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Abstract:
In the paper the problem of preservaƟon of properƟes of
fuzzy relaƟons during aggregaƟon process is considered.
It means that properƟes of fuzzy relaƟons 𝑅ଵ, … , 𝑅௡ on
a set 𝑋 are compared with properƟes of the aggregated
fuzzy relaƟon 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡), where 𝐹 is a funcƟon
of the type 𝐹 ∶ [0, 1]௡ → [0, 1]. There are discussed
𝛼-properƟes (which may be called graded properƟes -
to some grade 𝛼) as reflexivity, irreflexivity, symmetry,
asymmetry, anƟsymmetry, connectedness and transiƟv-
ity, where 𝛼 ∈ [0, 1]. Fuzzy relaƟons with a given graded
property are analyzed (there may be diverse grades of
the same property) and the obtained grade of the ag-
gregated fuzzy relaƟon is provided. There is also dis-
cussed the „converse” problem. Namely, relaƟon 𝑅ி =
𝐹(𝑅ଵ, … , 𝑅௡) is assumed to have a graded property and
the properƟes of relaƟons 𝑅ଵ, … , 𝑅௡ are examined (pos-
sibly with some assumpƟons on 𝐹). Presented here con-
sideraƟons have possible applicaƟons in decision making
algorithms. This is why interpretaƟon of the considered
graded properƟes and possible potenƟal in decisionmak-
ing is presented.

Keywords: decision making algorithms, fuzzy relaƟons,
properƟes of fuzzy relaƟons, aggregaƟon funcƟons

1. IntroducƟon
Since Zadeh has introduced deϐinition of fuzzy re-

lations [38], [39], the theory of themwas developed by
several authors. Thanks to the „fuzzy environment”we
may discuss diverse types of fuzzy relation properties.
For example, gradedproperties of fuzzy relationswere
observed in [23] and 𝛼-properties were introduced in
[10]. These properties may be understood as proper-
ties to some grade 𝛼, where 𝛼 ∈ [0, 1].

Aggregation functions, including means [24], are
now widely investigated and there are a few mono-
graphes devoted to this topic, e.g. [2], [7], [22]. Aggre-
gation is a fundamental process in multicriteria deci-
sion making and in other scientiϐic disciplines where
the fusion of different pieces of information for ob-
taining the ϐinal result is important. For example, in
the multicriteria decision making a ϐinite set of alter-
natives 𝑋 = {𝑥ଵ, … , 𝑥௠} and a ϐinite set of criteria
on the base of which the alternatives are evaluated
𝐾 = {𝑘ଵ, … , 𝑘௡} may be considered. Fuzzy relations
𝑅ଵ, … , 𝑅௡ on a set 𝑋 corresponding to each criterion
are provided. With the use of a function 𝐹 the aggre-
gated fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is obtained
and it is supposed to help decision makers to make

up their mind. It is useful to knowwhich properties of
fuzzy relations𝑅ଵ, … , 𝑅௡ are transposed to the relation
𝑅. There are several works contributed to the problem
of preservation of properties of fuzzy relations during
aggregation process, e.g. [21], [31], [32], [34].

In this paper theproblemofpreservationof graded
properties of fuzzy relations (cf. [14], [16], [18]) is ex-
amined. A ϐinite number of fuzzy relations having a
given graded property is considered (there can be di-
verse grades of the same property) and the obtained
grade of the aggregated fuzzy relation is provided.
There are discussed several graded properties: re-
ϐlexivity, irreϐlexivity, symmetry, asymmetry, antisym-
metry, connectedness and transitivity. There is also
considered another problem. Namely, relation 𝑅ி =
𝐹(𝑅ଵ, … , 𝑅௡) is assumed to have a graded property
and relations 𝑅ଵ, … , 𝑅௡ are examined whether they
have the same property. Appropriate assumptions on
𝐹 to fulϐill the required property are proposed. Pre-
sented in this paper results may have applications in
decision making problems what is more widely de-
scribed in Section 3. Moreover, the interpretation of
the graded properties in the context of decision mak-
ing is provided.

The aimof this paper is also to compare three algo-
rithms which follow from the theoretical results pre-
sented here. These algorithms (their complexity) and
theoretical results (assumptions on functions used in
aggregation process) are compared in order to obtain
themost useful practically result. The assumptions on
𝐹 which are used to aggregate 𝑅ଵ, … , 𝑅௡ are the mini-
mal ones, i.e. we do not necessarily consider aggrega-
tion functions 𝐹 but just functions 𝐹 ∶ [0, 1]ଶ → [0, 1],
which were recently called ’fusion functions’ [6]. If it
comes to complexity, it turned out that it is the same
for each presented algorithm (for a given property). In
the case of assumptions on fusion functions𝐹 the situ-
ation may be different what is analyzed in Section 7.1.

