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Abstract:
The paper describes the results of quadrocopters mo-
tion properties for the control based on the inverse 
dynamics method and optimal control method with 
synthesis linear-quadratic regulator (LQR). Motion of 
quadrocopters is tested for composite trajectories. The 
new model of asymmetrical quadrocopters, taking into 
account the rotation and shift of one arm relative to the 
other, was developed. A few criteria for evaluation of 
the effectiveness of control methods of quadrocopters 
are presented in this paper. An analysis of the results 
allows selecting a method for solving the problem of 
quadrocopters control and making recommendations 
for the formation of trajectories. 

Keywords: linear-quadratic regulator, inverse dynam-
ics, quadrocopter, dynamic mode

1. Introduction
Recently the development of unmanned aerial 

vehicles (UAV) has been started. Quadrocopter is an 
example of such vehicle. Quadrocopter is a vehicle 
with four rotors, which are rigidly fixed to the body 
[1]. These features include the fact that they are ma-
neuverable, can still be over a given point in space 
and carry additional equipment. However, there are 
several problems associated with using this type of 
construction. The main problem is calculation of the 
effective control of quadrocopters.

The first prototype of the aircraft with this con-
figuration appeared in 1907 [2]. Vehicle was operated 
with a complex transmission, which make it difficult 
to control. The first full quadrocopter was developed 
in the 50s [2]. For a number of characteristics of these 
models gave way to aircraft and helicopters, so wide-
spread use they have not received. The most popu-
lar quadrocopters obtained with using UAVs. Today 
quadrocopters are used in various fields of human ac-
tivity.

Modern quadrocopters and most of the research 
on them based on simple construction, models, and, 
therefore, use simple control algorithm. In most cas-
es, it reduces the effectiveness of control and is not 
always reasonable.

An analysis of the literature proved that math-
ematical models can be classified as follows:

1. Linear model. Used for simple maneuvers [3] or 
for the calculation of the control algorithm by com-
plex methods of high computational cost (LQR, model 
predictive control) [4], [ 5], [6].

2. Non-linear symmetrical model. By symmetric 
model we mean a model, whose center of gravity co-
incides with the geometric center. By the geometric 
center of the construction we understand the point of 
intersection of center lines of the arm. These models 
allow implementing the regulator by on-line methods 
[1], [6–9].

3. Asymmetric model. Consider a model with such 
precision is necessary for the implementation of com-
plex maneuvers that require high control precision. 
HoverBike is an example of this kind asymmetric con-
struction [10].

The new asymmetric model of quadrocopters is 
presented in this paper, as having the biggest number 
of perspectives. However, the efficiency of this model 
will not be improved if it uses the control algorithm 
for a symmetric or linear model. Therefore, it is nec-
essary to analyze the control methods for this model.

Quadrocopters control most commonly uses the 
following: PD/PID – regulators [3], [6], [7], [11], [12], 
LQR [4], [5], model predictive control [6], [9], back-
stepping control [7], [8], sliding mode control [7] 
and inverse control [5], [7], [13]. In this paper, the 
methods are chosen to control the synthesis of linear-
quadratic regulator (LQR method), and the method of 
inverse dynamics.

The purpose of this paper is to develop a new 
mathematical model of quadrocopters and analyze 
the algorithms and principles of control for various 
kinds of trajectories, manoeuvers, and conditions. 
The mathematical model has to take into account the 
asymmetry of the design and the effects of external 
influences. The problem was solved by the example of 
motion along a predetermined path.

The paper consists of three main sections and 
conclusions. The first section describes the design of 
quadrocopters and obtained dynamic equations of 
motion of asymmetrical quadrocopters. The second 
section describes a synthesis of control algorithm for 
quadrocopters using LQR method and the method 
of inverse dynamics. The third section presents the 
results of motion simulation of asymmetric quadro-
copter within two trajectories: a circle and an eight-
shaped figure. These trajectories are described in the 
third section in details. To be concise, with respect 
to the trajectories, we will use the terms „circle” and 
„eight-shaped”.
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2. Development of a Mathematical Model
Most manufacturers simplify their tasks by devel-

oping symmetry with respect to frame design. This 
greatly simplifies the mathematical description of 
the motion of quadrocopters, but on the other hand, 
it is necessary to use additional equipment to com-
ply with such symmetry. Manufactured devices differ 
significantly since the center of gravity with geomet-
ric center and the arm with the motors may be posi-
tioned at any angle relative to each other.

