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Abstract:
This paper presents a novel reacƟve navigaƟon algo-
rithm for wheeled mobile robots under non-holonomic
constraints and in unknown environments. Two tech-
niques are proposed: a geometrical based technique and
a neural network based technique. Themobile robot trav-
els to a pre-defined goal posiƟon safely and efficiently
without any prior map of the environment by modulat-
ing its steering angle and turning radius. The dimen-
sions and shape of the robot are incorporated to deter-
mine the set of all possible collision-free steering angles.
The algorithm then selects the best steering angle can-
didate. In the geometrical navigaƟon technique, a safe
turning radius is computed based on an equaƟon derived
from the geometry of the problem. On the other hand,
the neural-based technique aims to generate an opƟ-
mized trajectory by using a user-defined objecƟve func-
Ɵonwhichminimizes the traveled distance to the goal po-
siƟon while avoiding obstacles. The experimental results
demonstrate that the algorithms are capable of driving
the robot safely across a variety of indoor environments.

Keywords: reacƟve navigaƟon, obstacle avoidance, au-
tonomous ground robots, recurrent neural networks

1. IntroducƟon
Mobile robots have rapidly evolved over the past

years to encompass a wide spectrum of applications:
Robots are assisting in driving vehicles, aiding inmed-
ical tasks, and taking charge in hazardous rescue mis-
sions. Autonomous navigation is a key feature in all
of these applications. It deals with the problem of
navigating to a target location while avoiding colli-
sion with obstacles that may be present in the envi-
ronment. One approach to autonomous navigation is
model-based approach. It uses a model of the envi-
ronment to generate a safe path to the target loca-
tion [11]. Classicalmethods for this type include: Road
maps [7], cell decomposition, and potential ϐields [8].
Although these methods may produce efϐicient paths,
a global and accurate map of the environment is not
available when the environment is unknown or is dy-
namic. Hence, model based methods are used only in
artiϐicially controlled environment. A complementary
approach to autonomous navigation is obstacle avoid-
ance (also known as reactive navigation). No prior in-
formation is required about the environment. Instead,
obstacles are discovered in real timewhile the robot is
executing its mission. Themain challenges in develop-
ing such methods are: computational complexity, sen-

sors uncertainties, robot geometrical shape, and kine-
matic and dynamic constraints. In addition, because
a global map of the environment is not available the
robot may produce inefϐicient paths or converge to a
local minimum (trap situation) [5].

