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Abstract:
In this paperwe present some fuzzymodal operators and
show their two possible applica ons. These operators are
fuzzy generaliza ons of modal operators well-known in
modal logics. We present an applica on of some com-
posi ons of these operators in approxima ons of fuzzy
sets. In par cular, it is shown how skills of candidates can
be matched for selec ng research projects. The underly-
ing idea is based on the observa on that fuzzy sets ap-
proxima ons can be viewed as intui onis c fuzzy sets in-
troduced by Atanassov. Distances between intui onis c
fuzzy sets, proposed by Szmidt and Kacprzyk, support the
reasoning process. Also, we point out how modal opera-
tors are useful for represen ng linguis c hedges, that is
terms like “very”, “definitely”, “rather”, or “more or less”.

Keywords: Modal operators, Fuzzy sets, Approxima on
operators, Intui onis c fuzzy sets, Linguis c hedges

1. Introduc on
The term modal operators usually refers to logical

connectives for modal logics which are characterized
by expressing a modal attitude (necessity, possibil-
ity, belief, knowledge) about propositions they are ap-
plied to. Semantically, these operators are interpreted
as mappings de ined on a universe of binary relations
(in a nonempty domain in discourse, say 𝑋) and sub-
sets of a domain 𝑋, which return another subset of 𝑋.
Such mappings are also called modal operators. The
operators of possibility and necessity are typical ex-
amples of modal operators. Another pair of modal op-
erators, usually referred to as suf iciency (or negative
necessity) and dual suf iciency (or impossibility) were
introduced in order to represent expressions like “nec-
essary false” and “possibly false”, respectively (cf. Hum-
berstone [12], Gargov [10], and Goranko [11]).

Modal operators found many interesting applica-
tions. Probably themost famousones are rough sets in-
troduced by Pawlak [16,17] where necessity and pos-
sibility operators are used for set approximations.

In more general settings modal operators are
mappings of the form 𝑅(𝑋, 𝑌)×℘(𝑌)→℘(𝑋), where
𝑅(𝑋, 𝑌) stands for the family of all binary relations
on two nonempty domains 𝑋 and 𝑌, and ℘(𝑍) is the
power set of 𝑍. In formal concept analysis (FCA) the
suf iciency operator is known as derivation operator
(cf.Wille [31]). Düntsch andGediga [8] discussed com-
positions of modal operators in qualitative data anal-
ysis and in [9] they considered these operators in the
context of knowledge and skills structures.

Modal operators, as traditionally investigated and
applied, are based on classical structures like sets and
relations. From the standpoint of practical applica-
tions this approach is suf icient when we deal with
precise data. However, when the available information
is imprecise, or vague, more general structures are
needed. Fuzzy set theory introduced by Zadeh [32] of-
fers numerous tools and techniques for representing,
processing, and analyzing informationwhich is impre-
cise in its nature. For example, assume that we are to
evaluate student’s skills during some course. Clearly, it
is essential to know to what extend student’s knowl-
edge and abilities match our requirements and the
yes-no information is practically meaningless. Also, it
is important to state to what extent some skill is re-
quired for realizing a particular research project and
the useful/usefulness answersmayhighly restrict cor-
rectness of decision process concerning selection of
proper candidates. Therefore, fuzzy sets and fuzzy re-
lations are natural tools for representing this kind of
data. Fuzzy generalizations of modal operators seem
to be adequate for drawing conclusions from fuzzy in-
formation.

In this paper we present fuzzy generalization of
modal operators and show two their applications. In
the irst application it is shownhow fuzzymodal oper-
ators can be applied for supporting process of select-
ing candidates for research projects. The underlying
information is candidates’ skills and projects’ require-
ments. We point out that the compositions of fuzzy
suf iciency and fuzzy dual suf iciency operators form
fuzzy approximation operators. As observed, these ap-
proximations lead to Atanassov’s intuitionistic fuzzy
sets. Distances between intuitionistic fuzzy sets deter-
mine decisions on selecting candidates for projects.

The second application is focused on the represen-
tation of linguistic hedges. Traditional, and still very
popular representation, originally proposed by Zadeh
[33], is a powering technique. Precisely, if 𝐹 is a fuzzy
set representing some property 𝑃 (e.g., good, high,
old), then for 𝛼 > 1, 𝐹 stands for very P (or de i-
nitely P, extremely P), while √𝑃 represents rather P
(or more or less P, quite P). This approach is purely
technical and, in our opinion, passes over the fact that
linguistic hedges can be treated as speci ic modal ex-
pressions. Following this observation we present rep-
resentations of linguistic hedges using fuzzy necessity
and fuzzy possibility operators. In particular, given
some property of objects (typically an adjective in nat-
ural language) represented by a fuzzy set 𝑃 in the set
𝑋 of objects, we say that an object 𝑥 ∈𝑋 is very P (e.g.,
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very young) to the degree to which all objects from 𝑋
resembling 𝑥 posses the property 𝑃. Similarly, 𝑥 ∈𝑋
is rather P (e.g., rather young) to the degree to which
some object from 𝑋, which resembles 𝑥, has the prop-
erty 𝑃. This way linguistic hedges provide characteri-
zations of objects relatively to other objects.

The paper is organized as follows. In Section 2
we recall basic notions and terminology which will
be used in the paper. Fuzzy modal operators are pre-
sented in Section 3.Wede ine four basic operators and
consider two their compositions. It is pointed out that,
given a fuzzy set 𝐹, these operators constitute fuzzy
approximations of 𝐹 and lead to an intuitionistic fuzzy
set. In Section 4 we propose how these operators may
be useful for matching research projects for potential
candidates taking into account requirements imposed
on particular projects and skills shown by candidates.
The selection criterion is based on a distance between
intuitionistic fuzzy sets. The next section is focused on
modeling linguisticmodi iers bymeans of fuzzy possi-
bility and fuzzy necessity operators. Several schemes
are presented and the corresponding representation
is discussed. Concluding remarks complete the paper.

2. Preliminaries
In this section we present basic notions and some

of their properties which clarify our discussion in the
present paper.
2.1. Fuzzy Sets

Let 𝑋 be a non-empty domain. A fuzzy set in 𝑋 is
any mapping 𝐹 ∶ 𝑋→ [0, 1]. For any 𝑥 ∈𝑋, 𝐹(𝑥) is the
degree towhich 𝑥 belongs to𝐹. Given two fuzzy sets in
𝑋, 𝐴 and 𝐵, we say that

– 𝐴 in (totally) included in 𝐵, written 𝐴⊆𝐵, if
𝐴(𝑥)⩽𝐵(𝑥) for every 𝑥 ∈𝑋,

– 𝐴 is (totally) equal to 𝐵, written 𝐴=𝐵, if
𝐴(𝑥)=𝐵(𝑥) for every 𝑥 ∈𝑋.

