥=𝑥→0. The Łukasiewicz implication induces
the standard fuzzy negation, that is ¬ =¬ , and the
Gödel implication induces the fuzzy negation¬ 𝑥=0
for 𝑥 ≠1 and¬ 1=0.

Given a fuzzy set 𝐴∈ℱ(𝑋) and a fuzzy negation
¬, we write ¬𝐴 to denote the ¬-complementation of
𝐴, that is the fuzzy set in 𝑋 de ined for every 𝑥 ∈𝑋,
(¬𝐴)(𝑥)=¬𝐴(𝑥).

2.3. Intui onis c Fuzzy Sets
Now, let us recall basic notions of intuitionis-

tic fuzzy set theory (see Atanassov [1]). Let a non-
empty domain 𝑋 be given. An intuitionistic fuzzy set
in 𝑋 is given by 𝐴= {(𝑥, 𝜇 (𝑥), 𝜈 (𝑥)) ∶ 𝑥 ∈𝑋}, where
𝜇 ∈ℱ(𝑋) and 𝜈 ∈ℱ(𝑋) are called amembership and
a non-membership function, respectively, and satisfy
𝜇 (𝑥)+𝜈 (𝑥)⩽1 for every𝑥 ∈𝑋. The value𝜋 (𝑥)=1−
𝜇 (𝑥)−𝜈 (𝑥),𝑥 ∈𝑋, is called ahesitationmarginwhich
re lects the lack of knowledge of membership or non-
membership of 𝑥 to 𝐴. The family of all intuitionistic
fuzzy sets in 𝑋 will be denoted by ℐℱ(𝑋).

Clearly, any fuzzy sets 𝐴 in 𝑋 is a speci ic intui-
tionistic fuzzy set 𝐴= {(𝑥, 𝜇 (𝑥), 1 − 𝜇 (𝑥)) ∶ 𝑥 ∈𝑋}.
An intuitionistic fuzzy relation in 𝑋 and 𝑌 is an
intuitionistic fuzzy set in 𝑋×𝑌, i.e., it is given by
𝑅= {((𝑥, 𝑦), 𝜇 (𝑥, 𝑦), 𝜈 (𝑥, 𝑦)) ∶ 𝑥 ∈𝑋 and 𝑦 ∈𝑌} with
𝜇 , 𝜈 ∈ℛ(𝑋, 𝑌) satisfying 𝜇 (𝑥, 𝑦) + 𝜈 (𝑥, 𝑦) ≤ 1
for all 𝑥 ∈𝑋 and 𝑦 ∈𝑌. Accordingly, 𝜇 (𝑥, 𝑦) is the de-
gree to which 𝑥 ∈𝑋 is 𝑅–related with 𝑦 ∈𝑌, 𝜈 (𝑥, 𝑦)
is the degree to which 𝑥 and 𝑦 are not 𝑅-related, and
𝜋 (𝑥, 𝑦)=1−𝜇 (𝑥, 𝑦)−𝜈 (𝑥, 𝑦) is a hesitationmargin.
For the extensive studies of the theory of intuitionistic
fuzzy sets we refer to [2].
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Traditionally, a distance between two intuitionis-
tic fuzzy sets in 𝑋 is de ined with respect to two pa-
rameters, that is the degrees of membership and the
degrees of non-membership. The drawback of this
approach was pointed out by Szmidt and Kacprzyk
in [29] and a novel de inition was proposed where
all three parameters, that is including hesitation re-
gions, are taken into account. More speci ically, let
𝑋= {𝑥 ,… , 𝑥 } and let 𝐴= {(𝑥, 𝜇 (𝑥), 𝜈 (𝑥)) ∶ 𝑥 ∈𝑋}
and 𝐵= {(𝑥, 𝜇 (𝑥), 𝜈 (𝑥)) ∶ 𝑥 ∈𝑋} be two intuitionis-
tic fuzzy sets in 𝑋. Then

– the normalized Hamming distance between 𝐴
and 𝐵:

𝛿 (𝐴, 𝐵) = 1
2𝑛 𝑑 (1)

where
| ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|.

