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Abstract:
The averaging aggregaƟon operators are defined and
some interesƟng properƟes are derived. Moreover, we
have extended concave and convex property. The main
results concerning aggregaƟon of generalized quasicon-
cave and quasiconvex funcƟons are presented and some
their properƟes are derived and discussed. The class of
concavity and convexity of two variable aggregaƟon op-
erators that preserve these properƟes are studied.

Keywords: aggregaƟon funcƟons, interval-valued fuzzy
sets, S-convexity, T-concavity

1. IntroducƟon
In this paper is focused on aggregation of a ϐinite

number of real numbers into a single number and
its use in designing new classes of generalized con-
vex functions that may be useful in optimization the-
ory and decision analysis. In decision making, aggre-
gated values are typically preference or satisfaction
degrees restricted to the unit interval [0, 1]. Here, a
decision problem in X is considered, i.e., the problem
to ϐind the “best” decision in the set of feasible de-
cisions X with respect to several criteria functions,
where preferences via interval-valued fuzzy values are
represented.

Interval-valued fuzzy relations are a tool that
make it possible to model in an effective way imper-
fect information. In this paper also the transitivity
problem of interval-valued fuzzy relations is dis-
cussed. Transitivity property reϐlects the consistency
of a preference relation. Therefore transitivity is
important from the point of view of real problems
appearing, e.g., in group decision making, choice
and utility theories widely making use of the prefer-
ence procedures. In economics, the utility function
measures welfare or satisfaction of a consumer as a
function of consumption of real goods, such as food,
clothing and composite goods rather than nominal
goods measured in nominal terms. Utility function is
widely used in the rational choice theory to analyze
human behavior. Thus interval-valued fuzzy relations
can be applied in group decision making problems
in a situation when a solution from the individual
preferences over some set of options should be
derived. We will consider here group decision making
while each option fulϐills a set of criteria to some
extent and, on the other hand, it does not fulϐill this
set of criteria to some extent (the alternatives can
be conveniently expressed via interval-valued fuzzy

sets). Group decision making and the notion of the
interval fuzzy alternatives can be applied in social
choice theory. Social choice theory is the study of
group decision processes and procedures, concerning
the aggregation of individual inputs (e.g., votes,
preferences, judgments, welfare) into collective out-
puts (e.g., group decisions, preferences, judgments,
welfare). Social choices can be made by: voting or the
market mechanism, typically used to make political
decisions or economic decisions, respectively. Social
choice theory took off in the 20th century with the
Kenneth Arrow works [2] and Amartya Sen [25]. It is
inϐluence extends across economics, political science,
philosophy, mathematics, and recently computer
science and biology. Arrow’s impossibility theorem
arises by adding additional condition, transitive
rationality: the social choice function is derived from
a social welfare function in the sense that the winners
are the elements which are ranked highest by the
social welfare function. Apart from contributing to
our understanding of collective decision procedures,
social choice theory has applications in the areas of
institutional design, welfare economics, and social
epistemology. There, preference relations appear, for
example, in choice and utility theories. Preference
relations are of great interest nowadays because of
their applications [31], [33] or [13]. Among others,
transitivity property of interval-valued fuzzy relations
is examined. This property is important because of
its possible applications in the preference proce-
dures [32]. The accuracy of the ϐinal ranking of the
alternatives must be based on consistent judgments
as an inconsistent preference relation may lead to
wrong conclusions. Traditionally, the consistency of
a preference relation is characterized by transitivity.
Convexity of utility functions is one of themost impor-
tant aspects connected with the study of geometric
properties of not only crisp, but also fuzzy sets and
interval-valued fuzzy sets. Some generalization of con-
vexity in multi-expert decision problems by penalty
function is used (see [5], [7]). Various deϐinitions of
convexity and its generalized versions are widely
used, mostly in optimization problems (see [23]). An
important property of convex sets is that convexity is
preserved under aggregations. We will study a similar
question for the case of quasiconvex, quasiconcave
and T-concave, S-convex interval-valued fuzzy sets.
Together with the aggregation of lattice elements we
will consider also an aggregation of interval-valued
fuzzy sets.
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Aggregation is a fundamental process in group de-
cisionmaking and in other scientiϐic disciplineswhere
the fusion of different pieces of information for obtain-
ing the ϐinal result is important. In the group decision
making a ϐinite set of alternatives 𝑋 = {𝑥ଵ, …, 𝑥} and
a ϐinite set of criteria on the base of which the alter-
natives are evaluated 𝑌 = {𝑦ଵ, …, 𝑦} may be consid-
ered. Interval-valued fuzzy relations 𝑅ଵ, ...𝑅 on a set
X corresponding to each criterion are provided. With
the use of a aggregation function the aggregated fuzzy
relation is obtained and it is supposed to help deci-
sionmakers tomake up their minds. There are several
works contributing to the problem of preservation of
properties of interval-valued fuzzy relations during
aggregation process, such as transitivity, convexity or
concavity during group decision making. In the next
part of this paper we will explore reciprocal proper-
ties. Considering decision making problems in the in-
terval fuzzy environment [8, 18, 21, 33] we deal with
the ϐinite set of alternatives 𝑋 and an expert provid-
ing his/her preference information over alternatives.
In the sequel, we will consider a preference relation
on a ϐinite set 𝑋 which makes it possible to represent
interval-valued fuzzy relations bymatrices𝑅 = [𝑅, 𝑅].
Concerning both 𝑅(𝑖, 𝑗) and 𝑅(𝑖, 𝑗), as follows:

𝑅(𝑖, 𝑗) = [0.5, 0.5] 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑥 𝑎𝑛𝑑 𝑥 (𝑥 ∼ 𝑥),
𝑅(𝑖, 𝑗) > [0.5, 0.5] 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑥 𝑜𝑣𝑒𝑟 𝑥
(𝑥 ≻ 𝑥 (𝑥 ⪰ 𝑥 𝑓𝑜𝑟 𝜌 ≥ [0.5, 0.5])),

𝑅(𝑖, 𝑗) = [1, 1] 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 (𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑙𝑦)
𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑡𝑜 𝑥 ,

𝑅(𝑖, 𝑗) = [0, 0] 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 (𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑙𝑦)
𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑡𝑜 𝑥 .

In this case, the preference matrix, R, is usually as-
sumed additive reciprocal, i.e., 𝑅(𝑖, 𝑗), 𝑅(𝑖, 𝑗) satisfy
the following characteristics for all 𝑖, 𝑗 = 1, ..., 𝑛:

𝑅(𝑖, 𝑗) = 1 − 𝑅(𝑗, 𝑖), 𝑅(𝑖, 𝑖) = 𝑅(𝑖, 𝑖) = 0.5.

The aim of this paper is also to present algorithm
with different comparability relation on interval val-
ues, which follow from the theoretical results pre-
sented here. These algorithms theoretical results are
compared in order to obtain the most useful practical
result.

The paper is structured as follows. In Section 2
equivalence relation on lattice is introduced and suit-
able deϐinitions and properties are mentioned. Then,
aggregation functions and their basic properties are
deϐined, some interesting properties are derived. In
Section 3 T-concave and S-convex functions in some
lattice are considered, i.e. in family of interval-valued
fuzzy relations. Finally the results concerning aggrega-
tion of generalized concave and convex functions are
presented and discussed and example of application is
presented.

2. Basic DefiniƟons
The idea of a lattice was deϐined by Birkhoff in

1967.
Deϐinition 2.1 ( [4]) • A poset (𝑃, ≤) is a set P with a
relation≤which is reϔlexive, antisymmetric and transi-
tive. A chain in a poset is a totally ordered set.
• A lattice L = (𝐿,≤, ∧, ∨) is a poset with the partial
ordering ≤ in 𝐿 and operations ∧ and ∨ satisfying the
properties of absorption, idempotency, commutativity
and associativity. That is a poset such that any two ele-
ments have a uniqueminimal upper boundandaunique
maximal lower bound in 𝐿.
• A lattice is called a bounded lattice if 1 = max 𝐿 ∈ 𝐿,
0 = min 𝐿 ∈ 𝐿.
• A lattice is called a complete lattice if for arbitrary set
𝐴 ∈ 𝐿 there exist inf 𝐴 ∈ 𝐿 and sup𝐴 ∈ 𝐿.
2.1. Equivalent RelaƟon and Quasiconcavity, Quasicon-

vexity
Now the notion of equivalent relation is recalled.

Using a modiϐied relation equivalence from Murali
2002 we put:

Deϐinition 2.2 ( [19], [20]) Functions 𝑓, 𝑔 ∶ 𝑋 → 𝐿
are equivalent (𝑓 ∼ 𝑔), if

𝑓(𝑥) ≤ 𝑓(𝑦) ⇔ 𝑔(𝑥) ≤ 𝑔(𝑦) 𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝑋. (1)

We can easily see
Lemma 2.3 Let 𝐿 be a lattice, 𝑓, 𝑔 ∶ 𝑋 → 𝐿 are equiv-
alent if and only if, there exists bijection 𝜑 ∶ 𝑉 → 𝑉
isotonic with 𝜑ିଵ such that

∀௫∈𝑔(𝑥) = 𝜑(𝑓(𝑥)).

More generally to [10] we have the following results:
Lemma 2.4 Let 𝐿 be a lattice, 𝑓, 𝑔 ∶ 𝑋 → 𝐿 be equiva-
lent. Then

∀௫,௬∈(𝑓(𝑥) = 𝑓(𝑦) ⇔ 𝑔(𝑥) = 𝑔(𝑦)), (2)

∀௫,௬∈(𝑓(𝑥) ≠ 𝑓(𝑦) ⇔ 𝑔(𝑥) ≠ 𝑔(𝑦)), (3)

∀௫,௬∈(𝑓(𝑥) > 𝑓(𝑦) ⇔ 𝑔(𝑥) > 𝑔(𝑦)), (4)

∀௫,௬∈(𝑓(𝑥) || 𝑓(𝑦) ⇔ 𝑔(𝑥) || 𝑔(𝑦)). (5)
Proof. We consider (2). Let 𝑓 ∼ 𝑔 and 𝑥, 𝑦 ∈ 𝑃 ⊂ 𝑋.
Then by Deϐinition 2.2 we can write
𝑓(𝑥) = 𝑓(𝑦) ⇔ (𝑓(𝑥) ≥ 𝑓(𝑦) 𝑎𝑛𝑑 𝑓(𝑥) ≤ 𝑓(𝑦)) ⇔
(𝑔(𝑥) ≥ 𝑔(𝑦) 𝑎𝑛𝑑 𝑔(𝑥) ≤ 𝑔(𝑦)) ⇔ 𝑔(𝑥) = 𝑔(𝑦),
which prove (2), a condition (3) we obtain by comple-
ment.
By Deϐinition 2.2 and (2), (3) we have
𝑓(𝑥) > 𝑓(𝑦) ⇔ (𝑓(𝑥) ≥ 𝑓(𝑦) 𝑎𝑛𝑑 𝑓(𝑥) ≠ 𝑓(𝑦)) ⇔
(𝑔(𝑥) ≥ 𝑔(𝑦) 𝑎𝑛𝑑 𝑔(𝑥) ≠ 𝑔(𝑦)) ⇔ 𝑔(𝑥) > 𝑔(𝑦).
Thus (4) is true.