A kernel of a fuzzy set 𝐴 in 𝑋 is de ined as

𝑘𝑒𝑟(𝐴) = {𝑥 ∈𝑋 ∶ 𝐴(𝑥)=1}

while the support of a fuzzy set 𝐴 in 𝑋 is the set

𝑠𝑢𝑝𝑝(𝐴) = {𝑥 ∈𝑋 ∶ 𝐴(𝑥) > 0}.

The family of all fuzzy sets in 𝑋 will be denoted by
ℱ(𝑋).

A binary fuzzy relation in 𝑋 and 𝑌 (or just a fuzzy
relation in 𝑋 and 𝑌) is a fuzzy set in 𝑋×𝑌. For ev-
ery 𝑥 ∈𝑋 and for every 𝑦 ∈𝑌, 𝑅(𝑥, 𝑦) is the degree to
which 𝑥 is 𝑅-related with 𝑦. We will write ℛ(𝑋, 𝑌) to
denote the family of all fuzzy relations in 𝑋 and 𝑌. For
𝑅 ∈ℛ(𝑋, 𝑌), the converse relation𝑅 ∈ℛ(𝑌, 𝑋) is de-
ined as 𝑅 (𝑦, 𝑥)=𝑅(𝑥, 𝑦), 𝑥 ∈𝑋 and 𝑦 ∈𝑌. If 𝑋=𝑌,
then we have a binary fuzzy relation on 𝑋 (fuzzy rela-
tion on 𝑋, for short). a fuzzy relation 𝑅 on 𝑋 is called

– re lexive if 𝑅(𝑥, 𝑥)=1 for every 𝑥 ∈𝑋,

– symmetric if 𝑅(𝑥, 𝑦)=𝑅(𝑦, 𝑥) for all 𝑥, 𝑦 ∈𝑋,

– sup-min transitive if

sup
∈
min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧)⩽𝑅(𝑥, 𝑧)

for all 𝑥, 𝑦, 𝑧 ∈𝑋.
2.2. Intui onis c Fuzzy Sets

Intuitionistic fuzzy sets, originally proposed by
Atanassov [1, 2], is an interesting generalization
of fuzzy sets where both degrees of membership
and non-membership are involved. More speci ically,
an intuitionistic fuzzy set in 𝑋 is given by 𝐴 =
{(𝑥, 𝜇 (𝑥), 𝜈 (𝑥)) ∶ 𝑥 ∈𝑋} where 𝜇 , 𝜈 ∈ℱ(𝑋) with
𝜇 (𝑥)+𝜈 (𝑥) ≤ 1 for every𝑥 ∈𝑋, are called amember-
ship and a non-membership function, respectively. For
𝑥 ∈𝑋, 𝜋 (𝑥)=1−𝜇 (𝑥)−𝜈 (𝑥) is a hesitationmargin
re lecting the lack of knowledge of whether 𝑥 belongs
to 𝐴 or not. Clearly, every fuzzy set 𝐴∈ℱ(𝑋) is a spe-
ci ic intuitionistic fuzzy set with 𝜈 (𝑥)=1−𝜇 (𝑥), i.e.,
𝜋 (𝑥)=0 for every 𝑥 ∈𝑋.

As argued by Szmidt and Kacprzyk [30], distance
measures between intuitionistic fuzzy sets should in-
volve all three parameters. Namely, for two intu-
itionistic fuzzy sets, 𝐴 and 𝐵, in a inite universe
𝑋= {𝑥 ,… , 𝑥 }, the normalized Hamming distance is
de ined as

( , )

| ( ) ( )| | ( ) ( )| | ( ) ( )|.

2.3. Fuzzy Logical Connec ves
Fuzzy logical connectives generalize logical con-

nectives of classical logic. The most popular general-
ization of classical conjunction are triangular norms
(t-norms, for short). Speci ically, a triangular norm is
a function⊗ ∶ [0, 1] → [0, 1] satisfying the following
conditions
(T1) 𝑥⊗𝑦=𝑦⊗𝑥 for all 𝑥, 𝑦 ∈ [0, 1] (commutativ-

ity),

(T2) 𝑥⊗(𝑦⊗𝑧)= (𝑥⊗𝑦)⊗𝑧 for all 𝑥, 𝑦, 𝑧 ∈ [0, 1]
(associativity),

(T3) increasing in both arguments, i.e., 𝑥 ⩽𝑧 im-
plies 𝑥⊗𝑦⩽𝑧⊗𝑦 and 𝑦⊗𝑥⩽𝑦⊗𝑧 for all
𝑥, 𝑦, 𝑧 ∈ [0, 1],

(T4) 𝑥⊗1=𝑥 for every 𝑥 ∈ [0, 1] (boundary condi-
tion).

Typical examples of t-norms are:
– the standard t-norm (the largest t-norm)

𝑥⊗ 𝑦= min(𝑥, 𝑦)

– the product
𝑥⊗ 𝑦=𝑥𝑦

– the Łukasiewicz t-norm

𝑥⊗ 𝑦= max(0, 𝑥 + 𝑦 − 1).
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A t-norm is called left-continuous whenever it is left-
continuous on both arguments. Note that all three t-
norms mentioned above are left-continuous. For the
extensive studies on t-norm we refer to Klement,
Mesiar, and Pap [13].

A fuzzy implication→ is a [0, 1] − [0, 1]map with
increasing irst and decreasing second partial map-
pings and satisfying 1→1=0→0=0→1=1, and
1 → 0=0. The well-known fuzzy implications are

– the Kleene-Dienes implication

𝑥→ 𝑦= max(1 − 𝑥, 𝑦),

– the Reichenbach implicator

𝑥 → 𝑦=1 − 𝑥 + 𝑥𝑦,

– the Łukasiewicz implication

𝑥 → 𝑦= min(1, 1 − 𝑥 + 𝑦),

– the Gödel implication

𝑥 → 𝑦 = 1 for 𝑥 ⩽𝑦
𝑦 elsewhere.

A special class of fuzzy implications are residual impli-
cations: given a left-continuous t-norm⊗, its residual
implication is de ined for all 𝑥, 𝑦 ∈ [0, 1],

𝑥 → 𝑦 = sup{𝑧 ∈ [0, 1] ∶ 𝑥⊗𝑧⩽𝑦}.

The Łukasiewicz the the Gaines implications are ex-
amples of residual implications based on⊗ and⊗ ,
respectively. For an extended survey on fuzzy implica-
tions we refer to Baczyński and Jayaram [3].