– the normalized Euclidean distance between 𝐴
and 𝐵:

𝛿 (𝐴, 𝐵) = 1
2𝑛 𝑒 (2)

where
( ( ) ( )) ( ( ) ( )) ( ( ) ( )) .

3. Rela on-based Fuzzy Set Approxima ons
Let 𝑋 and 𝑌 be two non-empty universes and let

𝑅⊆𝑋×𝑌 be a relation on 𝑋 and 𝑌. Intuitively, 𝑋 may
be viewed as a set of objects, 𝑌 is treated as a set
of their properties, and for every 𝑥 ∈𝑋 and for every
𝑦 ∈𝑌, 𝑥𝑅𝑦 states that an object 𝑥 has the property 𝑦.
Note that any set 𝐴⊆𝑋 may be viewed as a represen-
tation of an expert decision concerning objects from𝑋,
or as a representation of some feature (not necessarily
from 𝑌) characterizing particular objects from the set
𝑋. Analogously, any set 𝐵⊆𝑌 may represent charac-
terization of some object (not necessarily from 𝑋) in
terms of properties from the set 𝑌.

Any relation 𝑅⊆𝑋×𝑌 allows us to derive some
implicit information about objects from𝑋, andproper-
ties from 𝑌. Speci ically, we can infer about links be-
tween objects (resp. properties) basing on their pro-
perties (resp. objects having these properties). In the
terminology well-known in rough set theory (see, e.g.,
Demri andOrłowska [5]) these links are formalized by
information relations. Here let us recall two of such re-
lations:

– compatibility:
• for objects: objects 𝑥 and 𝑥 are compatible
if they share some common property 𝑦 ∈𝑌;

• for properties: properties𝑦 and𝑦 are com-
patible if some object 𝑥 ∈𝑋 has both proper-
ties.

– relevance (also called inclusion, or forward inclu-
sion)

• for objects: an object 𝑥 is relevant to an ob-
ject 𝑥 if all properties of 𝑥 are also proper-
ties of 𝑥 ;

• for properties: a property 𝑦 is relevant to a
property𝑦 if all objects having the property
𝑦 have also the property 𝑦 .

In the following we will not indicate directly whet-
her compatibility (resp. relevance) refers to objects or
properties since it will clearly follow from the context
they are used in.

Example 3.1 Let us consider a set𝑃 of four people:Al,
Bob, Joe, and Ted and a set 𝑆 of ive symptoms of disea-
ses thesepatients suffer from:Temperature,Headache,
Stomach pain, Cough, and Chest pain. Tab. 1 represents
characterizationof the patients in termsof their symp-
toms given by a binary (crisp) relation.

Note that Al and Joe are compatible since they both
have temperature, while Temperature and Headache
are compatible since Al shows both symptoms. More-
over, Joe is relevant to Al and Cough is relevant to Tem-
perature. ◻

Information, as given in Example 3.1, although so-
metimes useful, in many real-life problems is practi-
cally meaningless. In particular, it is unknown how
strongAl’s headache is,whether indeednobody shows
chest pain, or may be some patients suffer from a very
slight one, etc. If medical diagnosis is to be determi-
ned, we essentially need to know to what extend pa-
tients show particular symptoms. These leads us to
fuzzy structures which are commonly used for repre-
sentation of graded information. In Tab. 2 a fuzzy re-
lation𝑅 ∈ℛ(𝑃, 𝑆) shows towhat degree particular pa-
tients show speci ic symptoms.

When imprecise data are involved, we actually
have fuzzy information relations, in particular a fuzzy
compatibility and a fuzzy relevance. Fuzzy informa-
tion relations were extensively investigated by Radzi-
kowska and Kerre [16,17,19,20,22,25].