By (4) we have:
𝑓(𝑥) || 𝑓(𝑦) ⇔
𝑁𝑂𝑇(𝑓(𝑥) ≤ 𝑓(𝑦) 𝑜𝑟 𝑓(𝑥) > 𝑓(𝑦)) ⇔

63



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 4 2016

(𝑁𝑂𝑇(𝑓(𝑥) ≤ 𝑓(𝑦)) 𝑎𝑛𝑑 𝑁𝑂𝑇(𝑓(𝑥) > 𝑓(𝑦))) ⇔
(𝑁𝑂𝑇(𝑔(𝑥) ≤ 𝑔(𝑦)) 𝑎𝑛𝑑 𝑁𝑂𝑇(𝑔(𝑥) > 𝑔(𝑦))) ⇔
𝑁𝑂𝑇(𝑔(𝑥) ≤ 𝑔(𝑦) 𝑜𝑟 𝑔(𝑥) > 𝑔(𝑦)) ⇔ 𝑔(𝑥) || 𝑔(𝑦),
what end the proof.

Proposition 2.5 𝑓, 𝑔 ∶ 𝑋 → 𝐿 are equivalent if and
only if 𝑓 and 𝑔 fulϔill (4) and (5).

Proof. By Lemma 2.4 we see, that (1) ⇒ (4) 𝑖 (5). By
(4) and (5) we have
𝑁𝑂𝑇(𝑓(𝑥) ≤ 𝑓(𝑦)) ⇔
𝑓(𝑥) > 𝑓(𝑦) or 𝑓(𝑥) || 𝑓(𝑦) ⇔
𝑔(𝑥) > 𝑔(𝑦) or 𝑔(𝑥) || 𝑔(𝑦) ⇔ 𝑁𝑂𝑇(𝑔(𝑥) ≤ 𝑔(𝑦))
the negation of both sides give (1).

By above theorem and Lemma 2.4 we obtain

Corollary 2.6 Let 𝑓, 𝑔 ∶ 𝑋 → 𝐿. If 𝑓 and 𝑔 fulϔill (4)
and (5), then also fulϔill (2) and (3).

Proposition 2.7 Let 𝑓, 𝑔 ∶ 𝑋 → 𝐿. If 𝑓 and 𝑔 fulϔills (2)
and (4), then they fulϔill (5).

Proof. By Lemma 2.4 we have 𝑁𝑂𝑇(𝑓(𝑥) || 𝑓(𝑦)) ⇔
𝑓(𝑥) > 𝑓(𝑦) or 𝑓(𝑥) < 𝑓(𝑦) or 𝑓(𝑥) = 𝑓(𝑦) ⇔
𝑔(𝑥) > 𝑔(𝑦) 𝑜𝑟 𝑔(𝑥) < 𝑔(𝑦) or 𝑔(𝑥) = 𝑔(𝑦) ⇔
𝑁𝑂𝑇(𝑔(𝑥) || 𝑔(𝑦)), so we prove (5).

Lemma 2.8 Let 𝐿 be a complete lattice, 𝑓, 𝑔 ∶ 𝑋 → 𝐿. If
𝑓 ∼ 𝑔, then

∀௫∈(𝑓(𝑥) = ሧ
௬∈⊂

𝑓(𝑦) ⇔ 𝑔(𝑥) =ሧ
∈ℕ

𝑔(𝑦)), (6)

∀௫∈(𝑓(𝑥) = ሥ
௬∈⊂

𝑓(𝑦) ⇔ 𝑔(𝑥) =ሥ
∈ℕ

𝑔(𝑦)). (7)

Proof. Let 𝑃 ⊂ 𝑋, 𝑥, 𝑧 ∈ 𝑋 and 𝑓(𝑥) = ⋀௬∈⊂ 𝑓(𝑦).
Then by deϐinition of inϐimumwe have

𝑓(𝑥) = ⋀௬∈⊂ 𝑓(𝑦) ⇔ ∀௬∈(𝑓(𝑥) ≤ 𝑓(𝑦)) 𝑎𝑛𝑑
(∀௬∈(𝑓(𝑧) ≤ 𝑓(𝑦)) ⇒ (𝑓(𝑧) ≤ 𝑓(𝑥))).

(8)
By (1) we have

∀௬∈(𝑓(𝑥) ≤ 𝑓(𝑦)) ⇔ ∀௬∈(𝑔(𝑥) ≤ 𝑔(𝑦)),

∀௬∈(𝑓(𝑧) ≤ 𝑓(𝑦)) ⇔ ∀௬∈(𝑔(𝑧) ≤ 𝑔(𝑦)),

𝑓(𝑧) ≤ 𝑓(𝑥) ⇔ 𝑔(𝑧) ≤ 𝑔(𝑥),
then by (8) we obtain

∀௬∈(𝑔(𝑧) ≤ 𝑔(𝑦)) ⇒ (𝑔(𝑧) ≤ 𝑔(𝑥)),

thus
𝑔(𝑥) =ሥ

௬∈
𝑔(𝑦).