A fuzzy negation is a mapping ¬ ∶ [0, 1] → [0, 1],
non-increasing and satisfying ¬0=1 and ¬1=0. It
is involutive iff ¬¬𝑥=𝑥 for every 𝑥 ∈ [0, 1]. Resid-
ual implications induce fuzzy negations of the form
¬𝑥=(𝑥→0). Since residual implications are de ined
on the basis of left-continuous t-norms⊗, these type
of fuzzy negations will be referred to as fuzzy nega-
tions induced by ⊗. The standard fuzzy negation
¬𝑥=1 − 𝑥, 𝑥 ∈ [0, 1], is the involutive negation in-
duced by the Łukasiewicz t-norm. It is well-known
that it is the only involutive negation induced by left-
continuous t-norms.

Using fuzzy logical connectives basic operations
on fuzzy sets are de ined. In particular, for a t-norm
⊗ and for a fuzzy negation ¬, the ⊗-intersection
of two fuzzy sets, 𝐴, 𝐵 ∈ℱ(𝑋), is de ined for every
𝑥 ∈𝑋, (𝐴 ∩⊗ 𝐵)(𝑥) = 𝐴(𝑥) ⊗ 𝐵(𝑥), and a fuzzy ¬-
complementation of 𝐴∈ℱ(𝑋) is given by (¬𝐴)(𝑥) =
¬𝐴(𝑥) for every 𝑥 ∈𝑋.

3. Fuzzy Modal Operators
Let𝑋 be a set of objects and let𝑌 be a set of proper-

ties. Any fuzzy set 𝐴∈ℱ(𝑋)may be viewed as a fuzzy
attribute (property): for every object 𝑥 ∈𝑋,𝐴(𝑥) is the
degree to which 𝐴 characterizes 𝑥. Similarly, any fuzzy

set 𝐵 ∈ℱ(𝑌)may be interpreted as a description of an
individual: for any property 𝑦 ∈𝑌, 𝐵(𝑦) is the degree
to which 𝑦 characterizes 𝐵.

Let 𝑅 ∈ℛ(𝑋, 𝑌) be a fuzzy relation which repre-
sents characterizations of objects from 𝑋: for every
object 𝑥 ∈𝑋 and for every property 𝑦 ∈𝑌, 𝑅(𝑥, 𝑦) is
the degree to which 𝑥 posses 𝑦. Given a graded in-
formation about objects represented by a relation
𝑅 ∈ℛ(𝑋, 𝑌), we can derive new information about two
types of relationships, namely a relationship between
objects from 𝑋 determined by their properties and a
relationship between properties from 𝑌 basing on ob-
jects having these properties. These relationships are
represented by fuzzy information relations which are
generalizations of information relations widely stud-
ied within the framework of the rough set-style data
analysis (see, e.g., Orłowska [14], Demri and Orlowska
[7]). Fuzzy information relations were investigated by
Radzikowska andKerre [23,27,29], logical systems ca-
pable to reason about such relations were considered
by Radzikowska [20].

For two objects 𝑥 and 𝑥 from 𝑋, we say that

– 𝑥 is relevant to 𝑥 to the degree towhich all prop-
erties of 𝑥 are also properties of 𝑥 ;

– 𝑥 and 𝑥 are compatible to the degree to which
they both share some common property;

– 𝑥 and 𝑥 are coherent to the degree towhich they
both do not have some property.

In order to derive such relationships fuzzy modal op-
erators are used. These operators, being generaliza-
tions of operators well-known in modal logics, were
extensively studied by Radzikowska and Kerre [18,
19, 22, 24, 25, 25, 26, 28, 29]. Algebraic and logical
aspects were presented by Orłowska, Radzikowska,
and Rewitzky [15]. Recall that these operators are
ℱ(𝑌)→ℱ(𝑋) mappings de ined as follows. Let ⊗ be
a t-norm, let → be a fuzzy implication, and let ¬ be a
fuzzy negation. Given a fuzzy relation 𝑅 ∈ℛ(𝑋, 𝑌), for
every fuzzy set 𝐵 ∈ℱ(𝑌) and for every 𝑥 ∈𝑋,

[𝑅]→𝐵(𝑥) = inf
∈
(𝑅(𝑥, 𝑦)→𝐵(𝑦)) (1)

⟨𝑅⟩⊗𝐵(𝑥) = sup
∈
(𝑅(𝑥, 𝑦) ⊗ 𝐵(𝑦)) (2)

[[𝑅]]→𝐵(𝑥) = inf
∈
(𝐵(𝑦)→𝑅(𝑥, 𝑦)) (3)

⟨⟨𝑅⟩⟩⊗,¬𝐵(𝑥) = sup
∈
(¬𝑅(𝑥, 𝑦) ⊗ ¬𝐵(𝑦)). (4)

The above operators are called fuzzy necessity, fuzzy
possibility, fuzzy suf iciency, and fuzzy dual suf iciency,
respectively. They have the following natural interpre-
tation in data analysis: for any individual𝐵 ∈ℱ(𝑌) and
for any 𝑥 ∈𝑋,

– [𝑅]→𝐵(𝑥) is the degree to which the object 𝑥 is
relevant to the individual 𝐵;

– ⟨𝑅⟩⊗𝐵(𝑥) is the degree to which the individual 𝐵
and the object 𝑥 are compatible;
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– [[𝑅]]→𝐵(𝑥) is the degree towhich the individual𝐵
is relevant to the object 𝑥;

– ⟨⟨𝑅⟩⟩⊗,¬𝐵(𝑥) is the degree to which the individual
𝐵 and the object 𝑥 are coherent.

Taking 𝑅 and an attribute 𝐴∈ℱ(𝑋), in the similar
way we obtain fuzzy relevance (resp. compatibility,
coherence) between properties. E.g., for any property
𝑦 ∈𝑌, [𝑅 ]𝐴(𝑦) is the degree to which 𝑦 is relevant to
𝐴.

Let us recall some basic properties of operators
(1)–(4).

Property 3.1 For all fuzzy sets𝐴, 𝐵 ∈ℱ(𝑌) and for any
fuzzy relation 𝑅 ∈ℛ(𝑋, 𝑌),

(a) 𝐴 ⊆ 𝐵 implies [𝑅]⊗𝐴 ⊆ [𝑅]⊗𝐵, ⟨𝑅⟩⊗𝐴⊆ ⟨𝑅⟩⊗𝐵,
[[𝑅]]⊗𝐵 ⊆ [[𝑅]]⊗𝐴, and ⟨⟨𝑅⟩⟩⊗,¬𝐵 ⊆ ⟨⟨𝑅⟩⟩⊗,¬𝐴;

(b) If → and ⇒ are two fuzzy implications such that
→⩽⇒ (i.e., 𝑥→𝑦⩽𝑥⇒𝑦 for all 𝑥, 𝑦 ∈ [0, 1]), then
[𝑅]→𝐴 ⊆ [𝑅]⇒𝐴 and [[𝑅]]→𝐴 ⊆ [[𝑅]]⇒𝐴;

(c) If ⊗ and ⊙ are two t-norms such that ⊗ ⩽ ⊙,
then ⟨𝑅⟩⊗𝐴 ⊆ ⟨𝑅⟩⊙𝐴 and ⟨⟨𝑅⟩⟩⊗,¬𝐴 ⊆ ⟨⟨𝑅⟩⟩⊙,¬𝐴
for any fuzzy negation¬.