In order to infer about relationships between ob-
ject/properties in the environment of fuzzy informa-
tion, fuzzy modal operators are useful. These opera-
tors were investigated and widely discussed by Rad-
zikowska and Kerre [10–12, 24, 26, 27]. Let us recall
some basic facts. Given a t-norm ⊗ and its residual
implication→, the following two ℱ(𝑌) − ℱ(𝑋) opera-
tors are de ined for every fuzzy relation 𝑅 ∈ℛ(𝑋, 𝑌),
for any fuzzy set 𝐴∈ℱ(𝑌), and for every 𝑥 ∈𝑋,

([𝑅]⊗𝐴)(𝑥) = inf
∈
(𝑅(𝑥, 𝑦)→𝐴(𝑦)) (3)

(⟨𝑅⟩⊗𝐴)(𝑥) = sup
∈
(𝑅(𝑥, 𝑦) ⊗ 𝐴(𝑦)) (4)

The operators (3) and (4) are called fuzzy necessity
and fuzzy possibility, respectively. Assume that 𝑅 is a
fuzzy relation on 𝑋, for instance, a fuzzy similarity re-
lation which re lects similarities of object determined
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Tab. 1. Pa ents and their symptoms

Temperature Headache Stomach pain Cough Chest pain
Al 1 1 0 1 0
Bob 0 0 1 0 0
Joe 1 1 0 0 0
Ted 1 0 0 1 0

Tab. 2. Symptoms characteris c for the pa ents considered

𝑅 Temperature Headache Stomach pain Cough Chest pain
Al 0.8 0.6 0.2 0.6 0.1
Bob 0.0 0.4 0.6 0.1 0.1
Joe 0.8 0.8 0.0 0.2 0.0
Ted 0.6 0.5 0.3 0.7 0.3

by their properties. Then (3) and (4) are fuzzy lower
and fuzzy upper rough approximation operators exten-
sively studied by Radzikowska and Kerre [13, 18, 21,
23].

The intuitive meaning of (3) and (4) is the follo-
wing: given 𝐴∈ℱ(𝑌) representing characterization of
some object, and 𝑥 ∈𝑋,

– ([𝑅]⊗𝐴)(𝑥) is the degree to which the object 𝑥 is
relevant to 𝐴;

– (⟨𝑅⟩⊗𝐴)(𝑥) is the degree to which the object 𝑥 is
compatible with 𝐴.

Analogously, taking 𝐵 ∈ℱ(𝑋) representing an expert
decision, for any 𝑦 ∈𝑌, ([𝑅 ]⊗𝐵)(𝑦) is the degree to
which the property 𝑦 is relevant to the decision 𝐵 and
(⟨𝑅 ⟩⊗𝐵)(𝑦) is the degree to which 𝑦 is compatible
with 𝐵. Now, basing on the above operators let us de-
ine two mappings ▲⊗,▼⊗ ∶ ℱ(𝑌)→ℱ(𝑌) for every
𝐴∈ℱ(𝑌),

▲⊗𝐴 = ⟨𝑅 ⟩⊗[𝑅]⊗𝐴 (5)
▼⊗𝐴 = [𝑅 ]⊗⟨𝑅⟩⊗𝐴. (6)

These operators are fuzzy generalizations of the re-
spective operators investigated by Düntsch and Ge-
diga in [6]. Intuitively, for any 𝐴∈ℱ(𝑌) and for any
𝑦 ∈𝑌,

– (▲⊗𝐴)(𝑦) is the degree to which some object
characterized by the property 𝑦 is relevant to the
object 𝐴;

– (▼⊗𝐴)(𝑥) is the degree to which all objects cha-
racterized by the property 𝑦 are compatible with
the object 𝐴.