Similarly we can prove the converse implication in (7)
and by the notion of supremumwe may prove (6).

From now on, the set 𝑋 ≠ ∅, 𝑋 ⊆ 𝑅 .

Deϐinition 2.9 ( [1]) Let𝑋 ⊆ 𝑅 . A function𝑓 ∶ 𝑋 → 𝐿
is called
• quasiconcave on 𝑋 if 𝑓(𝜆𝑥+ (1−𝜆)𝑦) ≥ 𝑓(𝑥)∧𝑓(𝑦),
• quasiconvex on 𝑋 if 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝑓(𝑥) ∨ 𝑓(𝑦),
for every 𝑥, 𝑦 ∈ 𝑋 and every 𝜆 ∈ [0, 1] with 𝜆𝑥 + (1 −
𝜆)𝑦 ∈ 𝑋.

We know that if a function is concave (convex),
then it is quasiconcave (quasiconvex), but not vice-
versa.
By lemmas 2.4 and 2.8 we observe
Corollary 2.10 Let 𝐿 be a linear ordered lattice. Let
𝑓, 𝑔 ∶ 𝑋 → 𝐿. If 𝑓 is quasiconcave (quasiconvex) and
𝑓 ∼ 𝑔, then 𝑔 is also quasiconcave (quasiconvex).

Moreover, we will consider transitivity property and
dually transitive property.
Deϐinition 2.11 Let 𝑓, 𝑔 ∶ 𝐿ଶ → 𝐿.
• 𝑓 is transitive if

𝑓(𝑎, 𝑏) ∧ 𝑓(𝑏, 𝑐) ≤ 𝑓(𝑎, 𝑐),

• 𝑓 is dually transitive if

𝑓(𝑎, 𝑏) ∨ 𝑓(𝑏, 𝑐) ≥ 𝑓(𝑎, 𝑐).

For equivalence binary relations we have
Theorem 2.12 Let 𝐿 be a linear ordered lattice.
If 𝑓 ∼ 𝑔, then 𝑓 is transitive (dually transitive) if and
only if 𝑔 is transitive (dually transitive).

Proof. Let 𝑓 ∼ 𝑔, f be transitive and 𝑥, 𝑦, 𝑧 ∈ 𝐿. We
consider:
If 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑦, 𝑧), then

𝑓(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)∧𝑓(𝑦, 𝑧) ⇔ 𝑔(𝑥, 𝑦) = 𝑔(𝑥, 𝑦)∧𝑔(𝑦, 𝑧),

𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑧) ⇔ 𝑔(𝑥, 𝑦) ≤ 𝑔(𝑥, 𝑧),
so

𝑓(𝑥, 𝑦)∧𝑓(𝑦, 𝑧) ≤ 𝑓(𝑥, 𝑧) ⇔ 𝑔(𝑥, 𝑦)∧𝑔(𝑦, 𝑧) ≤ 𝑔(𝑥, 𝑧).
(9)

If 𝑓(𝑥, 𝑦) > 𝑓(𝑦, 𝑧), then

𝑓(𝑦, 𝑧) = 𝑓(𝑥, 𝑦)∧𝑓(𝑦, 𝑧) ⇔ 𝑔(𝑦, 𝑧) = 𝑔(𝑥, 𝑦)∧𝑔(𝑦, 𝑧),

𝑓(𝑦, 𝑧) ≤ 𝑓(𝑥, 𝑧) ⇔ 𝑔(𝑦, 𝑧) ≤ 𝑔(𝑥, 𝑧),
so f and g are transitive. Similarly wemay prove dually
transitivity.

3. T-concavity and S-convexity for Binary Rela-
Ɵons
Werecall the concept of an aggregation function on

𝐿ூ , which is a crucial deϐinition for this paper and

𝐿ூ = {[𝑥ଵ, 𝑥ଶ] ∶ 𝑥ଵ, 𝑥ଶ ∈ [0, 1] ∶ 𝑥ଵ ≤ 𝑥ଶ}

[𝑥ଵ, 𝑥ଶ] ≤ [𝑦ଵ, 𝑦ଶ] ⇔ 𝑥ଵ ≤ 𝑦ଵ ∧ 𝑥ଶ ≤ 𝑦ଶ,
with operations
[𝑥ଵ, 𝑥ଶ] ∧ [𝑦ଵ, 𝑦ଶ] = [min(𝑥ଵ, 𝑦ଵ),min(𝑥ଶ, 𝑦ଶ)],
[𝑥ଵ, 𝑥ଶ]∨[𝑦ଵ, 𝑦ଶ] = [max(𝑥ଵ, 𝑦ଵ),max(𝑥ଶ, 𝑦ଶ)]. (𝐿ூ , ≤)
is a complete lattice with the units 1 = [1, 1] and
0 = [0, 0].
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Deϐinition 3.1 ( [3], [14]) An operation𝒜 ∶ (𝐿ூ) →
𝐿ூ is called an aggregation function if it is increasing
with respect to the order≤ and

𝒜(0 , ..., 0ᇣᇧᇧᇤᇧᇧᇥ
×

) = 0 , 𝒜(1 , ..., 1ᇣᇧᇧᇤᇧᇧᇥ
×

) = 1 .