This paper presents a model of quadrocopters 
which has the center of gravity structure shifted, one 
of the arms is also shifted relative to the geometric 
center of quadrocopters and rotated at an angle α , 
generally not a right angle, relative to the other arm 
(Fig. 1). 1l  is the distance from the edge of the second 
platform to the intersection with the center of the 
first platform, lll 221 =+ . sl  is the distance from the 
edge of the platform to the center of the motor. In 
Fig. 2, a dotted line shows a quadrocopter symmet-
ric model.

The main elements of quadrocopters are (Fig. 2): 
the basic platform, two arms, four motors, unit with 
electrical system and accessories. The geometrical 
dimensions, weight and the center of gravity coordi-
nates in the coordinate system associated with the 
quadrocopters geometric center are shown in Table 1.

Quadrocopter moves relative to the fixed inertial 
coordinate system (ICS) ( oXYZ ). Axis 0x, 0y and 0z 
form an orthogonal right-handed coordinate system. 
Axis 0z is in the opposite direction to the vector of 
gravity (Fig. 3). Introduce two auxiliary coordinate 
systems (CS). The coordinate system cccc ZYXo  is re-
lated to the center of mass of quadrocopters (CSM), 
and the coordinate system gggg ZYXo  associated with 
the quadrocopters geometric center (CSG). The axis of 
the coordinate system are parallel to the axes of the 
inertial coordinate system. The quadrocopter related 
with the right movable orthogonal coordinate system 

pppc ZYXo  (MCS). MCS starts at the center of mass of 
quadrocopters. The axis pc xO  is connected with one 
of the arms of a quadrocopter, axis pc yO  lies in the 
plane of a quadrocopter, axis pc zO  is upwardly direct-
ed relative to a quadrocopter. The angular position of 
a quadrocopter is defined in MCS by Euler angles 

T),,( ψθφη = : roll φ , pitch θ  and yaw ψ .

Fig. 1. Geometric model of quadrocopter

Fig. 2. Design quadrocopters

The center of mass of a quadrocopter is defined by 
vector T)z,y,x(X =  in ICS. The linear velocity vector 
of a quadrocopter is defined as Vc = (vxc, vyc, vzc)T and 
the angular velocity vector as W = (p, q, r)T in CSM. Ro-
tation matrix from CSM to the ICS has the form [14]:
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where 
The connection between the linear speed in the 

ICS and the CSM has the form (1).

 cV)(RotX ⋅= η  (1)

The transition matrix Λ  for the angular velocity of 
the CSM to the MCS is described in [14]. The angular 
velocities connection in the form (2).
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We use Köenig’s theorem and Lagrange equation 
(3) for obtaining the dynamic equations of quadro-
copters motion [15]. We form the kinetic energy of 
the system T . Vector coordinates of the center of 
mass X  and the angular orientation of quadrocop-

Fig. 3. Coordinate systems
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Table 1. Description of the geometric dimensions, weight and center of gravity coordinates of structural elements

Structural 
component

Weight of the 
structural 

element [kg]

Length, width, 
thickness [m]

The coordinates of the gravity center [m]

The platform
1M 1h,b,a ( );X c 0001 =

The unit with 
equipment 2M 2h,d,c

;hhX c 




 +−=

2
00 21

2

The first arm
3M 32 h,l,l ∆

;hhXc 




 +=

2
00 31

3

The second arm
4M  ( 34 MM = ) 32 h,l,l ∆

;hh)sin(ll)cos(llXc 




 +−−=

222
312121

4 αα

The motor 1
5M 522 h,r,r ( )

);hhh(.h

;hllX
*

*
sc

531

5

250

0

++=

−=

The motor 2
6M  ( 56 MM = ) 522 h,r,r ( );h)ll(X *

sc 06 −−=

The motor 3
7M  ( 57 MM = ) 522 h,r,r ( );h)sin()ll()cos()ll(X *

ssc αα −−−−= 227

The motor 4
8M  ( 58 MM = ) 522 h,r,r ( );h)sin()ll()cos()ll(X *

ssc αα −−= 118

ters in CSM T),,( 321 θθθΘ =  were selected as general-
ized coordinates.
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where Q  is generalized force, M  is the quadrocopter  
 
mass, ∑

=

=
8

1j
jMM , I  is the inertia tensor of a quadrocop- 

 
ter, Ω  is the angular velocity vector in the CSM, ΘΩ = .