Radzikowska [12] showed that for every 𝑅 ∈ℛ(𝑋, 𝑌)
and for all 𝐴, 𝐵 ∈ℱ(𝑌),

(P1) 𝐴⊆𝐵 implies▲⊗𝐴⊆▲⊗𝐵 and▼⊗𝐴⊆▼⊗𝐵,
(P2) ▲⊗𝐴 ⊆ 𝐴 ⊆ ▼⊗𝐴,

(P1) states that both operators are monotone and,
due to (P2), they work as approximation operators:

▲⊗𝐴 is a lower bound of 𝐴, whereas ▼⊗𝐴 is an up-
per bound of 𝐴. Therefore, for every 𝑦 ∈𝑌, (▲⊗𝐴)(𝑦)
can be viewed as the degree to which 𝑦 at least (cer-
tainly) belongs to 𝐴, and (▼⊗𝐴)(𝑦) can be interpreted
as the degree to which 𝑦 at most (possibly) belongs
to 𝐴. Hence, the value ¬⊗▼⊗𝐴(𝑦), where ¬⊗ is the
fuzzy negation induced by ⊗, is the degree to which
𝑦 certainly does not belong to 𝐴. For any 𝐴∈ℱ(𝑌),
the pair (▲⊗𝐴),▼⊗𝐴) will be referred to (▲⊗,▼⊗)-
approximation of 𝐴 with respect to 𝑅 and⊗.
Remark 3.1
1) Note that for any 𝑦 ∈𝑌, we have ▲⊗(𝑥𝑅)=𝑥𝑅. In

general, however,▼⊗(𝑥𝑅)≠𝑥𝑅.
2) Let𝑅 ∈ℛ(𝑋, 𝑌) and let𝐴∈ℱ(𝑌) be given. For an ar-

bitrary left-continuous t-norm⊗,

▲⊗𝐴(𝑦) + ¬⊗▼⊗𝐴(𝑦)≰1.

Let𝐴∈ℱ(𝑌) and let▲ 𝐴 and▼ 𝐴 be its lower and
upper bounds, respectively, determined by the Łuka-
siewicz t-norm⊗ . Since the negation ¬ induced by
the Łukasiewicz t-norm is the standard fuzzy negation
¬ , the following condition holds for every 𝑦 ∈𝑌:

(▲ 𝐴)(𝑦) + (¬ ▼ 𝐴)(𝑦)⩽1.
Consequently, the (▲ ,▼ )-approximation of 𝐴 uni-
quely determines an intuitionistic fuzzy set in 𝑌 as the
following observation states.
Observation 3.1 For every fuzzy relation𝑅 ∈ℛ(𝑋, 𝑌),
the (▲ ,▼ )-approximation of any fuzzy set
𝐴∈ℱ(𝑌) determines an intuitionistic fuzzy set
𝐴 = {(𝑦, 𝜇 (𝑦), 𝜈 (𝑦)) ∶ 𝑦 ∈𝑌} in 𝑌 given by:

𝜇 (𝑦) = ▲ 𝐴(𝑦)
𝜈 (𝑦) = 1 −▼ 𝐴(𝑦).

This idea is the basis for the medical diagnosis pro-
blem presented in the next section.

Finally, it is worth noting that Łukasiewicz logical
connectives are very useful in fuzzy generalizations of
many structures. Radzikowska and Kerre [18] showed
that these fuzzy connectives are the best ones for fuzzy
generalization of traditional (crisp) rough sets.
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4. Medical Diagnosis Using Fuzzy Rela on-
based Approxima ons
Let us consider a set 𝑃 of patients, a set 𝑆 of symp-

toms of some diseases, and a set 𝐷 of medical diagno-
sis. On the basis of medical knowledge each diagnosis
is characterized by particular symptoms. Also, having
made some medical tests each patient is described by
symptoms he shows. Our aim is to determine a proper
diagnosis for each patient.