Now, take a left-continuous t-norm⊗, the residual
implication → based on ⊗, and the fuzzy negation ¬
induced by⊗. Then all four operators (1)–(4) can be
indexed by⊗ only.

Now, let us de ine the following two ℱ(𝑌) − ℱ(𝑌)
operations for every 𝐵 ∈ℱ(𝑌) and for every 𝑦 ∈𝑌:

△⊗𝐵 = ⟨⟨𝑅 ⟩⟩⊗⟨⟨𝑅⟩⟩⊗𝐵 (5)
∇⊗𝐵 = [[𝑅 ]]⊗[[𝑅]]⊗𝐵. (6)

These operators have the following important approx-
imation property:

Property 3.2 Let ⊗ be a left-continuous t-norm such
that its residual implication induces an involutive fuzzy
negation. Then for every 𝑅 ∈ℛ(𝑋, 𝑌) and for every
𝐵 ∈ℱ(𝑌),

△⊗𝐵 ⊆ 𝐵 ⊆ ∇⊗𝐵.

Note that the approximation property holds only for
the Łukasiewicz t-norm ⊗ since it is the only left-
continuous t-norm which induces an involutive fuzzy
negation. The operators (5) and (6) determined by⊗
will be written △ and ∇ , respectively. For any fuzzy
relation 𝑅 ∈ℛ(𝑋, 𝑌) and for any fuzzy set 𝐵 ∈ℱ(𝑌),
△ 𝐵 is a lower bound of 𝐵 whereas ∇ 𝐵 is an up-
per bound of 𝐵 with respect to 𝑅, respectively. The
pair (△ 𝐵, ∇ 𝐵) is called an (△ , ∇ )–approximation
of 𝐵 with respect to 𝑅. For any 𝑦 ∈𝑌, △ 𝐵(𝑦) may be
viewed as the degree to which 𝑦 at least belongs to
𝐵 and ∇ 𝐵(𝑦) can be read as the degree to which 𝑦
at most belongs to 𝐵. Accordingly, for every 𝑦 ∈𝑌, the
value ∇ 𝐵(𝑦) − △ 𝐵(𝑦) is a hesitation region, that is,
the degree to which it is unknown whether 𝑦 belongs
to 𝐵 or not. This leads us to the following observation.

Observation 3.1 Let 𝑅 ∈ℛ(𝑋, 𝑌) and let 𝐴∈ℱ(𝑌).
De ine the following two mappings 𝜇 , 𝜈 ∶ 𝑋 → [0, 1]
for every 𝑥 ∈𝑋,

𝜇 (𝑥) = △ 𝐴(𝑥)
𝜈 (𝑥) = 1 − ∇ 𝐴(𝑥).

Then {(𝑥, 𝜇 (𝑥), 𝜈 (𝑥)) ∶ 𝑥 ∈𝑋} is an intuitionistic fuzzy
set.

Anapplication of these operatorswill be shown in Sec-
tion 4.

Now, let us consider a fuzzy relation 𝑅 on 𝑋,
i.e., 𝑅 ∈ℱ(𝑋, 𝑋). Radzikowska and Kerre [26, 28, 29]
showed the following property.

Property 3.3 Let⊗ be a left-continuous t-norm, let→
be its residual implication, and let ¬ be the fuzzy nega-
tion induced by⊗. Then for every 𝐴∈ℱ(𝑋),

(a) 𝑅 is re lexive
iff ∀𝐴∈ℱ(𝑋), 𝐴⊆ ⟨𝑅⟩⊗𝐴
iff ∀𝐴∈ℱ(𝑋), [𝑅]→𝐴⊆𝐴;

(b) 𝑅 is symmetric
iff ∀𝐴∈ℱ(𝑋), ⟨𝑅⟩⊗[𝑅]→𝐴 ⊆ 𝐴
iff ∀𝐴∈ℱ(𝑋), 𝐴⊆ [𝑅]→⟨𝑅⟩⊗𝐴.

(c) ¬⟨𝑅⟩⊗𝐴⊆ [𝑅]→(¬𝐴) and ⟨𝑅⟩⊗(¬𝐴)⊆¬[𝑅]→𝐴; if
¬ is involutive, then both inclusions are equalities.

Then the following corollary follows.

Corollary 3.1 Let ⊗ be a left-continuous t-norm and
let → be its residual implication. Then for every re lex-
ive and symmetric fuzzy relation 𝑅 on 𝑋 and for every
𝐴∈ℱ(𝑋),

[𝑅]→𝐴⊆ ⟨𝑅⟩⊗[𝑅]→𝐴⊆𝐴⊆ [𝑅]→⟨𝑅⟩⊗𝐴⊆ ⟨𝑅⟩⊗𝐴.

4. Skills Assessment and Projects Matching
In this section we show how fuzzy operators (5)

and (6) can be applied to a proper selection of candi-
dates to research projects that are to be carried out at
some department.

Assume that a set 𝑃 of projects is given. Each one
requires some skills guaranteed its accomplishment.
Let 𝑆 be a set of these skills. Researchers responsi-
ble for projects present their requirements by deter-
mining to what extend particular skills are demanded
for their projects. A natural way for representation of
such descriptions is to use a fuzzy relation𝑅 ∈ℛ(𝑃, 𝑆),
where 𝑅(𝑝, 𝑠) is the degree to which a skill 𝑠 ∈ 𝑆 is re-
quired for a project 𝑝. Next, let a group 𝐶 of candidates
(students or researchers) apply for these projects.
They passed some tests which show their abilities in
required skills: for each candidate 𝑐 ∈𝐶 it was eval-
uated to what extent he/she posses particular skills
from 𝑆. Again, fuzzy structures are useful for represen-
tation of candidates’ abilities. In consequence,wehave
another fuzzy relation 𝑄 ∈ℛ(𝐶, 𝑆) such that for every
candidate 𝑐 ∈𝐶 and for every skill 𝑠 ∈ 𝑆, 𝑅(𝑐, 𝑠) is the
degree to which 𝑐’s abilities coincide with the skill 𝑠.