A relevant class of aggregation functions is that of
representable aggregation functions.

Deϐinition 3.2 ( [9]) Let 𝒜 ∶ (𝐿ூ)ଶ → 𝐿ூ be an ag-
gregation function.𝒜 is said to be a representable ag-
gregation function if there exist two (real) aggregation
functions 𝐴ଵ, 𝐴ଶ ∶ [0, 1]ଶ → [0, 1] such that, for every
[𝑥ଵ, 𝑥ଶ], [𝑦ଵ, 𝑦ଶ] ∈ 𝐿ூ , 𝐴ଵ ≤ 𝐴ଶ it holds that

𝒜([𝑥ଵ, 𝑥ଶ], [𝑦ଵ, 𝑦ଶ]) = [𝐴ଵ(𝑥ଵ, 𝑦ଵ), 𝐴ଶ(𝑥ଶ, 𝑦ଶ)].

Observe that both ∧ and ∨ on 𝐿ூ deϐine repre-
sentable aggregation functions on 𝐿ூ , with 𝐴ଵ = 𝐴ଶ =
min in the ϐirst case and𝐴ଵ = 𝐴ଶ = max in the second.
Moreover, many other examples of representable ag-
gregation functions may be considered, such as:
- the representable product

𝒜([𝑥ଵ, 𝑥ଶ], [𝑦ଵ, 𝑦ଶ]) = [𝑥ଵ𝑦ଵ, 𝑥ଶ𝑦ଶ],

- the representable arithmetic mean

𝒜([𝑥ଵ, 𝑥ଶ], [𝑦ଵ, 𝑦ଶ]) = [𝑥ଵ + 𝑦ଵ
2 , 𝑥ଶ + 𝑦ଶ

2 ],

- the representable geometric mean

𝒜([𝑥ଵ, 𝑥ଶ], [𝑦ଵ, 𝑦ଶ]) = [√𝑥ଵ𝑦ଵ, √𝑥ଶ𝑦ଶ],

- the representable product-mean

𝒜,([𝑥ଵ, 𝑥ଶ], [𝑦ଵ, 𝑦ଶ]) = [𝑥ଵ𝑦ଵ,
𝑥ଶ + 𝑦ଶ

2 ].

Example 3.3 Let 𝐴 ∶ [0, 1]ଶ → [0, 1] be an aggrega-
tion function. The function𝒜 ∶ (𝐿ூ)ଶ → 𝐿ூ , where

𝒜(𝑥, 𝑦) = ቊ [1, 1], (𝑥, 𝑦) = ([1, 1], [1, 1])
[0, 𝐴(𝑥ଵ, 𝑦ଶ)], otherwise

is a non-representable aggregation function on 𝐿ூ .

Special classes of aggregation functions are 𝑡-
norms and 𝑡-conorms (introduced by De Baets and
Mesiar in 1999)

Deϐinition 3.4 (cf. [17]) A triangular norm 𝑇 on a
bounded lattice 𝐿 is an increasing, commutative, asso-
ciative operation 𝑇 ∶ 𝐿ଶ → 𝐿 with the neutral ele-
ment 1 .
A triangular conorm 𝑆 on 𝐿 is an increasing, commuta-
tive, associative operation 𝑆 ∶ 𝐿ଶ → 𝐿 with the neutral
element 0 .

Especially we have representable T-norm or S-
conorm, i.e.

𝑇(𝑥, 𝑦) = [𝑇ଵ(𝑥ଵ, 𝑦ଵ), 𝑇ଶ(𝑥ଶ, 𝑦ଶ)],

where 𝑇ଵ, 𝑇ଶ are fuzzy t-norms and 𝑇ଵ ≤ 𝑇ଶ or
𝑆(𝑥, 𝑦) = [𝑆ଵ(𝑥ଵ, 𝑦ଵ), 𝑆ଶ(𝑥ଶ, 𝑦ଶ)],

where 𝑆ଵ, 𝑆ଶ are fuzzy t-conorms and 𝑆ଵ ≤ 𝑆ଶ.
Nowwewill consider T-concavity (S-convexity) for

relations, thusmore generally than in [15]wehave fol-
lowing deϐinition.
Deϐinition 3.5 Let 𝑋 ⊆ 𝑅 , 𝐿 be a bounded lattice. A
function 𝑓 ∶ 𝑋ଶ → 𝐿 is called
• T-concave on 𝑋ଶ if
𝑓(𝜆𝑥 + (1 − 𝜆)𝑦, 𝜆𝑧 + (1 − 𝜆)𝑡) ≥ 𝑇(𝑓(𝑥, 𝑧), 𝑓(𝑦, 𝑡)),
• S-convex on 𝑋ଶ if
𝑓(𝜆𝑥 + (1 − 𝜆)𝑦, 𝜆𝑧 + (1 − 𝜆)𝑡) ≤ 𝑆(𝑓(𝑥, 𝑧), 𝑓(𝑦, 𝑡)),
for every 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝑋 and 𝜆 ∈ [0, 1] with 𝜆𝑥 + (1 −
𝜆)𝑦, 𝜆𝑧 + (1 − 𝜆)𝑡 ∈ 𝑋.