As noted before, a fuzzy approach is highly jus-
ti ied for this problem. Szmidt and Kacprzyk [30,
32] assumed that a given information is represen-
ted by intuitionistic fuzzy relations. Similar repre-
sentation was earlier given by De, Biswas, and Roy
[4]. In these approaches it is required to know to
what extend particular symptoms characterize given
diagnosis (resp. patients) as well as to what extent
symptoms they do not characterize given diagnosis
(resp. patients). Here we assume that the available
information is more restricted: all we know about
symptoms is to what extent they characterize diag-
nosis (resp. patients). Then we have two fuzzy re-
lations: a relation 𝑅 ∈ℛ(𝑃, 𝑆) which provides des-
criptions of particular patients in terms of symp-
toms they show and a relation 𝑄 ∈ℛ(𝐷, 𝑆) which
describes particular diagnosis in terms of their cha-
racteristic symptoms. For a set 𝑃 of patients and
a set 𝑆 of symptoms given in Section 3, and a set
𝐷 = {Viral fever, Malaria, Typhoid, Stomach problem,
Chest problem} of diagnosis, examples of fuzzy rela-
tion 𝑅 and 𝑄 are presented in Tab. 2 and Tab. 3, re-
spectively. Similar data were presented by Szmidt and
Kacprzyk [30] and De, Biswas, and Roy [4].

Clearly, in order to make a proper diagnosis one
needs the possibly broadest medical knowledge. Note
that a relation𝑄 represents onlypartialmedical know-
ledge which may be referred to as explicit knowledge.
New information that are derived from 𝑄 constitutes
an implicit knowledge which should be taken into ac-
count in the process of medical diagnosing.

The simplest solution of our problem is based on
distances of fuzzy sets. For each patient 𝑝 ∈𝑃 we con-
sider a distance between his/her description 𝑝𝑅 and
characterization of particular diagnosis 𝑑𝑄. The pro-
per diagnosis is pointed out by the shortest distance.
However, this method does not take into account im-
plicit medical knowledge that can be derived from a
relation 𝑄 which, in turn, may lead to highly doubt-
ful results. Another solution, originally proposed by
Sanchez ( [28] and later on developed by De, Biswas,
and Roy [4]), is based on a composition of fuzzy relati-
ons 𝑅 and 𝑄. Namely, we determine the fuzzy relation
𝑇=𝑅 ∘ 𝑄 ∈ℛ(𝑃, 𝐷) de ined for every 𝑝 ∈𝑃 and for
every 𝑑 ∈𝐷,

𝑇(𝑝, 𝑑)= sup
∈

min(𝑅(𝑝, 𝑠), 𝑄 (𝑑, 𝑠)).

In the context of intuitionistic fuzzy sets De, Biswas,
andRoy [4], aswell as Szmidt andKacprzyk [32], poin-
ted out that this method has an essential drawback
since it prefers dominating symptoms which could
make the diagnosis incorrect.

Here we present another approach using approxi-
mation operators (5) and (6) with the underlying re-
lation𝑄. This way the approximations are determined
by medical knowledge, both explicit and implicit. Fir-
stly, for each patient 𝑝 we approximate his/her cha-
racterization in terms of symptoms, i.e., the fuzzy set
𝑝𝑅. Next, in analogous way each diagnosis descrip-
tion 𝑄𝑑 is approximated. Using Observation 3.1, two
IF-relations are then obtained: patient-symptoms re-
lation and symptom-diagnosis relation. Finally, follo-
wing the idea proposed by Szmidt and Kacprzyk [30–
32], we calculate distances between the IF-set style
description of patients and the IF-set style description
of diagnosis. For each patient the shortest distance
points out his proper medical diagnosis.

Concretely, as in Radzikowska [15], the following
procedure is proceeded.

Step 1: For each patient 𝑝 ∈𝑃, approximate his symp-
tomswith respect to the diagnosis-symptomrela-
tion𝑄: determine the (▲ ,▼ )-approximation of
𝑝𝑅.

Step 2: For each diagnose 𝑑 ∈𝐷, approximate
its symptoms with respect to the diagnosis-
symptom characterization 𝑄: calculate (▲ ,▼ )-
approximation of 𝑑𝑄.