In Section 2, useful deϐinitions are collected. In
Section 3, motivation from real-life situations to con-
sider such theoretical problem is presented. In Sec-
tion 4, diverse dependencies and interpretation of 𝛼-
properties are discussed. In Section 5, graded prop-
erties: reϐlexivity, irreϐlexivity, symmetry, asymmetry,
antisymmetry, connectedness and transitivity are ex-
amined one by one, in the context of their preservation
in aggregation process. In Section 6, reciprocity prop-
erty and other concepts and properties connected
with decision making algorithms are mentioned. Fi-
nally, in Section 7 comparison of algorithms based on
the theoretical studies presented in this paper are pro-
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vided.

2. Preliminaries
Nowwe recall some deϐinitionswhichwill be help-

ful in our investigations.
Deϐinition 1 ([38]). A fuzzy relation in𝑋 ≠ ∅ is a func-
tion 𝑅 ∶ 𝑋 × 𝑋 → [0, 1]. The family of all fuzzy relations
in 𝑋 is denoted by ℱℛ(𝑋).

With the use of 𝑛-argument functions 𝐹 we aggre-
gate given fuzzy relations 𝑅ଵ, … , 𝑅௡ for a ϐixed 𝑛 ∈ .
Deϐinition 2 ([25]). Let 𝐹 ∶ [0, 1]௡ → [0, 1],
𝑅ଵ, … , 𝑅௡ ∈ ℱℛ(𝑋). 𝑅ி ∈ ℱℛ(𝑋), where

𝑅ி(𝑥, 𝑦) = 𝐹(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)), 𝑥, 𝑦 ∈ 𝑋,

will be called an aggregated fuzzy relation. A function
𝐹 preserves a property of fuzzy relations if for every re-
lation 𝑅ଵ, … , 𝑅௡ ∈ ℱℛ(𝑋) having this property, 𝑅ி also
has this property.

Example 1. Projections 𝑃௞(𝑡ଵ, … , 𝑡௡) = 𝑡௞ , 𝑘 ∈
{1,… , 𝑛} preserve each property of fuzzy relations be-
cause for 𝐹 = 𝑃௞ we get 𝑅ி = 𝑅௞ .
Deϐinition 3 ([7]). Let 𝑛 ⩾ 2. A function 𝐹 ∶
[0, 1]௡ → [0, 1] is called an aggregation function, if it
is increasing with respect to any variable, i.e. for any
𝑠ଵ, … , 𝑠௡ , 𝑡ଵ, … , 𝑡௡ ∈ [0, 1]

( ∀
ଵ⩽௞⩽௡

𝑠௞ ⩽ 𝑡௞) ⇒ 𝐹(𝑠ଵ, … , 𝑠௡) ⩽ 𝐹(𝑡ଵ, … , 𝑡௡) (1)

and 𝐹(0,… , 0) = 0, 𝐹(1,… , 1) = 1.
Deϐinition 4 ([15]). An operation 𝐶 ∶ [0, 1]ଶ → [0, 1]
is called a fuzzy conjunction if it is increasing and

𝐶(1, 1) = 1, 𝐶(0, 0) = 𝐶(0, 1) = 𝐶(1, 0) = 0.

An operation 𝐷 ∶ [0, 1]ଶ → [0, 1] is called a fuzzy dis-
junction if it is increasing and

𝐷(0, 0) = 0, 𝐷(1, 1) = 𝐷(0, 1) = 𝐷(1, 0) = 1.

Fuzzy conjunctions and disjunctions are examples
of binary aggregation functions. Conversely, if a binary
aggregation function has a zero element 𝑧 = 0 (as in
the case of the geometric mean), then it is a fuzzy con-
junction. Similarly, if a binary aggregation function has
a zero element 𝑧 = 1, then we get a fuzzy disjunction.
Deϐinition 5. A fuzzy conjunction which has a neutral
element 1 is called a t-seminorm [20] (a semicopula [1],
a conjunctor [9]). A fuzzy disjunction which has a neu-
tral element 0 is called a t-semiconorm.