13



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N∘ 1 2017

Tab. 1. Projects’ requirements

𝑅 Java DBases DMining Statistics Algorithmics
𝑝 0.7 0.9 1.0 0.6 0.5
𝑝 0.2 0.8 0.9 0.8 0.6
𝑝 0.9 0.6 0.4 1.0 0.8

Tab. 2. Candidates’ skills

𝑄 Java DBases DMining Statistics Algorithmics
Tom 0.2 0.5 1.0 1.0 0.4
Susan 0.4 1.0 1.0 0.4 0.6
Jane 1.0 0.6 0.6 0.8 0.7
Bill 0.6 0.3 0.9 1.0 0.0
Mary 0.2 0.8 0.7 0.5 0.1
Ted 1.0 0.5 0.7 0.6 0.9

The task is to choose themost adequate candidates for
each project.

First, observe that for any project 𝑝 ∈𝑃, 𝑝𝑅 is its
description in terms of skills it requires, and for ev-
ery candidate 𝑐 ∈𝐶, 𝑐𝑄 is his/her description in terms
of his/her abilities. Then the simplest solution of our
problem seems to take distances between fuzzy sets
𝑐𝑄 and 𝑝𝑅 – the proper choice of a candidate for a
project 𝑝 is pointed out by the shortest distance.

However, this method has a substantial drawback.
Observe that the relation 𝑅 explicitly shows require-
ments for particular projects, but implicitly𝑅 gives in-
formation about relationships between projects and
between skills. This implicit information should be
taken into account when the candidate selection is to
be made adequately.

Following the interpretation presented in Section
3, any fuzzy set 𝐴∈ℱ(𝑆) can be viewed a problem and
𝐴(𝑠) is the degree to which a skill 𝑠 ∈ 𝑆 is required to
solve 𝐴. Analogously, any fuzzy set 𝐵 ∈ℱ(𝑃)may rep-
resent some feature and 𝐵(𝑝) is the degree to which a
project 𝑝 ∈𝑃, if carried out, requires 𝐵. Taking a fuzzy
implication→, a t-norm⊗, and a fuzzy negation¬, for
any problem 𝐴∈ℱ(𝑆) and for any project 𝑝 ∈𝑃,
- [[𝑅]]→𝐴(𝑝) is the degree to which the problem 𝐴 is
relevant to the project 𝑝;

- ⟨⟨𝑅⟩⟩⊗,¬𝐴(𝑝) is the degree to which the project 𝑝 and
the problem 𝐴 are coherent.

Similarly, for an attribute 𝐵 ∈ℱ(𝑃) and for any skill
𝑠 ∈ 𝑆, [[𝑅 ]]→𝐵(𝑠) is the degree to which the attribute
𝐵 is relevant to the skill 𝑠, whereas ⟨⟨𝑅 ⟩⟩⊗,¬𝐵(𝑠) is
the degree to which the attribute 𝐵 and the skill 𝑠 are
coherent.

Now, take a left-continuous t-norm. For any prob-
lem 𝐴∈ℱ(𝑆) and for any skill 𝑠 ∈ 𝑆,
- △⊗𝐴(𝑠) is the degree to which the skill 𝑠 is coher-
ent with the attribute ⟨⟨𝑅⟩⟩⊗𝐴, or equivalently, the
degree to which some project incoherent with the
problem 𝐴 does not require the skill 𝑠;

- ∇⊗𝐴(𝑠) is the degree to which the attribute [𝑅]⊗𝐴
is relevant to 𝑠; in other words, the degree to which
all projects to which the problem𝐴 is relevant to, re-
quire the skill 𝑠.

By Property 3.2, any problem 𝐴∈ℱ(𝑆) can be ap-
proximated using a relation 𝑅 and any left-continuous
t-norm⊗. In particular, for a candidate 𝑐 ∈𝐶 and a de-
scription 𝑐𝑄 of his/her abilities, we have

△⊗𝑐𝑄 ⊆ 𝑐𝑄 ⊆ ∇⊗𝑐𝑄.

Hence, for all candidates 𝑐 ∈𝐶, we obtain lower and
upper bounds of their abilities with respect to partic-
ular skills 𝑠 ∈ 𝑆. These approximated evaluations take
into accountboth abilities of candidates resulting from
tests they passed, and requirements for projects they
applied for. Note that these requirements are twofold:
on one hand they follow from researchers’ needs (de-
scribed directly in the relation 𝑅) and, in addition,
those ones which result from relationships between
both projects and skills (implicitly follow from the
relation 𝑅). Consequently, the proposed approxima-
tion uses both explicit and implicit knowledge of all
projects’ coordinators. Clearly, such an information is
required for selecting proper candidates.

Example 4.1 Let 𝑃 be a set of three projects 𝑝 , 𝑝 , 𝑝
and let 𝑆 be a set of ive skills required: Program-
ming in Java (Java), Data Bases (DBases), Data Mining
(DMining), Statistics (Statistics), and Algorithmics (Al-
gorithmics). A fuzzy relation 𝑅 ∈ℛ(𝑃, 𝑆) given in Tab.
1 represents requirements for projects 𝑝 ∈𝑃 in terms
of skills 𝑠 ∈ 𝑆. Next, let 𝐶 = {Tom,Alan, Jim, 𝑎𝑛𝑑Bill} be
a group of four candidates for projects 𝑃. A fuzzy rela-
tion 𝑄 ∈ℱ(𝐶, 𝑆) presented in Tab. 2 represents candi-
dates’ skills, Now, taking the Łukasiewicz logical con-
nectives: t-norm ⊗ , implications → , and the nega-
tion ¬ (in fact, the standard negation ¬ ), (△ , ∇ )–
approximations of particular candidates’ abilities are
presented in Tab. 3. □

However, there is still a question as towhich candi-
date is the proper one for particular projects. To cope
with this problem we adopt the methodology as in
[21]. Namely,

Step 1: Determine (△ , ∇ )–approximation of de-
scriptions 𝑝𝑅 of each project 𝑝 ∈𝑃;
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Tab. 3. Candidates’ assessments

𝑄 Java DBases DMining Statistics Algorithmics
Tom (0.2,0.4) (0.4,1.0) (0.6,1.0) (0.3,1.0) (0.4,0.8)
Susan (0.4,0.4) (0.4,1.0) (0.6,1.0) (0.4,0.7) (0.5,0.6)
Jane (0.8,1.0) (0.6,0.8) (0.6.0.6) (0.6,0.9) (0.6,0.8)
Bill (0.4,0.6) (0.2,1.0) (0.4,0.9) (0.0,1.0) (0.0,0.9)
Mary (0.2,0.2) (0.3,0.8) (0.5,0.7) (0.1,0.6) (0.1,0.5)
Ted (0.8,1.0.) (0.5,0.9) (0.6,0.7) (0.5,1.0) (0.5,0.9)