Neural Networks-based techniques have been pro-
posed in the literature to solve themotion problem. In
[6] the path planning problem is viewed as two sub-
problems: ϐind space and ϐind path. Two neural net-
works connected in cascade are used. The ϐirst neu-
ral network is responsible for ϐinding the C-free space
which is the set of all possible robot conϐigurations
that avoids collisionwith obstacles. The second neural
network guides the robot through the free space seg-
ments to the target location. The navigationalmethod-
ology used in [3] is a Probabilistic Neural Network
(PNN). This type of network facilitates the training
process, allows a faster time of response and has a low
computational cost. The output of the network repre-
sents the steering direction which takes three forms:
forward, right turn, and left turn. The autonomous
navigation of a mobile robot is considered as a clas-
siϐication problem. The motion of the robot and the
sensorial information are the patterns to be classiϐied.
The obstacle avoidance problem in [10] is divided into
three subproblems: General obstacle avoidance, cor-
ridor and wall following, and passing through a door.
A separate neural network is designed for each one
of those subproblems. The algorithm uses the acces-
sible space as the input to the neural network. The
output of the network is the steering angle and veloci-
ties. The number of neurons in the hidden layer is de-
termined by using a Bayesian framework which com-
putes the evidence of a set of neural networkswith dif-
ferent hidden nodes. The accurate usable accessible
space is computed by incorporating the wheel chair
dimensions, laser information, and encoder data. The
algorithm choice is interesting because it is able to op-
timize the number of hidden neurons for a given prob-
lem. However, the algorithm is considered incomplete
from the autonomous navigation perspective because
it does not provide a framework that is able to recog-
nize the relevant situation and selects the correspond-
ing output. The authors divide the obstacle avoidance
problem into sub-problems because they claim that a
single neural network could not provide the desired
performance. However, It is not clearwhether it is nec-
essary to separate the avoiding obstacle and passing
through a door tasks since they do not produce a con-
ϐlict in training the network. A training conϐlict is cre-
ated when the same input pattern is mapped to two
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different output values. Another artiϐicial intelligence
technique is introduced in [4]. The path planning is
done using particle swarm optimization. The desired
path is designed to avoid obstacles while maintaining
a smooth continuous path. The path is expressed as
a 5th order polynomial. Two of the polynomial coef-
ϐicients are estimated via particle swarm optimization
such that obstacles are avoided while the other coef-
ϐicients are chosen such that a smooth path is gen-
erated. The particle swarm optimization is required
to estimate the best polynomial coefϐicients as well
as other parameters called the critical points. The al-
gorithm was veriϐied in simulation. However, non-
holonomic constrains are not considered. Overall, ar-
tiϐicial neural networks provides an interesting plat-
form for the obstacle avoidance problem because of
their generalization ability, ability to learn from exam-
ples and the ability to extract temporal dependencies.
In this paper, we present an obstacle avoidance tech-
nique based on recurrent neural networks that takes
into consideration the kinematic constraints of differ-
ential drive robots. While the common trend is to use
more than one neural network, we use a single dy-
namic neural network. The obstacle avoidance prob-
lem is a dynamic problem that should be solved us-
ing dynamic methods. In order to guarantee optimal
convergence, we require the neural network learning
environment to satisfy certain conditions that are de-
rived using Lyapunov stability method. Also, the ear-
lier presented neural networks techniques generated
a dataset by manually driving the robot across dif-
ferent scenarios. We automate the process by gener-
ating a sub-optimal dataset using a computer algo-
rithm. For optimum performance, the neural network
is trained using the real-time recurrent learning algo-
rithm along with a customized objective function to
equip the robot with the capability of improving its
learning while in motion.

2. Autonomous NavigaƟon Methodology
2.1. Geometrical NavigaƟon Algorithm

The main steps in the obstacles avoidance algo-
rithm are: Identify a reference steering angle, model
the environment, compute the conϐiguration space,
and select the desired steering angle and radius of cur-
vature [1]. The reference steering angle, 𝛾𝑟𝑒𝑓 repre-
sents the steering angle that the robot takes in the ab-
sence of obstacles. It is an intermediate reference an-
gle that will later help us ϐind 𝛾𝑑𝑒𝑠𝑖𝑟𝑒𝑑.

In this paper, we consider a mobile robot with a
differential drive conϐiguration as shown in Fig. 1. Let
the robot conϐiguration be:

𝑞𝑟 = (𝑥𝑟, 𝑦𝑟, 𝜃𝑟), (1)

where (𝑥𝑟, 𝑦𝑟) is the position of the robot in the 𝑥 − 𝑦
plane, and 𝜃𝑟 ∈ [0, 2𝜋) is the robot’s orientation with
respect to the x axis.
Let the target conϐiguration be:

𝑞𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡, 𝜃𝑡𝑎𝑟𝑔𝑒𝑡). (2)

Fig. 1. Target and robot coordinates

Let �⃗�𝑒 be the vector connecting the robot reference
point to the target location. The phase angle of �⃗�𝑒 is
given by:

𝛼 = arctan 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑟
𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥𝑟

. (3)

To correct the error in orientation, the robot should
turn by a reference steering angle 𝛾𝑟𝑒𝑓 . The instanta-
neous turning radius 𝑟𝑐 can be evaluated by:

𝑟𝑐 = 𝐿𝑣𝑟 + 𝑣𝑙
𝑣𝑟 − 𝑣𝑙

, (4)

where 𝑣𝐿 and 𝑣𝑅 are the translational velocities of the
left and rightwheels and𝐿 is the distance between the
wheels.