Some extension of fuzzy relations theory [34] is
interval-valued fuzzy relations theory introduced in-
dependently by Sambuc in 1975 and Gorzałczany in
1987.
Deϐinition 3.6 ( [24]) An interval-valued fuzzy rela-
tion 𝑅 on 𝑋 is a mapping

𝑅 ∶ 𝑋ଶ → 𝐿ூ .
In this presentation wewill use following notation

for the interval-valued fuzzy relation 𝑓 = [𝑓ଵ, 𝑓ଶ],
where 𝑓ଵ, 𝑓ଶ are fuzzy relations.

We can observe the following condition for T-
concavity (S-convexity) of interval-valued fuzzy rela-
tions (more generally than in [16]).
Lemma 3.7 Let 𝑇 ∶ (𝐿ூ)ଶ → 𝐿ூ be a representable tri-
angular norm. The interval-valued fuzzy relation 𝑓 =
[𝑓ଵ, 𝑓ଶ] ∶ 𝑋ଶ → 𝐿ூ is T-concave (S-convex) if and only
if 𝑓ଵ is 𝑇ଵ-concave and 𝑓ଶ 𝑇ଶ-concave (𝑆ଵ, 𝑆ଶ-convex, re-
spectively).

Then we observe following result.
Proposition 3.8 Let 𝑋 ⊆ 𝑅 ,𝒜 ∶ (𝐿ூ)ଶ → 𝐿ூ be rep-
resentable aggregation, 𝑓, 𝑔 ∶ 𝑋ଶ → 𝐿ூ be T-concave
(S-convex) interval-valued fuzzy relations, where𝑇(𝑆) ∶
(𝐿ூ)ଶ → 𝐿ூ be representable triangular norm (conorm).
𝒜 preserves T-concavity (S-convexity) if and only if
its representatives 𝐴ଵ, 𝐴ଶ preserve 𝑇ଵ-concavity, 𝑇ଶ-
concavity (𝑆ଵ-convexity, 𝑆ଶ-convexity), respectively.

We may observe an interesting connection be-
tween T-concavity (S-convexity) and T-transitivity
(dually S-transitivity) in following theorems (cf. [22]).
Thus we will use following deϐinitions.
Deϐinition 3.9 ( [13]) Let 𝑓, 𝑔 ∶ 𝐿ଶ → 𝐿. For
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐿.
• f is T-transitive if

𝑇(𝑓(𝑎, 𝑏), 𝑓(𝑏, 𝑐)) ≤ 𝑓(𝑎, 𝑐),
• f is dually S-transitive if

𝑆(𝑓(𝑎, 𝑏), 𝑓(𝑏, 𝑐)) ≥ 𝑓(𝑎, 𝑐).
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Proposition 3.10 Let 𝑋 ⊆ 𝑅 , 𝒜 ∶ (𝐿ூ)ଶ → 𝐿ூ be a
representable aggregation, 𝑓, 𝑔 ∶ 𝑋ଶ → 𝐿ூ be T-concave
and T-transitive interval-valued fuzzy relations.
If𝒜 preserves T-transitivity, then𝒜(𝑓, 𝑔) is T-concave.

Proof. Let us assume 𝑓, 𝑔 are T-transitive and 𝒜 pre-
serve T-transitivity, i.e. for 𝑧, 𝑘,𝑚 ∈ 𝑋
𝑇(𝑓(𝑧, 𝑘), 𝑓(𝑘,𝑚)) ≤ 𝑓(𝑧,𝑚),
𝑇(𝑔(𝑧, 𝑘), 𝑔(𝑘,𝑚)) ≤ 𝑔(𝑧,𝑚) and

𝑇(𝒜(𝑓(𝑧, 𝑘), 𝑔(𝑧, 𝑘)),𝒜(𝑓(𝑘,𝑚), 𝑔(𝑘,𝑚))) ≤
𝒜(𝑓(𝑧,𝑚), 𝑔(𝑧,𝑚)).

(10)
Especially:

𝑇(𝑓(𝑧, 𝑘), 𝑓(𝑘,𝑚)) = 𝑓(𝑧,𝑚),
𝑇(𝑔(𝑧, 𝑘), 𝑔(𝑘,𝑚)) = 𝑔(𝑧,𝑚), then

𝒜(𝑓(𝑧,𝑚), 𝑔(𝑧,𝑚)) =
𝒜(𝑇(𝑓(𝑧, 𝑘), 𝑓(𝑘,𝑚)), 𝑇(𝑔(𝑧, 𝑘), 𝑔(𝑘,𝑚))). (11)

By isotonicity of operation𝒜 we obtain

𝒜(𝑇(𝑓(𝑧, 𝑘), 𝑓(𝑘,𝑚)), 𝑇(𝑔(𝑧, 𝑘), 𝑔(𝑘,𝑚))) ≤
𝑇(𝒜(𝑓(𝑧, 𝑘), 𝑔(𝑧, 𝑘)),𝒜(𝑓(𝑘,𝑚), 𝑔(𝑘,𝑚))).

(12)
So by (10)-(12) we have

𝒜(𝑇(𝑓(𝑧, 𝑘), 𝑓(𝑘,𝑚)), 𝑇(𝑔(𝑧, 𝑘), 𝑔(𝑘,𝑚))) =
𝑇(𝒜(𝑓(𝑧, 𝑘), 𝑔(𝑧, 𝑘)),𝒜(𝑓(𝑘,𝑚), 𝑔(𝑘,𝑚))).