Quadrocopters inertia tensor I  can be written as:
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where gI  is the inertia tensor in CSG, mX  is the vector 
coordinates of the mass center, 

 
T
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The inertia tensor gI  is described by the relation 
 

∑
=

=
8

1k
k,gg II , where k,gI  is the inertia tensor of the  
 

structure element k  in the CSG. Table 2 shows the for-
mulas for calculating the inertia tensor of quadrocop-
ter’s elements. For simplicity, arms, the platform and 
the equipment unit are treated as rectangular paral-
lelepiped elements. The motors are treated in the cal-
culation inertial tensor as cylinders.

In Table 2 xi , yi , zi are the components Xci of the 
center of gravity of the structural element  
(Table 1).

In Table 2 

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 is the inertia tensor of  
 
 
motors relative to the principal axes of inertia.

The generalized force Q  can be represented in the 
form T

FM )Q,Q(Q = , where MQ  is a generalized torque 
in the rotational motion, FQ  is a component of gener-
alized force in translational motion. The main compo-
nents of the generalized force can be written as (5) 
and (6).

 girM MUQ += ; (5)
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 resmguF FFFQ ++= , (6)

where U  is the vector of the rotational force caused 
by the operation of motors, 

T)U,U,U(U 321= , girM  is 
the gyroscopic moment, uF  is the traction of motors, 
Fmg is the force of gravity acting on the quadrocopter, 

resF  is resistance force, , S  is the 
aerodynamic force coefficient vector [2].

Project the generalized forces (6) on the base q 
and get the form (7).

 

 

(7)

Table 2. The inertia tensor of the structural elements 

The structural 
elements The inertia tensor

The platform

The unit with 
equipment

The first arm

The second arm

The motor j

where 0U  is lift force in the MCS, g  is the acceleration 
of gravity.

After inserting (4), (5), (7) in (3) and adding supple-
ment system kinematic relations (2) we finally obtain (8):

  

(8)

The system of equations (8) should be supple-
mented with the equations describing the forces and 
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torques in quadrocopter motors. Areas of vectors of 
forces and moments in the CSG are shown in Fig. 4.

Fig. 4. The lifting force and torque motors

The lifting force and torque are directly propor-
tional to the square of the rotation speed [4]. Formu-
las for traction and torque are of the form (9).

  (9)

where 1k  and 2k  are constant coefficients, iω  is the 
angular velocity of rotation of the motor i , )xx( ci −  
and )yy( ci −  are distances from center of the motor  
i to the quadrocopter gravity center for axis Ox and Oy 
respectively. 

The gyroscopic torque depends on the quadrocop-
ters rotational speed and motors kinetic torque:

 

T

i
immgir CKM 







⋅×=×= ∑

=

4

1

00 ωΩΩ  (10)

The dynamic equations of motion of quadrocop-
ters (8) equations of traction, torque (9) and gyro-
scopic torque (10) create the system of quadrocopter 
equation. For further convenience, the equations of 
motion around the center of gravity of quadrocopters 
shift to the base η . The inertia tensor has the follow-
ing form ΛΛ IJ T= . After simplification we obtain dy-
namic equations of quadrocopters motion in the final 
form (11).

  
(11)

In (11) the second equation describes the motion 
of the center of gravity of quadrocopters, and the first 
equation describes the motion around the center of 
gravity in the MCS. The main differences between 
symmetrical and asymmetrical models are the form 
of the equations (9). For asymmetrical model the 
equations (9) become more complicated and require 
additional analysis.

3. Control Development 
The synthesis of the control algorithm was carried 

out by methods LQR and inverse dynamics. The fol-
lowing criteria were used for the comparison of se-
lected methods:

1. The value of functional use in LQR method. We 
consider the part of functionality associated with the 
state vector, which is responsible for the achievement 
of the control objectives, and part of the functional 
related to the control, which is proportional to the en-
ergy costs as separate.