The second main step is to model the surround-
ing environment. A partial polarmapof theworkspace
is constructed in the robot local frame. The robot is
equippedwith a laser range ϐinder that is programmed
to scan the 200 ∘ front view of the robot in 20 sectors,
with 10 ∘ angular resolution. The sensor returns a set
of points:

𝒫(𝑞(𝑡𝑖)) = {𝑝1, 𝑝2, ..., 𝑝𝑗, ..., 𝑝20}. (5)

A point 𝑝𝑗 is expressed by a pair (𝑑𝑗, 𝛽𝑗) where 𝑑𝑗 is
thedistance between the robot and the obstacle at sec-
tor 𝑗. 𝛽𝑗 is the orientation of the 𝑗𝑡ℎ sector, 𝑆𝑗, with
respect to the local x axis. The subset ofworkspace ob-
stacles seen at conϐiguration 𝑞(𝑡𝑖) is identiϐied by ap-
plying a threshold on 𝑑𝑗:

𝒪(𝑞(𝑡𝑖)) = {𝑝𝑗 ∈ 𝒫(𝑞(𝑡𝑖))|𝑑𝑗 ≤ 𝑅𝑠𝑎𝑓𝑒}. (6)

The third main step of the algorithm is to compute
the conϐiguration space𝐶𝑜𝑏𝑠𝑡. First, consider the case
where only a point obstacle exists in the workspace:
𝒪 = {𝑝𝑗}. To ϐind 𝒞𝑜𝑏𝑠𝑡, we slide the robot around 𝑝𝑗
and trace the conϐigurations it went through, as illus-
trated in Fig. 2. Hence, 𝒞𝑜𝑏𝑠𝑡 is enclosed by a circle 𝐶𝑗
of radius 𝑅 and center 𝐼𝑗 = (𝐼𝑗,𝑥, 𝐼𝑗,𝑦):

𝒞𝑜𝑏𝑠𝑡 = {𝑞 ∈ 𝒞|(𝑥 − 𝐼𝑗,𝑥)2 + (𝑦 − 𝐼𝑗,𝑦)2 ≤ 𝑅2},
(7)

𝐼𝑗,𝑥 = 𝑅 + 𝑑𝑗 cos 𝛽𝑗,
𝐼𝑗,𝑦 = 𝑑𝑗 sin 𝛽𝑗, −100∘ ≤ 𝛽𝑗 ≤ 100∘.
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Fig. 2. C-space Algorithm

Next, we ϐind 𝐿𝑖 which is the radial distance between
the robot and the boundary of 𝒞𝑗 at angle 𝛽𝑖:

𝐿𝑖 = min{𝜌𝑗 cos (𝛽𝑖 − 𝜙𝑗) ± √𝑅2 − 𝜌2
𝑗 sin2 (𝛽𝑖 − 𝜙𝑗)},

𝛼𝑚𝑖𝑛 ≤ 𝛽𝑖 ≤ 𝛼𝑚𝑎𝑥, 𝛼𝑚𝑖𝑛 = min{𝜙𝑗 ± sin 𝑅
𝜌𝑗

}

,𝛼𝑚𝑎𝑥 = max{𝜙𝑗 ± sin 𝑅
𝜌𝑗

} (8)

If 𝒪 includes 𝑚 obstacle points, then 𝒞𝑜𝑏𝑠𝑡 =
⋃

1≤𝑗≤𝑚
𝒞𝑗. Now, to select the desired steering angle,

the sectors in 𝒞 are classiϐied as free or occupied. The
𝑗𝑡ℎ sector 𝑆𝑗 is occupied if 𝐿𝑗 ≤ 𝑅𝑠𝑎𝑓𝑒; otherwise
it is free. Adjacent free sectors are grouped together
to form gaps. Then, the gaps are classiϐied as wide,
medium, and narrow. Every gap edge is a candidate for
the desired steering angle. A cost function is deϐined to
aid in the selection process:

𝐶𝑜𝑠𝑡 = 𝑐1(𝛾𝑟𝑒𝑓 − 𝛽𝑗) + 𝑐2𝛽𝑗. (9)
The ϐirst term in equation (9) represents how close
the desired steering direction is to the goal location
and the second term represents how close the current
steering direction is to the current robot heading.The
angle of the gap edge that has the minimum cost is se-
lected as 𝛾𝑑𝑒𝑠𝑖𝑟𝑒𝑑. The candidate of the desired steer-
ing angle is ϐirst considered within the wide gaps. If
none is available the search is performed within the
medium gaps. The ϐinal choice is the narrow gaps.

The ϐinal step of the algorithm is to determine the
desired radius of curvature of the robot trajectory.
Due to the kinematic constraints, the robot can not
achieve the desired steering angle instantly. Instead,
the robot follows a circular arc if thewheels’ velocities
are constant. The path from the initial conϐiguration to
the ϐinal conϐigurationmay intersectwith𝒞𝑜𝑏𝑠𝑡(𝑞(𝑡𝑖))
causing a collision. Therefore, using a radius of curva-
ture that is a function of the surrounding obstacles is
safer than using a ϐixed radius for all obstacle scenar-
ios. Let 𝑆0 be the sector that contains the local x axis
and let 𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑 be the sector that contains the de-
sired steering angle 𝛾𝑑𝑒𝑠𝑖𝑟𝑒𝑑. Let 𝐿𝑚

𝑗 be the distance
between the obstacle point 𝑜𝑗 and the reference point
𝑚 shown in Fig. 3. The relationship between 𝐿𝑗 and
𝐿𝑚

𝑗 is given by:

𝐿𝑚
𝑗 = √(𝐿𝑗𝑐𝑜𝑠𝛽𝑗 + 𝑎)2 + (𝐿𝑗𝑠𝑖𝑛𝛽𝑗)2, (10)

Fig. 3. Turning Radius SelecƟon

where 𝑎 is the distance between the robot reference
point and the reference point 𝑚. Deϐine 𝐿𝑚𝑖𝑛 as the
distance of the nearest obstacle point that exists any-
where between 𝑆0 and 𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑. The turning radius
𝑟𝑐 is chosen such that the trajectory passes through
the point (𝐿𝑚𝑖𝑛, 𝛾𝑑𝑒𝑠𝑖𝑟𝑒𝑑) as shown in Fig. 3. From
the geometry, the turning radius is obtained as:

𝑟𝑐 = 𝐿𝑚𝑖𝑛
2𝑠𝑖𝑛(𝛾𝑑𝑒𝑠𝑖𝑟𝑒𝑑) . (11)

To include a safety buffer, the turning ra-
dius is designed to pass through the point
(𝐿𝑚𝑖𝑛 − 𝑑𝑠𝑎𝑓𝑒2, 𝛾𝑑𝑒𝑠𝑖𝑟𝑒𝑑) instead. Also, the turning
radius 𝑟𝑐 saturates if it is greater than a threshold
value 𝑟𝑙𝑎𝑟𝑔𝑒.
2.2. Neural NavigaƟon Algorithm

A neural network is proposed to work in collab-
oration with the reactive navigation algorithm devel-
oped earlier to optimize the navigational capabilities
of the overall system.While the navigational algorithm
avoids obstacles, it doesnot contain any constraints on
the length of the path to the target position. The neu-
ral network is incorporated into the system to mini-
mize the length of the path taken. The neural network
selects the optimum trajectory based on the obstacles
information, target conϐiguration, and the turning ra-
dius proposed by the navigational algorithm. The neu-
ral network outputs the most promising turning ra-
dius of the robot trajectory.