(13)
Now by T-concavity of 𝑓, 𝑔 andmonotonicity of𝒜 and
by (13) we obtain

𝒜(𝑓(𝜆𝑧 + (1 − 𝜆)𝑘, 𝜆𝑘 + (1 − 𝜆)𝑚),

𝑔(𝜆𝑧 + (1 − 𝜆)𝑘, 𝜆𝑘 + (1 − 𝜆)𝑚)) ≥

𝒜(𝑇(𝑓(𝑧, 𝑘), 𝑓(𝑘,𝑚)), 𝑇(𝑔(𝑧, 𝑘), 𝑔(𝑘,𝑚))) =

𝑇(𝒜(𝑓(𝑧, 𝑘), 𝑔(𝑧, 𝑘)),𝒜(𝑓(𝑘,𝑚), 𝑔(𝑘,𝑚))).

So𝒜(𝑓, 𝑔) is T-concave.

For example, representable weight arithmetic
mean 𝒜 = [𝐴ଵ, 𝐴ଶ] preserves 𝒯-transitivity, where
𝒯 = [𝑇 , 𝑇] is t-norm and 𝑇(𝑎, 𝑏) = 𝑚𝑎𝑥(𝑎 + 𝑏 −
1, 0) or representable weight geometric mean 𝒜 =
[𝐴ଵ, 𝐴ଶ] preserves 𝒯-transitivity, where 𝑇(𝑎, 𝑏) =
𝑎𝑏 and 𝒯 = [𝑇 , 𝑇].

And dually we obtain

Proposition 3.11 Let 𝑋 ⊆ 𝑅 , 𝒜 ∶ (𝐿ூ)ଶ → 𝐿ூ be a
representable aggregation, 𝑓, 𝑔 ∶ 𝑋ଶ → 𝐿ூ be S-convex
interval-valued fuzzy relations.
If 𝒜 preserves dually S-transitivity, then 𝒜(𝑓, 𝑔) is S-
convex.

By Theorem 2.12 and Lemma 2.3 we can generate
family equivalence aggregation functions preserving
T-concavity (S-convexity).

4. ApplicaƟon
By imprecise or incomplete information, for exam-

ple in analysis of social network, we have problem
with comparability of interval values. Thenwe can use
one of presented in this paper comparability relation,
possible, necessary or classical. Mentioned compara-
bility relations we may use in ranking problem in so-
cial networks. Social networks are used to represent
the relationships between individuals of a population.
Where decision making involves individuals gener-
ating problems, providing potential solutions, voting
for solutions, and the software aggregating individual
votes and ultimately deriving a ϐinal decision. Many
decision making processes take place in an environ-
ment in which the information is not precisely known.
As a consequence, experts may feel more comfortable
using an interval number rather than an exact crisp
numerical value to represent their preference. There-
fore, interval-valued fuzzy reciprocal preference rela-
tions can be considered an appropriate representa-
tion format to capture experts’ uncertain preference
information. Social Network Analysis (SNA) method-
ology studies the relationships between social entities
like members of a group, corporations or nations and
it is a useful methodology to examine structural and
location properties such as: centrality, prestige and
structural balance. Thus social network analysis can
be applied to analysis of the structure and the prop-
erty of personal relationship. There we have such an
important issue as ranking, which as the name sug-
gests dealswith ordering the searchof the best results,
workers, product, etc.. The most basic tool for creat-
ing marketing strategies and business plans is SWOT
analysis. Its great advantage is versatility and analysis
in following aspects: strengths, weaknesses, opportu-
nities and threats ( [30], [27] or [26]). We propose to
use in these studies presented in this paper compara-
bility relations to interval values representing uncer-
tainty information in our network.

Our results above allow to perform the follow-
ing applications. Interval-valued fuzzy relations on
𝑋 = {𝑥ଵ, … , 𝑥} (set of users) which represent work-
ers in company are considered. We would like to ϐind
ranking of workers by given criterions 𝐾 = {𝑘ଵ, ..., 𝑘}
and by group of experts 𝐸 = {𝑒ଵ, ..., 𝑒}. Opinion
of our experts we present as interval-valued fuzzy
relations (we use interval values because sometimes
information are not precisely or incomplete) 𝑅ೕ ,
where 𝑖 = 1, ..., 𝑘 and 𝑗 = 1, ..., 𝑛. Because the con-
sistency of a preference relation is characterized
by transitivity, then weakly transitive property is
considered (transitivity property is more restricted).
Relation has weakly transitive property if it fulϐills
following condition:
𝑅(𝑖, 𝑗) ≥ [0.5, 0.5], 𝑅(𝑗, 𝑘) ≥ [0.5, 0.5] ⇒ 𝑅(𝑖, 𝑘) ≥
[0.5, 0.5]. This property can be interpreted as follows:
If the alternative 𝑥 is preferred to 𝑥 , and 𝑥 is
preferred to 𝑥 , then xi should be preferred to 𝑥 .
The following algorithm gives an alternative (a user)
who has the worst/best relationships in the consid-
ered group 𝑋.
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We present algorithm to obtain the ϐinal solution from
a given set of alternatives. We use here theoretical
results presented in the paper.