2. The standard deviation of the gravity center of 
predetermined trajectory.

3. The maximum deviation from the given position 
in absolute value.

3.1. Inverse Dynamics
The method of the inverse dynamics is used to find 

the forces acting on an object of known trajectory. The 
method of inverse dynamics is unstable. In practice, 
various modifications of the method were used to 
guarantee the stability of the closed system [15, 16].

Assume that the desired trajectory is defined as 
analytical functions of the vector position of the grav-
ity center tr

cX  and the yaw angle trψ . This method of 
defining the desired trajectory is the most informa-
tive for the controlled quadrocopter operator.

The equation form for control of quadrocopters 
acceleration is as follows:
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, (12)

where 1C , 2C  are matrixes of known feedback coeffi-
cients.

From the dynamic equations of gravity center mo-
tion it is possible to determine the thrust 0U  and the 
values of roll φ~  and pitch θ~  angles for the realization 
of different maneuvers.

  
(13)

Similarly, the controls of angular acceleration of 
the angular position are:

 

 (14)

where 3C , 4C  are known feedback coefficients.
From the dynamic equations of motion around the 

gravity center we can determine the control torques. 

 , (15)

where  , .

To determine the angular velocities of motors we 
can use a system of equations (9). This system is lin-
ear relative to 2

i
)(sign i ωω , coefficient matrix is con-

stant for the configuration and does not degenerate. It 
means that the system of equations (9) provides 
a unique solution.

3.2. LQR Method
The LQR method is described in detail in [17]. 

Apply an algorithm to solve this problem. System of 
equations (11) was linearized and used in this meth-
od. The system of equations (11) can be written as 
(16). So the linearized system has the form (17).

  (16)

  (17)

where 00 W,Y  are the state vector and control vector 
at some point.

Suppose, the criterion of control quality [17] has 
the functional form (18).

 (18)

where Y 
tr is the vector of the desired trajectory of 

movement, Q and P are constant positive definite 
symmetric matrix.

The control is determined by formulas (19–21).

  (19)

 , R(T) = 0 (20)

  

  (21)

The optimal control (19) is determined for a given 
trajectory with regard to minimizing the functional 
(18). The particularity of this method is that the equa-
tions (20) and (21) are integrated in the reverse time 
and require high computational cost.

Considering the fact that the original system is not 
linear, to solve the original problem with this method 
it is necessary to know the matrix of the system at all 
points of the trajectory. For this, we need to know the 
trajectory of the object, which is set by the operator, 
and the planned control, which is unknown. We used 
an iterative approach to solve this problem. As a first 
approximation selected control obtained by the in-
verse dynamics. The functional (18) is the criterion 
for the process convergence.

4. Simulation
Based on the obtained mathematical models and 

control algorithms, a mathematical complex has been 
developed by using MATLAB R2014b. Quadrocopter 
AR.Drone 1.0 was taken as a basis [18]. The angular 
rotation speed of motors is limited to the equation 

41500150 ,..,i,i =<< ω . The model parameters are:
a = 0.2 [m], b = 0.2 [m], c = 0.1 [m], d = 0.1 [m], 
l = 0.3 [m], l1 = 0.33 [m], l s = 0.03 [m], Δl = 0.1 [m], 
r = 0.05 [m], h1 = 0.02 [m], h2 = 0.05 [m], h3 = 0.02 [m], 
h5 = 0.02 [m], α = 75°, M1 = 0.2 [kg], M2 = 0.1 [kg], 
M3 = 0.1 [kg], M5 = 0.05 [kg], C1 = 16,  C2 = 16, C3 = 225, 
C4 = 40, Am = 0.005 [m2kg],  Cm = 0.001 [m2kg], 
k1 = 0.7426·10-6 [m2kg],  k2 = 0.1485·10-6 [m2kg], 
g = 9.8 [m/s2], Sx = 0.0024 [kg/m], Sy = 0.0072 [kg/m], 
Sz = 0.0072 [kg/m].