This paper uses a Diagonal Recurrent Neural Net-
work (DRNN) which despite its simple structure, has
the ability to adapt the learning rates such that the
network convergence is guaranteed. Fig. 4 depicts
the network architecture. For the neural network to
achieve this objective, it needs to overcome few chal-
lenges. One of those challenges is that the ‘correct’
turning radius is not available. Hence, the training can-
not be conducted in a supervised manner where a
dataset is available to help the network form a map
between the input data and the desired value. To over-
come this obstacle, a hybird training scheme is pro-
posed. First, the neural network will receive super-
vised training based on a sub-optimal dataset. Second,
the neural network will be trained on-line to adjust its
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Fig. 4. Neural Network Architecture

weights in order to produce an optimum value based
on an evaluation function. In the ϐirst training phase,
the network is trained to map the input values to a
desired value. The dataset is generated using the re-
active navigation algorithm. The training is based on
backpropogation and is done off-line. The purpose of
this training phase is to provide an adequate initial set
of weights for the next phase as opposed of starting
phase 2 from random variables. In the second train-
ing phase, the optimum turning radius is unknown.
However, the radius taken by the robot can be eval-
uated. The network receieves feedback about its per-
formance based on an evaluation function described
as:

𝐽 = 1
2𝑒2 = 1

2(𝑒2
𝑥 + 𝑒2

𝑦) (12)
𝑒𝑥 = 𝑥𝑡 − 𝑥, 𝑒𝑦 = 𝑦𝑡 − 𝑦

where (𝑥𝑡, 𝑦𝑡) is the target position. The derivative of
the evaluation function with respect to the weights is
given by:

𝜕𝐽
𝜕𝑊 = −(𝑒𝑥𝐽𝑥 + 𝑒𝑦𝐽𝑦) 𝜕𝑟

𝜕𝑊 (13)

where𝐽𝑥 and𝐽𝑦 are the sensitivities of the systemand
are given by:

𝐽𝑥 = 𝜕𝑥
𝜕𝑟 = 𝑠𝑖𝑔𝑛(𝑥(𝑡) − 𝑥(𝑡 − 1)

𝑟(𝑡) − 𝑟(𝑡 − 1) ) (14)

𝐽𝑦 = 𝜕𝑦
𝜕𝑟 = 𝑠𝑖𝑔𝑛(𝑦(𝑡) − 𝑦(𝑡 − 1)

𝑟(𝑡) − 𝑟(𝑡 − 1) ) (15)

𝜕𝑟
𝜕𝑊 is estimated online using Real Time Recurrent
Learning (RTRL) [1]. The neural network weights are
updated according to the gradient descent technique:

Δ𝑊 = −𝜂 𝜕𝐽
𝜕𝑊 (16)

Subsituting eq.12 into 16 gives:

Δ𝑊 = −𝜂𝑒 𝜕𝑒
𝜕𝑊 (17)

The training phases are shown in Fig. 5 and 6.

Fig. 5. Phase 1 Training

Fig. 6. Phase 2 Training

2.3. AdapƟve learning and stability analysis
In order to maintain the system stability, we put a

restriction on the learning rate using Lyapunov theo-
rem. Deϐine the lyapunov function 𝑉 (𝑘) = 1

2 𝑒2(𝑘) ≥
0. To prove system stability, we need to show that
Δ𝑉 = 𝑉 (𝑘 + 1) − 𝑉 (𝑘) ≤ 0. Hence,

Δ𝑉 = 1
2(𝑒2(𝑘 + 1) − 𝑒2(𝑘)) (18)

Subsitute 𝑒(𝑘 + 1) = 𝑒(𝑘) + Δ𝑒(𝑘) in eq.18:

Δ𝑉 = 𝑒(𝑘)Δ𝑒(𝑘) + 1
2Δ2𝑒(𝑘) (19)

= Δ𝑒(𝑘)(𝑒(𝑘) + 1
2Δ𝑒(𝑘)) (20)

Δ𝑒(𝑘) is given by:

Δ𝑒(𝑘) = [𝜕𝑒(𝑘)
𝜕𝑊 ]

𝑇
Δ𝑊 (21)

Subsituting eq.17 in 21 gives:

Δ𝑒(𝑘) = −𝜂𝑒∥ 𝜕𝑒
𝜕𝑊 ∥

2
(22)

In order to ϐind 𝜕𝑒(𝑘)
𝜕𝑊 ,the chain rule is used:

𝜕𝑒
𝜕𝑊 = 𝜕𝑟

𝜕𝑊 [ 𝜕𝑒
𝜕𝑥

𝜕𝑥
𝜕𝑟 + 𝜕𝑒

𝜕𝑦
𝜕𝑦
𝜕𝑟 ] (23)

𝜕𝑒
𝜕𝑥 = −𝑒𝑥

𝑒 , 𝜕𝑒
𝜕𝑦 = −𝑒𝑦

𝑒
(24)
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Hence eq 23 becomes:

𝜕𝑒
𝜕𝑊 = − 𝜕𝑟

𝜕𝑊 (𝑒1𝐽𝑥 + 𝑒2𝐽𝑦
𝑒 ) (25)

Substituting 25 in 21, gives:

Δ𝑒(𝑘) = −𝜂
𝑒 ∥ 𝜕𝑟

𝜕𝑊 ∥
2
(𝑒𝑥𝐽𝑥 + 𝑒𝑦𝐽𝑦)2 (26)

Substituting 26 in 20:

Δ𝑉 =𝜂∥ 𝜕𝑟
𝜕𝑊 ∥

2
(𝑒𝑥𝐽𝑥 + 𝑒𝑦𝐽𝑦)2∗

(−1 + 𝜂
2𝑒2 ∥ 𝜕𝑟

𝜕𝑊 ∥
2
(𝑒𝑥𝐽𝑥 + 𝑒𝑦𝐽𝑦)2) (27)

the term 𝜂‖ 𝜕𝑟
𝜕𝑊 ‖2(𝑒𝑥𝐽𝑥 + 𝑒𝑦𝐽𝑦)2 ≥ 0, hence in order

to have Δ𝑉 ≤0, 𝜂 should be chosen as:

𝜂 ≤ 2𝑒2

‖ 𝜕𝑟
𝜕𝑊 ‖2(𝑒𝑥𝐽𝑥 + 𝑒𝑦𝐽𝑦)2

(28)

3. Experimental Results
The performance of the proposed algorithm is ver-

iϐied over a variety of real unstructured indoor en-
vironments using an autonomous mobile robot plat-
form [2]. Themobile robot platform is designed to op-
erate in an indoor environment with a solid ϐlat sur-
face. A differential steering system is employed to gen-
erate forward and steered motion. The platform pro-
vides a rich computing environment consisting of a
single board computer and amicrocontroller. It is also
equippedwith a laser range sensor andultrasonic sen-
sors for obstacle detection as well as a compass and
wheel encoders for localization. The laser range sen-
sor is calibrated to scan the 200 degrees front view
of the robot in 20 sectors with a 10 degrees angular
resolution, Themobile robot platform is shown in Fig-
ure 7.The platform has a cylindrical structure with a
35cm diameter and approximately 30cm height. For

Fig. 7. Target and robot coordinates

all the testing scenarios, the data acquisition is per-
formed with a sample time T=1s. The measured vari-
ables consist of the current robot position and orien-
tation (𝑥𝑟, 𝑦𝑟, 𝜃) and the twenty-sector readings of the
laser sensor.

In all experiments, the robots initial position is
(0,0) while the goal position is at (1.5,-1.5). In the ϐirst
experiment, an obstacle is placed along the robot di-
rect path, which is the straight line that connects the
robot’s initial conϐiguration to the target conϐiguration
(�⃗�𝑒). There were also other obstacles surrounding the
robot as shown in Figure 8. Fig. 8b depicts the tra-
jectory obtained from the neural network based con-
troller. The length of the trajectory is 2.4157m. Figures
8c - 8e are snapshot of the intermediate robot param-
eters at different instances in time. The obstacles seen
by the robot at each instant of time is shown in the
Cartesian coordinates as black dots. The solid yellow
line is an approximation to the obstacle contour. The
polar histogram shows how each sector is classiϐied to
either free or occupied. The reference steering angle,
𝛾𝑟𝑒𝑓 , is illustrated as a solid red line while the desired
steering angle, 𝛾𝑑𝑒𝑠𝑖𝑟𝑒𝑑, is shown as a dashed green
line.