Corollary 1. If an operation 𝐵 ∶ [0, 1]ଶ → [0, 1] is
increasing and has a neutral element 1 (neutral ele-
ment 0), then it is a fuzzy conjunction fulϔilling property
𝐵(𝑥, 𝑦) ⩽ min(𝑥, 𝑦) (fuzzy disjunction fulϔilling prop-
erty 𝐵(𝑥, 𝑦) ⩾ max(𝑥, 𝑦)).

Triangular norms and conorms are examples of
conjunctions and disjunctions having neutral element
1 or 0, respectively.

Deϐinition 6 ([28]). A triangular norm 𝑇 ∶ [0, 1]ଶ →
[0, 1] (a triangular conorm 𝑆 ∶ [0, 1]ଶ → [0, 1]) is an
arbitrary associative, commutative, increasing in both
variables function having a neutral element 𝑒 = 1 (𝑒 =
0).

Basic triangular norms and conorms are presented
below.
Example 2 ([28], p. 6). For arbitrary 𝑠, 𝑡 ∈ [0, 1] we
have functions:
• lattice, 𝑇ெ(𝑠, 𝑡) = min(𝑠, 𝑡), 𝑆ெ(𝑠, 𝑡) = max(𝑠, 𝑡),
• Łukasiewicz, 𝑇௅(𝑠, 𝑡) = max(𝑠 + 𝑡 − 1, 0),
𝑆௅(𝑠, 𝑡) = min(𝑠 + 𝑡, 1),
• product, 𝑇௉(𝑠, 𝑡) = 𝑠𝑡, 𝑆௉(𝑠, 𝑡) = 𝑠 + 𝑡 − 𝑠𝑡,

• drastic, 𝑇஽(𝑠, 𝑡) = ൞
0, 𝑠, 𝑡 < 1
𝑠, 𝑡 = 1
𝑡, 𝑠 = 1

,

𝑆஽(𝑠, 𝑡) = ൞
1, 𝑠, 𝑡 > 0
𝑠 𝑡 = 0
𝑡, 𝑠 = 0

.

Thanks to the associativity property triangular
norms and conorms may be extended to 𝑛-argument
functions. Special case of aggregation functions are the
ones which are idempotent.
Lemma 1 ([25], Proposition 5.1). Every function 𝐹 ∶
[0, 1]௡ → [0, 1] increasing in each variable and idem-
potent

∀
௧∈[଴,ଵ]

𝐹(𝑡, … , 𝑡) = 𝑡 (2)

fulϔils for any 𝑡ଵ, … , 𝑡௡ ∈ [0, 1]

min(𝑡ଵ, … , 𝑡௡) ⩽ 𝐹(𝑡ଵ, … , 𝑡௡) ⩽ max(𝑡ଵ, … , 𝑡௡). (3)

Herewe present examples of functionswhich fulϐil
(3).
Example 3. Let 𝜑 ∶ [0, 1] → be a continuous, strictly
monotonic function. A quasi-linear mean (cf. [25], p.
112) is the function

𝐹(𝑡ଵ, … , 𝑡௡) = 𝜑ିଵ(
௡

෍
௜ୀଵ

𝑤௜𝜑(𝑡௜)), 𝑡ଵ, … , 𝑡௡ ∈ [0, 1],

where
௡
∑
௜ୀଵ

𝑤௜ = 1,𝑤௜ ∈ [0, 1]. Particularly, we obtain

weighted arithmetic means

𝐹(𝑡ଵ, … , 𝑡௡) =
௡

෍
௜ୀଵ

𝑤௜𝑡௜ , 𝑡ଵ, … , 𝑡௡ ∈ [0, 1],

where
௡
∑
௜ୀଵ

𝑤௜ = 1,𝑤௜ ∈ [0, 1]. An aggregation function

𝐹(𝑡ଵ, … , 𝑡௡) = 𝑝 max
ଵ⩽௞⩽௡

𝑡௞ + (1 − 𝑝) min
ଵ⩽௞⩽௡

𝑡௞ (4)

is idempotent, where 𝑝 ∈ (0, 1) is a parameter.