Step 3: Determine IF-relations 𝑅 (patient–symptom)
and 𝑄 (diagnosis-symptom) on the basis of ap-
proximations obtained in Step 1 and 2: calculate

𝜇 (𝑝, 𝑠) =▲ (𝑝𝑅)
𝜈 (𝑝, 𝑠) =1 −▼ (𝑝𝑅)
𝜋 (𝑝, 𝑠) =▼ (𝑝𝑅) −▲ (𝑝𝑅)

and

𝜇 (𝑑, 𝑠) =▲ (𝑠𝑄)
𝜈 (𝑑, 𝑠) =1 −▼ (𝑠𝑄)
𝜋 (𝑑, 𝑠) =▼ (𝑠𝑄) −▲ (𝑠𝑄),

respectively.

Step 4: For each 𝑝 ∈𝑃 and for each diagnosis 𝑑 ∈𝐷,
calculate distance between 𝑝𝑅 and 𝑑𝑄 – the lo-
west distance points out the proper diagnosis.

Tab. 4 presents lower and upper bounds of 𝑝𝑅 for
every patient 𝑝 ∈𝑃. Note that due to medical tests Al
suffers from cough up to the degree 0.6 (see Tab. 2).
Having taken into account his other symptoms and
medical knowledge about speci icity of cough for par-
ticular diseases (Tab. 3), it was estimated that Al has
cough at least to the degree 0.6 and at most to the de-
gree 0.8. Using linguistic terms one can say that his
cough is estimated between rather strong and strong.
Also, it turns out that his headache and stomach pain
totally coincide with what was established by medical
tests (Tab. 4), that is, he shows both symptoms at least
and at most up to the same degree.
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Tab. 3. Symptoms characteris c for the diagnosis considered

𝑄 Temperature Headache stomach pain Cough Chest pain
Viral fever 0.4 0.3 0.1 0.4 0.1
Malaria 0.7 0.1 0.0 0.7 0.1
Typhoid 0.3 0.6 0.2 0.2 0.1
Stomach problem 0.1 0.2 0.8 0.2 0.2
Chest problem 0.1 0.0 0.2 0.2 0.8

Tab. 4. Approximated symptoms characteris c for the pa ents

Temperature Headache Stomach pain Cough Chest pain
Al (0.6,0.8) (0.6,0.6) (0.2,0.2) (0.6,0.8) (0.1,0.2)
Bob (0.0,0.3) (0.3,0.4) (0.6,0.8) (0.0,0.3) (0.1,0.2)
Joe (0.2,0.8) (0.4,0.8) (0.0,0.2) (0.2,0.8) (0.0,0.2)
Ted (0.6,0.7) (0.5,0.5) (0.3,0.3) (0.6,0.7) (0.3,0.3)

Tab. 5. Approximated symptoms characteris c for the diagnosis

Temperature Headache Stomach pain Cough Chest pain
Viral fever (0.4,0.4) (0.3,0.4) (0.1,0.2) (0.4,0.4) (0.1,0.2)
Malaria (0.7,0.7) (0.2,0.4) (0.6,0.7) (0.0,0.2) (0.7,0.7)
Typhoid (0.3,0.3) (0.6,0.7) (0.2,0.2) (0.2,0.3) (0.1,0.2)
Stomach problem (0.1,0.3) (0.2,0.4) (0.8,0.8) (0.2,0.3) (0.2,0.2)
Chest problem (0.1,0.3) (0.0,0.4) (0.2,0.2) (0.2,0.3) (0.8,0.8)

Tab. 6. Pa ent-symptom intui onis c fuzzy rela on

𝑅 Temperature Headache Stomach pain Cough Chest pain
Al (0.6,0.2,0.2) (0.6,0.4,0,0) (0.2,0.8,0.0) (0.6,0.2,0.2) (0.1,0.8,0,1)
Bob (0.0,0.7,0.3) (0.3,0.6,0.1) (0.6,0.2,0.2) (0.0,0.7,0.3) (0.1,0.8,0.1)
Joe (0.2,0.2,0.6) (0.4,0.2,0.4) (0.0,0.8,0.2) (0.2,0.2,0.6) (0.0,0.8,0.2)
Ted (0.6,0.3,0.1) (0.5,0.5,0.0) (0.3,0.7.0.0) (0.6,0.3,0.1) (0.3,0.7,0.0)