Tab. 4. Projects’ assessments

𝑅 Java DBases DMining Statistics Algorithmics
𝑝 (0.7,0.7) (0.4,0.9) (0.6,1.0) (0.4,0.6) (0.5,0.5)
𝑝 (0.2,0.2) (0.4,0.8) (0.6,0.9) (0.3,0.8) (0.4,0.6)
𝑝 (0.8,0.9) (0.2,0.6) (0.4,0.4) (0.4,1.0) (0.5,0.8)

Tab. 5. Intui onis c fuzzy rela on 𝑅 (projects-skills)

𝑅 Java DBases DMining Statistics Algorithmics
𝑝 (0.7,0.3,0.0) (0.4,0.1,0.5) (0.6.0.0,0.4) (0.4,0.4,0.2) (0.5,0.5,0.0)
𝑝 (0.2,0.8,0.0) (0.4,0.2,0.4) (0.6,0.1,0.3) (0.3,0.2,0.5) (0.4,0.4,0.2)
𝑝 (0.8,0.1,0.1) (0.2,0.4,0.4) (0.4,0.6,0.0) (0.4,0.0,0.6) (0.5,0.2,0.3)

Tab. 6. Intui onis c fuzzy rela on 𝑄 (candidates-skills)

𝑄 Java DBases DMining Statistics Algorithmics
Tom (0.2,0.6,0.2) (0.4,0.0,0.6) (0.6,0.0,0.4) (0.3,0.0,0.7) (0.4,0.2,0.4)
Susan (0.4,0.6,0.0) (0.4,0.0,0.6) (0.6,0.0,0.4) (0.4,0.3,0.3) (0.5,0.4,0.1)
Jane (0.8,0.0,0.2) (0.6,0.2,0.2) (0.6,0.4,0.0) (0.6,0.1,0.3) (0.6,0.2,0.2)
Bill (0.4,0.4,0.2) (0.2,0.0,0.8) (0.4,0.1,0.5) (0.0,0.0,1.0) (0.0,0.1,0.9)
Mary (0.2,0.8,0.0) (0.3,0.2,0.5) (0.5,0.3,0.2) (0.1,0.4,0.5) (0.1,0.5,0.4)
Ted (0.8,0.0,0.2) (0.5,0.1,0.4) (0.6,0.3,0.1) (0.5,0.0,0.5) (0.5,0.1,0.4)

Step 2: Calculate intuitionistic fuzzy relations, 𝑅
and 𝑄 determined by 𝑅 and 𝑄, respectively,
and the approximation operators (5) and (6):
𝑅 = {(𝜇 (𝑝, 𝑠), 𝜈 (𝑝, 𝑠), 𝜒 (𝑝, 𝑠)) ∶ 𝑝 ∈𝑃, 𝑠 ∈ 𝑆},
𝑄 = {(𝜇 (𝑐, 𝑠), 𝜈 (𝑝, 𝑠), 𝜒 (𝑝, 𝑠)) ∶ 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆}
are given by:

𝜇 (𝑝, 𝑠) = △ (𝑝𝑅)
𝜈 (𝑝, 𝑠) = 1 − ∇ (𝑝𝑅)(𝑠)
𝜒 (𝑝, 𝑠) = ∇ (𝑝𝑅)(𝑠) − △ (𝑝𝑅)(𝑠)

and

𝜇 (𝑐, 𝑠) = △ (𝑐𝑄)
𝜈 (𝑐, 𝑠) = 1 − ∇ (𝑐𝑄)(𝑠)
𝜒 (𝑐, 𝑠) = ∇ (𝑐𝑄)(𝑠) − △ (𝑐𝑄)(𝑠),

respectively.

Step 3: Distances between intuitionistic fuzzy sets
point out the proper candidate selection: a candi-
date 𝑐 is chosen for a project 𝑝whenever the dis-
tance 𝑑𝑖𝑠𝑡(𝑐𝑄 , 𝑝𝑅 ) is the shortest for all 𝑐 ∈𝐶.

Example 4.1 (cont.) Tab. 4 shows the results of
(△ ,△ )–approximations of 𝑐𝑄 for every 𝑐 ∈𝐶. Intu-
itionistic fuzzy relations 𝑅 and𝑄 , derived from these

approximations, are given in Tab. 5 and Tab. 6, respec-
tively. Normalized Hamming distances between re-
spective intuitionistic fuzzy sets are presented in Tab.
7. Therefore, Susan should be chosen for the project
𝑝 , she andMary for 𝑝 , and Ted for 𝑝 . □

Tab. 7. Distances between candidates’ and projects’
descrip ons

𝑝 𝑝 𝑝
Tom 0.3 0.18 0.36
Susan 0.12 0.16 0.4
Jane 0.32 0.36 0.22
Bill 0.5 0.44 0.46
Mary 0.32 0.16 0.4
Ted 0.3 0.32 0.18

The approximation operators (5) and (6) are not
the only ones that enables to estimate information
given by relations. Radzikowska [21] presented an-
other pair of operators also constructed from modal-
like operators which allow us for similar approxima-
tions. Also, following rough set-style data analysis one
can derive fuzzy information relations and on their ba-
sis approximate fuzzy sets using fuzzy necessity and
fuzzy possibility.
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5. Modeling Linguis c Hedges
In this section we show how fuzzy necessity and

fuzzy possibility operators can be applied for model-
ing linguistic hedges. This approach was presented by
De Cock, Radzikowska, and Kerre [5, 6] and then de-
veloped by De Cock and Kerre [4].

In natural languagemany properties of objects are
normally expressed by adjectives, for example good,
young, warm. Using fuzzy-set theoretical approach,
they are represented by fuzzy sets. Linguistic mod-
i iers (also referred to as linguistic hedges) are spe-
ci ic type of linguistic expressions like very, extremely,
more or less, quite. While applied to adjectives, linguis-
tic hedges allow us to express an emphasis we impose
on the corresponding properties. In general, there are
two types of linguistic hedges: intensifying and weak-
ening. While the former strengthen the emphasis im-
posed on the term they are applied to (e.g., very good,
extremelywarm, de initely high), the latterweaken this
emphasis (e.g., quite good, more or less warm, rather
high).