There are some connections between functions.
For example, we may consider relation of dominance
of one function over another.
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Deϐinition 7 (cf. [36], [34]). Let 𝑚, 𝑛 ∈ . A function
𝐹 ∶ [0, 1]௠ → [0, 1] dominates a function 𝐺 ∶ [0, 1]௡ →
[0, 1] ( 𝐹 ≫ 𝐺), if for arbitrary matrix [𝑎௜௞] = 𝐴 ∈
[0, 1]௠×௡ we have

𝐹(𝐺(𝑎ଵଵ, … , 𝑎ଵ௡), … , 𝐺(𝑎௠ଵ, … , 𝑎௠௡)) ⩾

𝐺(𝐹(𝑎ଵଵ, … , 𝑎௠ଵ), … , 𝐹(𝑎ଵ௡ , … , 𝑎௠௡)). (5)

Lemma 2. Let 𝐺 ∶ [0, 1]௡ → [0, 1] be increasing,𝑚 =
2 (cf. (5)). Thus min ≫ 𝐺 ([34], p. 16) and 𝐺 ≫ max
(cf. [11], Theorem 2), so for 𝑠ଵ, ..., 𝑠௡ , 𝑡ଵ, ..., 𝑡௡ ∈ [0, 1]we
have respectively

min(𝐺(𝑠ଵ, ..., 𝑠௡), 𝐺(𝑡ଵ, ..., 𝑡௡)) ⩾

𝐺(min(𝑠ଵ, 𝑡ଵ), ..., min(𝑠௡ , 𝑡௡)) (6)
and

𝐺(max(𝑠ଵ, 𝑡ଵ), ..., max(𝑠௡ , 𝑡௡)) ⩾

max(𝐺(𝑠ଵ, ..., 𝑠௡), 𝐺(𝑡ଵ, ..., 𝑡௡)). (7)

Theorem 1. An increasing in each variable function
𝐹 ∶ [0, 1]௡ → [0, 1] dominates minimum (𝐹 ≫ min)
if and only if

𝐹(𝑡ଵ, … , 𝑡௡) = min(𝑓ଵ(𝑡ଵ), … , 𝑓௡(𝑡௡)), 𝑡ଵ, … , 𝑡௡ ∈ [0, 1],
(8)

where functions 𝑓௞ ∶ [0, 1] → [0, 1] are increasing for
𝑘 = 1,… , 𝑛 (cf. [34], Proposition 5.1).
An increasing in each variable function 𝐹 ∶ [0, 1]௡ →
[0, 1] is dominated by maximum (max ≫ 𝐹) if and only
if

𝐹(𝑡ଵ, … , 𝑡௡) = max(𝑓ଵ(𝑡ଵ), … , 𝑓௡(𝑡௡)), 𝑡ଵ, … , 𝑡௡ ∈ [0, 1],
(9)

where functions 𝑓௞ ∶ [0, 1] → [0, 1] are increasing for
𝑘 = 1,… , 𝑛.

Example 4 (cf. [31]). Here are examples of functions
fulϔilling (8):
if 𝑓௞(𝑡) = 𝑡, 𝑘 = 1,… , 𝑛, then 𝐹 = min,
if for some 𝑘 ∈ {1,… , 𝑛}, 𝑓௞(𝑡) = 𝑡, 𝑓௜(𝑡) = 1 for 𝑖 ≠ 𝑘,
then 𝐹 = 𝑃௞ ,
if 𝑓௞(𝑡) = max(1 − 𝑣௞ , 𝑡), 𝑣௞ ∈ [0, 1], 𝑘 = 1,… , 𝑛,
max
ଵ⩽௞⩽௡

𝑣௞ = 1, then 𝐹 is the weighted minimum

𝐹(𝑡ଵ, … , 𝑡௡) = min
ଵ⩽௞⩽௡

max(1 − 𝑣௞ , 𝑡௞), (10)

where 𝑡 = (𝑡ଵ, … , 𝑡௡) ∈ [0, 1]௡ .
Here are examples of functions fulϔilling (9):
if 𝑓௞(𝑡) = 𝑡, 𝑘 = 1,… , 𝑛, then 𝐹 = max,
if for some 𝑘 ∈ {1,… , 𝑛}, 𝑓௞(𝑡) = 𝑡, 𝑓௜(𝑡) = 0 for 𝑖 ≠ 𝑘,
then 𝐹 = 𝑃௞ ,
if 𝑓௞(𝑡) = min(𝑣௞ , 𝑡), 𝑣௞ ∈ [0, 1], 𝑘 = 1,… , 𝑛,
max
ଵ⩽௞⩽௡

𝑣௞ = 1, then 𝐹 is the weighted maximum

𝐹(𝑡ଵ, … , 𝑡௡) = max
ଵ⩽௞⩽௡

min(𝑣௞ , 𝑡௞), (11)

where 𝑡 = (𝑡ଵ, … , 𝑡௡) ∈ [0, 1]௡ .