Tab. 7. Diagnosis-symptom intui onis c fuzzy rela on

𝑄 Temperature Headache Stomach pain Cough Chest pain
Viral fever (0.4,0.6,0) (0.3,0.6,0.1) (0.1,0.8,0.1) (0.4,0.6,0.0) (0.1,0.8,0.1)
Malaria (0.7,0.3,0.0) (0.2,0.6,0.2) (0.0,0.8,0.2) (0.7,0.3,0.0) (0.1,0.8,0.1)
Typhoid (0.3,0.7,0.0) (0.6,0.3,0.1) (0.2,0.8,0.0) (0.2,0.7,0.1) (0.1,0.8,0.1)
Stomach problem (0.1,0.7,0.2) (0.2,0.6,0.2) (0.8,0.2,0.0) (0.2,0.7,0.1) (0.2,0.8,0.0)
Chest problem (0.1,0.7,0.2) (0.0,0.6,0.4) (0.2,0.8,0.0) (0.2,0.7,0.1) (0.8,0.2,0.0)

Tab. 8. The normalized Hamming distances for pa ents from the possible diagnosis

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.24 0.20 0.22 0.42 0.46
Bob 0.28 0.42 0.28 0.14 0.38
Joe 0.36 0.34 0.32 0.48 0.48
Ted 0.24 0.20 0.26 0.36 0.40

Next, characteristics of particular diagnosis given
in Tab. 3 are approximated using medical knowledge
represented in the fuzzy relation 𝑄. The results are
presented in Tab. 5. In particular, for Temperature, its
lower and upper bounds coincide for Viral fever,Mala-
ria, and Typhoid, so the relation 𝑄 itself precisely cha-
racterizes this symptom for thesediseases. For the two

remaining diseases, however, Temperature can be sta-
ted only approximately in viewof the derived informa-
tion.

On the basis of approximations given in Tab. 4 and
Tab. 5, two intuitionistic fuzzy relations are calculated
and the results are given in Tab. 6 and Tab. 7, respecti-
vely. For example, Joe has a headache up to the degree
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Tab. 9. The normalized Euclidean distances for pa ents from the possible diagnosis

Viral fever Malaria Typhoid Stomach problem Chest problem
Al . 0.044 . . .
Bob . . . 0.022 .
Joe . . 0.136 . .
Ted . 0.038 . . .

0.4 and at the same time this symptom is slightly ex-
cluded (to thedegree0.2), so it is unknownwhetherhe
actually suffers from this pain up to the degree 0.4. Si-
milarly, Headache is not a characteristic symptom for
Chest problem, but it is excluded for this diagnosis only
up to the degree 0.6 – it is then undeterminedwhether
this symptom is speci ic for this diagnosis up to the de-
gree 0.4.

Now, taking into account data from Tab. 6 and Tab.
7 we calculate distances between intuitionistic fuzzy
set 𝑝𝑅 and 𝑑𝑄 for every 𝑝 ∈𝑃 and for every 𝑑 ∈𝐷.
For the normalized Hamming distance the results are
shown in Tab. 8. The shortest distance points out the
proper diagnosis. Namely, Al and Ted suffer from ma-
laria, Bob from stomach problem, and Joe has typhoid.
For the normalized Euclidean distance the results are
similar as shown in Tab. 9.

5. Concluding Remarks
In this paper we have shown an application of

fuzzy approximation operators in supporting medical
diagnosis. These operators are compositions of fuzzy
necessity and fuzzy possibility modal operators well-
known in fuzzymodal logics. Our approach is based on
the observation that approximations of fuzzy sets lead
to intuitionistic fuzzy sets. Then, given two fuzzy re-
lations representing characterizations of patients and
diseases, respectively, in terms of their symptoms, we
have obtained two respective intuitionistic fuzzy rela-
tions. Following the idea proposed by Szmidt and Ka-
cprzyk [30], proper medical diagnosis are determined
basing on distances between intuitionistic fuzzy sets.
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