In the second experiment shown in Fig. 9a, the
robot successfully avoids the 2 obstacles, and drives
its way to 𝑞𝑡𝑎𝑟𝑔𝑒𝑡 as shown Fig. 9b. The robot veloc-
ities and control actions are shown in Fig. 9c and Fig.
9d respectively. The length of the trajectory is 2.3016
m and it takes 106 s to execute.

In the third experiment shown in Fig. 10a, the gap
between the obstacles is reduced. The robot correctly
identiϐied the gap as navigable and went in between.
However, the left side of the robot touched the obsta-
cle. The trajectory is shown in Fig. 10b and the robot
motion and control action are shown in Fig. 10c and
Fig. 10d. The length of the trajectory is 2.1349 m and
is completed in 90 s.

In the fourth experiment shown in Fig. 11a, the
robot avoids the narrow gap by contouring the obsta-
cles, discovers a blocked path, reverses direction and
progresses to the target conϐiguration. The trajectory
is depicted in Fig. 11b and the robot velocities and con-
trol action are depicted in Fig. 11c and 11d. The length
of the trajectory is 7.4457 m and the time it take is 227
s.

In the ϐifth experiment shown in Fig. 12a, the robot
discovers the dead end and turns around the obstacles
to reach 𝑞𝑡𝑎𝑟𝑔𝑒𝑡. The trajectory is depicted in Fig. 12b.
The robot velocities and control action are depicted in
Fig. 12c and Fig. 12d. The trajectory exhibited some
ϐluctuations. The length of the trajectory is 5.4778𝑚
and is completed in 169𝑠.

There are several metrics that can be used to eval-
uate the performance of a navigation system [9]. The
following performance metrics are used to evaluate
the quality of the trajectory while considering the se-
curity or proximity to obstacles and the smoothness of
the trajectory relative to the control effort.
1) Security Metric-1 (SM1): Mean distance between

the robot and the obstacles through the entiremis-
sion measured by the laser sensor (20 sectors).

2) Security Metric-2 (SM2): Mean minimum-distance
to obstacles. This is taken from the average of the
lowest value of the laser sensor data (20 sectors).

3) Path length: distance traveled by the robot to ac-

68



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 2 2016

(a) (b)

(c)

(d) (e)

Fig. 8. (b) Robot trajectory using neural network algorithm; (c) Intermediate robot parameters at sample = 8 seconds;
(d) Intermediate robot parameters at sample = 29 seconds; (e) Intermediate robot parameters at sample = 51 seconds.

complish the task from the initial position to the
target position.

𝑃𝐿 =
𝑛

∑
𝑖=1

√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 (29)

where, (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑛 are the n-point
Cartesian coordinates of the robot along the given
trajectory .

4) Time 𝑇𝐴: time taken to accomplish the task.
5) Smoothness of the trajectory relative to control ef-

fort.
𝑇 𝐵𝐸 =

𝑛
∑
𝑖=1

𝑘2(𝑥𝑖, 𝑦𝑖) (30)

where 𝑘(𝑥𝑖, 𝑦𝑖) is the curvature at any point
(𝑥𝑖, 𝑦𝑖) across the trajectory.