Lemma 3 (cf. [18]). If a function 𝐹 ∶ [0, 1]௡ → [0, 1]
is increasing in each variable and has a neutral element
𝑒 = 1, i.e.

∀
௧∈[଴,ଵ]

∀
ଵ⩽௞⩽௡

𝐹(1,… , 1, 𝑡, 1, … , 1) = 𝑡, (12)

where 𝑡 is at the 𝑘-th position, then 𝐹 ⩽ min.
If a function 𝐹 ∶ [0, 1]௡ → [0, 1] is increasing in each
variable and has a neutral element 𝑒 = 0, i.e.

∀
௧∈[଴,ଵ]

∀
ଵ⩽௞⩽௡

𝐹(0,… , 0, 𝑡, 0, … , 0) = 𝑡, (13)

where 𝑡 is at the 𝑘-th position, then 𝐹 ⩾ max.
Here are recalled deϐinitions of concepts con-

nected with fuzzy relations.
Deϐinition 8 (cf. [38]). Let 𝑅 ∈ ℱℛ(𝑋), 𝛼 ∈ [0, 1]. The
𝛼-cut of a fuzzy relation 𝑅 is the relation

𝑅ఈ = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∶ 𝑅(𝑥, 𝑦) ⩾ 𝛼}. (14)

The strict 𝛼-cut of a fuzzy relation 𝑅 is the relation

𝑅ఈ = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∶ 𝑅(𝑥, 𝑦) > 𝛼}. (15)

Deϐinition 9 (cf. [38]). Let 𝑅, 𝑆 ∈ ℱℛ(𝑋). The compo-
sition of relations 𝑅 and 𝑆 is called the relation

(𝑅∘𝑆)(𝑥, 𝑧) = sup
௬∈௑

min(𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)), (𝑥, 𝑧) ∈ 𝑋×𝑋.

(16)
The power of a relation 𝑅 is called the sequence 𝑅ଵ = 𝑅
and 𝑅௡ାଵ = 𝑅௡ ∘ 𝑅 for 𝑛 ∈ .

Remark 1. If 𝑐𝑎𝑟𝑑 𝑋 = 𝑛, 𝑋 = {𝑥ଵ, … , 𝑥௡}, then a
relation 𝑅 ∈ ℱℛ(𝑋)may be presented by a matrix 𝑅 =
[𝑟௜௞], where 𝑟௜௞ = 𝑅(𝑥௜ , 𝑥௞), 𝑖, 𝑘 = 1,… , 𝑛.

3. MoƟvaƟon
In this section the idea ofmulticriteria (or similarly

multiagent) decision making is recalled. Presented
problem is related to considerations provided in this
paper. Fuzzy relations in such setting represent the
preferences.

Let 𝑐𝑎𝑟𝑑 𝑋 = 𝑚,𝑚 ∈ , 𝑋 = {𝑥ଵ, … , 𝑥௠} be a set of
alternatives. In multicriteria decision making a deci-
sion maker has to choose among the alternatives with
respect to a set of criteria. Let 𝐾 = {𝑘ଵ, … , 𝑘௡} be the
set of criteria on the base of which the alternatives are
evaluated. 𝑅ଵ, … , 𝑅௡ be fuzzy relations corresponding
to each criterion represented by matrices, where
𝑅௞ ∶ 𝑋 × 𝑋 → [0, 1], 𝑘 = 1,… , 𝑛, 𝑛 ∈ , 𝑅௞(𝑥௜ , 𝑥௝) = 𝑟௞௜௝ ,
1 ⩽ 𝑖, 𝑗 ⩽ 𝑚. We assume that for example:
𝑟௞௜௝ – an intensity with which 𝑥௜ is better than 𝑥௝ under
𝑘 ∈ 𝐾,
𝑟௞௜௝ = 1 – „𝑥௜ is absolutely better than 𝑥௝ under
criterion 𝑘”,
𝑟௞௜௝ = 0 – „𝑥௝ is absolutely better than 𝑥௜ under
criterion 𝑘”,
𝑟௞௜௝ = 0.5 – „𝑥௜ is equally good as 𝑥௝ under criterion 𝑘”,
so it is natural that 𝑟௞௜௜ = 0.5.
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Similarly, if we consider multiagent decision mak-
ing problems, relations𝑅ଵ, … , 𝑅௡ represent the prefer-
ences of each agent and no criteria (certainly, we can
combine these two situations, i.e. many criteria and
many agents).