For the comparison of the efficiency of the control 
algorithms with the new model, two trajectories were 
selected. Both trajectories consisted of three stages. 
In the first stage, a quadrocopter hovered motionless 
at a given point in space during 0.1 s. (22). In the sec-
ond stage, the quadrocopter rose straight up and 
picked up speed for a maneuver (23). In the third 
stage, the quadrocopter was doing the maneuver. For 
the first trajectory, the quadrocopter flew around the 
ring in a vertical plane with a radius of 1 m and the 
angular speed 52 /πθ =  rad/s (24). For the second 
trajectory, the quadrocopter flew along “eight-
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shaped” with a loop radius of 1 m and a time period of 
5 s. (25). Trajectories are shown in Fig. 5. and de-
scribed in detail in (22–25).
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The results of the simulation are shown in Figs. 
6–9. Table 4 shows the numerical value of the evalu-
ation criteria. 

In Figs. 6–9 for the state vector dotted line indi-
cates the desired trajectory. It should be noted that 
the deviation from the predetermined trajectory in 
the plane YZ equals less than 1.5 mm for absolute 
value in all cases.

According to the simulation results, we can con-
clude that both methods are able to solve the prob-
lem of control successfully. The control algorithm 
obtained by both methods is within the predeter-
mined limits. The most difficult phase to control is 
the transition from the second to the third stage. This 

Fig. 5. Motion trajectories of quadrocopters

Table 4. Properties of quadrocopters motion

Trajectory “circle” Trajectory “eight-shaped”

Criteria LQR ID LQR ID

Functional )W,Y(Φ 2.65 12.00 4.50 17.15

Part )Y(Φ  of the functional 0.27 4.57 0.68 6.10

Part )W(Φ  of the functional 2.39 7.43 3.82 11.05

Standard deviation [m] 0.06 0.05 0.10 0.14

Maximum deviation of the position [m] 0.15 0.17 0.38 0.65
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is caused by discontinuity of the desired state vector, 
namely discontinuity of the angular position. This is 
particularly well illustrated by the trajectory “circle” 
(Figs. 6–7). LQR method was implemented smoothly 
around that time, as can be seen from the Fig. 6 and 
Fig. 8. The method of inverse dynamics (ID) could not 
do it smoothly. To continue the flight along the tra-
jectory, it is necessary to create high moments, it is 
shown by the peaks in control in Fig. 7 and Fig. 9.

An analysis of the imposed criteria shows that 
the mean deviation and the maximum deviation of 
the gravity center from predetermined trajectory are 

approximately the same. However, the energy cost is 
higher in inverse dynamics.

The advantages of the inverse dynamics method 
mainly consist of their simplicity, computational 
speed in the calculation and the ability of application 
in on-line tasks.

5. Conclusions
The control problem of asymmetric quadrocop-

ters was illustrated an example of complex trajecto-
ries “circle” and “eight-shaped”. The new mathemati-
cal model which takes into account the asymmetry of 

Fig. 6. The state vector and the control vector to the trajectory “circle” by the LQR method

Fig. 7 .The state vector and the control vector to the trajectory “circle” by the inverse dynamics
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the quadrocopter design has been developed. In order 
to study the characteristics, of the new model, control 
algorithms by LQR method and inverse dynamics for 
the motion along a predetermined trajectory have 
been synthesized. We suppose that the asymmetric 
construction properties improve maneuverability. 
Therefore, in the control algorithms it is necessary to 
considered construction characteristics. This paper 
presents the solution algorithm for nonlinear model. 
The criteria entered for the efficiency evaluation of 

the synthesized control algorithms allow us to consid-
er the choice of solution methods for conditions va-
riety. LQR method involves large computational costs 
and requires a prior knowledge of the motion trajec-
tory, but it allows decreasing the energy costs and ob-
taining a smooth motion of trajectory. The method of 
inverse dynamics can be used in on-line mode, it does 
not require high computational costs, but at the mo-
ments of trajectory discontinuity the system may lose 
stability especially in aggressive manoeuvers.

Fig. 8. The state vector and the control vector to the trajectory “eight-shaped” by the LQR method

Fig. 9. The state vector and the control vector to the trajectory “eight-shaped” by the inverse dynamics
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