In the literature two types of interpretation of lin-
guistic hedges are use: inclusive and non-inclusive.
Roughly speaking, for a given property 𝑃, in the in-
clusive interpretation any object quali ied as “very P”
is also viewed as having the property 𝑃 and an ob-
ject which posses the property 𝑃 is also referred to as
quite P. For instance, if someone is called very tall, then
he/she is also viewed as tall and quite tall. Therefore,
when representing linguistic terms by fuzzy sets, the
following semantic entailment holds:

extremely P ⊆ very P ⊆ P⊆more or less P ⊆ rater P.

On the other hand, in the non-inclusive interpretation
objects quali ied as very P are not considered P (e.g.,
people of 90 years old or more, called very old, are not
viewed as just old). In this section only the inclusive in-
terpretation is considered andmodi ied termsare rep-
resented by supersets or subsets of the original term.

In the literature there are many approaches for
modeling linguistic hedges. Probably themost popular
representation, proposed by Zadeh [33], is a powering
technique: given a fuzzy predicate𝑃 (stated a property
of objects and represented by a fuzzy set), the modi-
ied term is represented by 𝑃 with 𝛼 > 1 for inten-
sifying hedges and 𝛼 ∈ (0, 1) for weakening ones. One
disadvantage of this approach is that both a kernel and
a support of 𝑃 are preserved: 𝑘𝑒𝑟(𝑃)=𝑘𝑒𝑟(𝑃 ) and
𝑠𝑢𝑝𝑝(𝑃)= 𝑠𝑢𝑝𝑝(𝑃 ). However, it seems counterintu-
itive: if John is 25 years old, he is obviously viewed as
young to the degree 1, yet intuitively he is very young
up to the lower degree, say 0.9. Moreover, this method
is based on technical operations only and does not
take into account any inherited meaning from mod-
i ied terms. It is worth noting that linguistic hedges
add a special emphasis to adjectives they are applied
to. For example, while saying that “George is a very
good doctor” one wants to emphasise George’s med-
ical quali ications. This conviction may be viewed as
an implicit reference tomedical quali ications of other
doctors. In this sense linguistic hedges have a rel-

ative lavor and, as such, are in fact modal expres-
sions, like certainly, sometimes, or presumably. Conse-
quently, they are to be modeled in the similar way as
modalities, that is using relational methods.

Following this idea we present another represen-
tation of linguistic hedges basing on the notion of re-
semblance. This approach was proposed by De Cock,
Radzikowska, and Kerre [5, 6], and by De Cock and
Kerre [4]. Intuitively, having a universe 𝑋 of objects,
any 𝑥 ∈𝑋 is threated as resembling itself and, if 𝑥 ∈𝑋
resembles 𝑦 ∈𝑋, then also 𝑦 resembles 𝑥. This re-
lationship is represented by re lexive and symmet-
ric fuzzy relation (originally de ined on the basis of
pseudo-metric spaces, yet in practice it is often as-
sumed that the underlying pseudo-metric is the iden-
tity). Transitivity is not required since it may lead to
counterintuitive results. For example, a temperature
of 0∘C resembles 1∘C up to the degree 1, also 1∘C to-
tally resembles 2∘C , the same with 10∘C and 11∘C, yet
0∘C resembles 11∘C to the degree de initely less than
1. Having established a resemblance relation 𝑅 on a
universe in discourse, linguistic hedges are modelled
by fuzzy necessity (1) and fuzzy possibility (2) opera-
tors. Namely, given a fuzzy predicate𝑃, an intensifying
modi ier 𝑖𝑀𝑜𝑑, and a weakening modi ier 𝑤𝑀𝑜𝑑, we
use the following general schemas:

𝑖𝑀𝑜𝑑(𝑃) = [𝑅]→𝑃
𝑤𝑀𝑜𝑑(𝑃) = ⟨𝑅⟩⊗𝑃.

For example, if 𝑃 ∈ℱ(𝑋) stands for good, then very
good is represented by [𝑅]→𝑃, while quite good is rep-
resented by ⟨𝑅⟩⊗𝑃. This representation re lects our
underlying intuition: 𝑥 is called very good up to the de-
gree to which all objects resembling 𝑥 are quali ied as
good.

Various intensifying (resp. weakening) modi iers
re lect different emphasis on terms they are applied
to. Assume that two intensifyingmodi iers, 𝑖𝑀𝑜𝑑 and
𝑖𝑀𝑜𝑑 , are such that 𝑖𝑀𝑜𝑑 re lects a stronger empha-
sis than 𝑖𝑀𝑜𝑑 . Then, for any fuzzy predicate 𝑃,

𝑖𝑀𝑜𝑑 (𝑃)⊆ 𝑖𝑀𝑜𝑑 (𝑃). (7)

The following three schemes are proposed for the rep-
resentation of the resulting modi ied terms:
Scheme 1.i: Take two fuzzy implications, → and ⇒,
such that→ ⩽ ⇒. Then

𝑖𝑀𝑜𝑑 (𝑃) = [𝑅]→𝑃
𝑖𝑀𝑜𝑑 (𝑃) = [𝑅]⇒𝑃.

Here the inclusion (7) is guaranteed by Property
3.1(c).
Scheme 2.i: Take a t-norm⊗ and a fuzzy implication
→. Then

𝑖𝑀𝑜𝑑 (𝑝) = [𝑅]→𝑃
𝑖𝑀𝑜𝑑 (𝑃) = ⟨𝑅⟩⊗[𝑅]→𝑃.

Now, (7) holds due to Corollary 3.1.
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Scheme 3.i: Take two fuzzy implications → and ⇒.
Then

𝑖𝑀𝑜𝑑 (𝑃) = [𝑅]⇒[𝑅]→𝑃

The inclusion (7) also holds by re lexivity of 𝑅 and
Property 3.3(a).

For example, the intuition dictates that from
among intensifyingmodi iers extremely,de initely, and
very, the irst one is the strongest modi ier, while the
last one is the the weakest one. Hence, for any fuzzy
predicate 𝑃, we expect

extremely 𝑃 ⊆ de initely 𝑃 ⊆ very 𝑃.
Using the above schemes we represent these terms as

extremely 𝑃 = [𝑅]→[𝑅] ⇒ 𝑅
de initely 𝑃 = [𝑅]⇒𝑃

very 𝑃 = [𝑅]→𝑃
where fuzzy implications→ and⇒ satisfy⇒ ⩽ →.

Similarly, for weakening modi iers we have three
schemes. Assume that 𝑤𝑀𝑜𝑑 and 𝑤𝑀𝑜𝑑 are two
weakening modi iers such that the former re lects
weaker emphasis than the latter one. Consequently,
for any fuzzy predicate 𝑃,

𝑤𝑀𝑜𝑑 (𝑃)⊆𝑤𝑀𝑜𝑑 (𝑃). (8)
Scheme 1.w: Take two t-norms,⊗ and⊙, satisfying
⊗ ⩽⊙. Then

𝑤𝑀𝑜𝑑 (𝑃) = ⟨𝑅⟩⊙𝑃
𝑤𝑀𝑜𝑑 (𝑃) = ⟨𝑅⟩⊗𝑃.