𝑘(𝑥𝑖, 𝑦𝑖) = 𝑓″(𝑥𝑖)
[1 + (𝑓′(𝑥𝑖))2] 3

2
(31)

Table 1 summarizes the experimental results obtained
from the 5 different scenarios. The results show that
the neural navigation algorithm allows the robot to
transit through narrow zones keeping a safe distance
from the obstacles while generating smooth trajecto-
ries. In the neural navigation algorithm, a threshold of

Tab. 1. Performance Metrics

Scenario Performance Metric
SM1 (m) SM2 (m) 𝑃𝐿 (m) 𝑇𝐴 (s) 𝑇 𝐵𝐸

1 0.4688 0.1973 2.4157 82 2.3186e-02
2 0.4563 0.1588 2.3016 106 9.2964e-05
3 0.4439 0.1474 2.7349 90 6.8655e-02
4 0.4478 0.1890 5.4778 169 1.1589e-01
5 0.4727 0.2704 7.4458 227 2.4902e-02

0.5m was placed on the maximum distance that the
robot can view from the laser sensor data. The devi-
ation of the security metrics SM1 from this maximum
value (0.5m) is relatively low, which means that the
chosen routes passed always through an obstacle free
area. The SM2 index gives also an idea about the risk
taken by the robot through the different missions in
termsof proximity to obstacles. The values of the𝑇 𝐵𝐸
index are also low, which is desirable, since the energy
requirements are increased according to the increase
in the curvature of the trajectory. Scenario 2 shows
a very low TBE because the corresponding trajectory
is straighter that the other scenarios. Fig. 9b shows a
smaller change in the orientation during each control
period, with consequent energy saving and less struc-
tural effort on the robot.
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(a) (b)

(c) (d)

Fig. 9. (a) shows the robot iniƟal posiƟon and the surrounding obstacles; (b) shows the obstacle points in green, the
area occupied by the robot at each instance in Ɵme in red, and the reference point trajectory in blue; (c) describes the
robot velociƟes; (d) describes the robot control vector.

(a) (b)

(c) (d)

Fig. 10. (a) shows the robot iniƟal posiƟon, target posiƟon, and the surrounding obstacles; (b) shows the obstacle
points in green, the area occupied by the robot at each instance in Ɵme in red, and the reference point trajectory in
blue; (c) describes the robot velociƟes; (d) describes the robot control vector.
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(a) (b)

(c) (d)

Fig. 11. (a) shows the robot iniƟal posiƟon and the surrounding obstacles; (b) shows the obstacle points in green, the
area occupied by the robot at each instance in Ɵme in red, and the reference point trajectory in blue; (c) describes the
robot velociƟes; (d) describes the robot control vector.

(a) (b)

(c) (d)

Fig. 12. (a) shows the robot iniƟal posiƟon and the surrounding obstacles; (b) shows the obstacle points in green, the
area occupied by the robot at each instance in Ɵme in red, and the reference point trajectory in blue; (c) describes the
robot velociƟes; (d) describes the robot control vector.
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4. Conclusions
The paper presents two reactive navigation al-

gorithms for a wheeled mobile robot under non-
holonomic constraints and in unknownenvironments.
The mobile robot travels to a pre-deϐined goal posi-
tion safely and efϐicientlywithout any priormap of the
environment. The ϐirst method is based on a reactive
navigation algorithm which incorporates the dimen-
sions and shape of the robot to determine the set of
all possible collision-free steering angles. The steer-
ing angle that falls in the widest gap and is closest to
the target is selected. The algorithm also takes into ac-
count the non-holonomic constraints of differentially
steered robots by computing circular trajectorieswith
adaptive radius of curvature. The second navigation
algorithm introduces a neural network based reactive
navigation. The algorithm aims to generate an opti-
mized path by using a user-deϐined objective function
which minimizes the traveled distance to the goal po-
sition while avoiding obstacles. To this end, a diago-
nal recurrent neural network (DRNN) has been em-
ployed to achieve the necessary generalization capa-
bility across a variety of indoor environments. The
network is trained through off-line learning followed
by an on-line learning algorithmwith guaranteed con-
vergence. The performances of the algorithms are ver-
iϐied over a variety of real unstructured indoor en-
vironments using an autonomous mobile robot plat-
form. The results demonstrated that the algorithm is
capable of driving the robot safely through different
obstacle arrangements.
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