Algorithm

Inputs: 𝑋 = {𝑥ଵ, … , 𝑥} set of alternatives; 𝑅
ೕ


interval-valued fuzzy reciprocal relations with their
representation by T-concavity and T-transitive utility
functions 𝑓ೕ ∶ 𝑋

ଶ → 𝐿ூ (where 𝑓(𝑖, 𝑗) ≥ 𝑓(𝑖, 𝑘)means
that 𝑥 more prefers 𝑥 then 𝑥); aggregation function
preserves T-transitivity (Proposition 3.10); linear or-
der⪯:
1. Generated by aggregation functions 𝐴, 𝐵:
[𝑎, 𝑏] ⪯, [𝑐, 𝑑] ⇔ 𝐴(𝑎, 𝑏) < 𝐴(𝑐, 𝑑)
or (𝐴(𝑎, 𝑏) = 𝐴(𝑐, 𝑑) and 𝐵(𝑎, 𝑏) ⩽ 𝐵(𝑐, 𝑑)).
This is an admissible order on 𝐿ூ (linear order reϐining
⩽ on 𝐿ூ , cf. [6])
or
2. To solve a problem of incomparability of the
interval-valued fuzzy values we can use the following
method (cf. [29]) for ranking of the alternatives 𝑌:

𝑆𝐾(𝑌) = 0.5(1 + 𝑙)𝑑ு(𝑀, 𝑌), (14)

where 𝑀 is ideal positive alternative [1, 1] and 𝑙 =
𝑌 − 𝑌 . This equation tells us about the “quality” of
an alternative 𝑌 – the lower the value of 𝑆𝐾(𝑌), the
better the alternative 𝑌 in the sense of the amount of
positive information included, and reliability of infor-
mation.

In (14) distance between the IVFRs (cf. [28]) is
used:

𝑑ு(𝑅, 𝑆) =

1
2𝑛




,ୀଵ

|𝑅(𝑖, 𝑗)−𝑆(𝑖, 𝑗)|+|𝑅(𝑖, 𝑗)−𝑆(𝑖, 𝑗)|+|𝑙ோ(𝑖, 𝑗)−𝑙ௌ(𝑖, 𝑗)|

for 𝑅 = [𝑅, 𝑅], 𝑆 = [𝑆, 𝑆] ∈ 𝐼𝑉𝐹𝑅(𝑋), 𝑋 = {𝑥ଵ, ..., 𝑥},
𝑛 ∈ ℕ.
or
3. [𝑎, 𝑏] ⪯గ [𝑐, 𝑑] ⇔ 𝑎 ≤ 𝑑.

In ( [12], [11]) we observe that in the structure
(𝐿ூ , ⪯గ), the relation ⪯గ is an interval order (com-
plete, Ferrers property).

Output: Solution alternative: 𝑥௦௧ .

(Step1) Aggregate interval-valued fuzzy relations
by given criterion in group of experts:

𝐴𝑔(𝑅
ೕ
) = R𝑓𝑜𝑟𝑗 = 1, ..., 𝑘;

(Step2) Aggregate obtained relations with re-
spects to each criterions:

𝐴𝑔(R) = R;

(Step3) Veriϐication of the weak transitive R.
If weak transitivity holds then we go to (Step5);
If weak transitivity does not holds then we go to
(Step4);

(Step4) Create weakly transitive reciprocal
interval-valued fuzzy relation by following way:

If 𝑖 = 𝑘 then Rᇱ = [0.5, 0.5] else
If 𝑖 < 𝑘 then

if 𝑅(𝑖, 𝑘) ≥ 0.5 or (∃ஷ𝑅(𝑖, 𝑗) <
0.5 or ∃ஷ𝑅(𝑗, 𝑘) < 0.5)

then Rᇱ = R

else Rᇱ = [1 − 𝑅 , 1 − 𝑅]
else Rᇱ = [1 − 𝑅ᇱ , 1 − 𝑅ᇱ];

(Step5) Find:

max
ଵஸஸ

R(𝑖, 𝑗);

(Step6) Create ranking of the alternatives:
We ϐind order obtained values by relations 1, 2 and 3.
As a consequence we obtain 𝑥 ⪰ ... ⪰ 𝑥 for
𝑖, 𝑘 ∈ {1, ..., 𝑚}.

Analysis of the position in the network - which in-
dividuals occupy the best positions in the structure
of the network? Who will ϐirst get valuable informa-
tion? Are leaders occupying central positions in the
network, or perhaps are located on the outskirts? So-
cial network analysis allows us to answer these ques-
tions, providing among other things, reliable basis for
an efϐicient allocation of tasks. In summary, social net-
work analysis provides a new quality in the analysis of
phenomena and processes in the organization. Using
adequate proposed orders gives another practical in-
terpretation, because 1 based on aggregation on given
interval values, 2 based on distance from best value
(we can replace the value of [1,1] for other suggested
as the best) and 3 gives the broadest concepts of pref-
erence, because the smaller the value of intervals re-
quires only a smaller value of the bottom of the ϐirst
interval of the upper second.

By Lemma 2.3 and Theorem 2.12 we can generate
equivalent transitive functions by linear order, so then
we may create the same ranking of alternatives.

5. Conclusion
We considered some generalisations of convexity

and concavity and the problem of preserving these
properties by aggregations. In the future research we
may use other generalisations of convexity and con-
cavity. For example, instead of 𝜆𝑥 + (1 − 𝜆)𝑦 we can
use averaging 𝐴(𝑥, 𝑦), and we want consider gener-
alisations of convexity and concavity in the Cartesian
product of lattices and their aggregations. Moreover
we can consider connection of some properties of rep-
resentable aggregations with some linear order de-
ϐined in 𝐿ூ .
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