(8) is guaranteed by Property 3.1(d).

Scheme 2.w: Take a fuzzy implication→ and a t-norm
⊗. The

𝑤𝑀𝑜𝑑 (𝑃) = ⟨𝑅⟩⊗𝑃
𝑤𝑀𝑜𝑑 (𝑃) = [𝑅]→⟨𝑅⟩⊗𝑃.

(8) holds by Corollary 3.1.

Scheme 3.w: Take two t-norms,⊗ and⊙. Then
𝑤𝑀𝑜𝑑 (𝑃) = ⟨𝑅⟩⊙⟨𝑅⟩⊗𝑃
𝑤𝑀𝑜𝑑 (𝑃) = ⟨𝑅⟩⊗𝑃.

Again, (8) is satis ied by re lexivity of 𝑅 and Property
3.3(a).

Assume that for three weakening modi iers:
rather, quite, and more or less semantic entailment is
such that

rather P ⊆ quite P ⊆more or less P.
Then

rather 𝑃 = ⟨𝑅⟩⊗𝑃
quite 𝑃 = ⟨𝑅⟩⊙𝑃

more or less 𝑃 = ⟨𝑅⟩⊗⟨𝑅⟩⊙𝑃
where⊗ and⊙ are t-norms such that⊗ ⩽⊙.

Example 5.1 Let 𝑋 = [0,+∞) be a universe of tem-
peratures and let a resemblance relation on𝑋 be given
by

𝑅(𝑥, 𝑦) = min 1,max 0 , 2 − |𝑥 − 𝑦|
2

Note that𝑅 is re lexive and symmetric, but not sup-⊗-
transitive for any t-norm⊗. Indeed, we have

𝑅(10, 13 )⊗𝑅(13 , 15 )
⩽ min(𝑅(10, 13 ), 𝑅(13 , 15 ))
= min( , )
=
⩽̸0
=𝑅(10, 15 ).

Let a fuzzy set 𝑊∈ℱ(𝑋), representing a term warm,
be given by

𝑊(𝑥) =
0 𝑥 ≤ 20
𝑥 − 4 20 < 𝑦 < 25

1 𝑥 ≥ 25

Now, fuzzy sets ([𝑅] 𝑊 and [𝑅] [𝑅] 𝑊 given be-
low, represent terms very warm and de initely warm,
respectively.

[𝑅] 𝑊(𝑥) =
0 𝑥 ≤ 22
𝑥− 22 < 𝑥 < 29

1 𝑥 ≥ 29

[𝑅] [𝑅] 𝑊(𝑥) =
0 𝑥 ≤ 24
𝑥− 24 < 𝑥 < 33

1 𝑥 ≥ 33

On the other hand, ⟨𝑅⟩ 𝑊 and ⟨𝑅⟩ 𝑊 represent
more or less warm and rather warm, respectively.

⟨𝑅⟩ 𝑊(𝑥) =
0 𝑥 ≤ 18
𝑥− 18 < 𝑥 < 23

1 𝑥 ≥ 23

⟨𝑅⟩ 𝑊(𝑥) =
0 𝑥 ≤ 16
𝑥− 16 ≤ 𝑥 ≤ 23

1 𝑥 ≥ 23

Note that

[𝑅] [𝑅] 𝑊 ⊆ [𝑅] 𝑊 ⊆ 𝑊 ⊆ ⟨𝑅⟩ 𝑊 ⊆ ⟨𝑅⟩ 𝑊.

These membership functions are depicted in Fig. 1. □

Consider now the following three expressions:
(E1) x is rather very P;
(E2) x is P;
(E3) x is de initely quite P.
Note that in (E1) a weaker emphasis is put on the fact
represented by very P, but stronger than in the state-
ment (E2) – consequently, the expressivity in some-
where in between. Similarly, (E3) is a stronger ex-
pression that x is quite P, but weaker than (E2), so
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Fig. 1. Membership func ons for linguis c terms

(a) Membership func ons for linguis c
terms (from le to right): ⟨ ⟩ (rather
warm), ⟨ ⟩ (more or less warm),
(warm)
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(b) Membership func ons for linguis c
terms (from le to right): (warm),
[ ] (very warm), [ ] [ ]
(definitely warm)
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its expressive power is intermediate. In our frame-
work the statements (E1) and (E3) can be represented
by ⟨𝑅⟩⊗[𝑅]→𝑃 and [𝑅]⇒⟨𝑅⟩⊙𝑃, respectively, where⊗
(resp.⊙) is a left-continuous t-norm and→ (resp.⇒)
is its residual implication. By Corollary 3.1, we have

⟨𝑅⟩⊗[𝑅]→𝑃 ⊆ 𝑃 ⊆ [𝑅]⇒⟨𝑅⟩⊙𝑃,
which coincides with our intuition.

There is a kind of dualism between some linguistic
hedges. Namely, let the following expressions be given:
(E4a) rather not P;
(E5a) not very P.
In particular, if we say that a temperature outside is
rather not warm, it obviously cannot be treated as ex-
tremely warm, whence rather not P ⊆ not very P. By
Property 3.3(c) this can be modeled by operators (2)
for (E4a) and by (1) for (E5a) using a left-continuous
t-norm⊗, its residual implication→, and the negation
¬ induced by⊗. However, if in some cases rather not
P=not very P is required, one can apply Łukasiewicz
connectives.

Similarly, consider the following expressions:
(E4b) de initely not P;
(E5b) not quite P.
For example, if one says that outside is not even quite
warm, the intuition dictates that it is de initely not
warm, thus not quite P ⊆ de initely not P. As before, by
Property 3.3(c) this case may be supported by choos-
ing a left-continuous t-norm ⊗, its residual implica-
tion, and the negation induced by⊗. Łukasiewicz con-
nectives are to be applied whenever equality is de-
sired.

6. Concluding Remarks
In this paper we have presented two applications

of fuzzy modal operators. First, we have shown how
these operators may be used for fuzzy set approx-
imations. Basing on the observation that fuzzy set
approximations maybe viewed as intuitionistic fuzzy
sets, we have presented the application of these op-
erators in the problem of skills matching for selecting
research projects. Also,wehave pointed out how fuzzy
possibility and fuzzy necessity operators can be used
for modeling linguistic hedges. This representation is
based on the observation that linguistic hedges may
be viewed as speci ic kind of modal expressions. The
presented approach re lects the contextual meaning
of these modi iers which is, in our opinion, intuitively
justi ied.
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