Relation𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is supposed tohelp the
decision maker to make up his/her mind. Some func-
tions𝐹maybemore adequate for aggregation than the
others since they may (or not) preserve the required
properties of individual fuzzy relations 𝑅ଵ, … , 𝑅௡ . Ac-
cording to some experimental works [40] weighted
arithmetic mean and function (4) are the aggregation
functions which occur themost often in the process of
human decision making. Such properties, if they are
fulϐilled by fuzzy relations, may be a form of measure
of consistency of choices or may provide the interpre-
tation of choices. This is why preservation of these
properties may be interested and required in aggre-
gation process formulticriteria ormultiagent decision
making problems.

Application of similar considerations by a numer-
ical example is presented in [32] where the choice or
ranking problems of a set of alternatives evaluated by
fuzzy preference relations using the aggregation func-
tions are considered. It is shown howproperties of the
aggregated fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡), depend-
ing on the properties of the individual fuzzy relations
𝑅ଵ, … , 𝑅௡ , help to solve the given problem. However, in
that paper it is stressed also another problem, namely
the sensitivity of the aggregation operators with re-
spect to variations in their arguments. In that paper
several weighted aggregation operators, i.e. operators
which use the importance of criteria, given as weights,
are considered.

In the presented multicriteria or multiagent deci-
sion making problems it is sometimes required that
the given fuzzy relations representing the preferences
are reciprocal, i.e. fuzzy relation 𝑅 in 𝑋 is reciprocal if
𝑅(𝑥, 𝑦) + 𝑅(𝑦, 𝑥) = 1 for 𝑥, 𝑦 ∈ 𝑋. However, if 𝑅 is not
reciprocal, there aremethods to transform it to the re-
ciprocal one [3].

4. Graded ProperƟes of Fuzzy RelaƟons
Now, dependencies related to 𝛼-properties in the

context of aggregation process, between relations
𝑅ଵ, … , 𝑅௡ on a set 𝑋 and the aggregated fuzzy rela-
tion𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡)will be investigated. Moreover,
some previous results will be recalled.

Deϐinition 10 ([10], p. 75, [18]). Let 𝛼 ∈ [0, 1]. A re-
lation 𝑅 ∈ ℱℛ(𝑋) is:
- 𝛼-reϔlexive, if ∀

௫∈௑
𝑅(𝑥, 𝑥) ⩾ 𝛼,

- 𝛼-irreϔlexive, if ∀
௫∈௑

𝑅(𝑥, 𝑥) ⩽ 1 − 𝛼,

- totally 𝛼-connected, if ∀
௫,௬∈௑

max(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)) ⩾
𝛼,

- 𝛼-connected, if ∀
௫,௬,௫ஷ௬∈௑

max(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)) ⩾ 𝛼,

- 𝛼-asymmetric, if ∀
௫,௬∈௑

min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)) ⩽ 1−𝛼,

- 𝛼-antisymmetric, if ∀
௫,௬,௫ஷ௬∈௑

min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)) ⩽
1 − 𝛼,

- 𝛼-symmetric, if ∀
௫,௬∈௑

𝑅(𝑥, 𝑦) ⩾ 1 − 𝛼 ⇒ 𝑅(𝑦, 𝑥) ⩾
𝑅(𝑥, 𝑦),

- 𝛼-transitive, if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋
min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧)) ⩾ 1 − 𝛼 ⇒ 𝑅(𝑥, 𝑧) ⩾
min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧)).

Let us notice that conditions for 𝛼-symmetry and
𝛼-transitivity may be written in a more convenient
way.

Corollary 2. Let 𝛼 ∈ [0, 1]. A relation 𝑅 ∈ ℱℛ(𝑋) is
𝛼-symmetric if and only if

∀
௫,௬∈௑

𝑅(𝑥, 𝑦) ⩾ 1 − 𝛼 ⇒ 𝑅(𝑦, 𝑥) = 𝑅(𝑥, 𝑦). (17)

Corollary 3 (cf. [13], Theorem 10). Let 𝑅 ∈ ℱℛ(𝑋),
𝛼 ∈ [0, 1]. Relation 𝑅 is 𝛼-transitive if and only if

𝑅ଶ ⩾ 1 − 𝛼 ⇒ 𝑅 ⩾ 𝑅ଶ. (18)

Corollary 4. Let 𝑅 ∈ ℱℛ(𝑋), 𝛽 ∈ [0, 1]. If relation 𝑅 is
𝛽-𝑃, then it is 𝛼-𝑃 for any 𝛼 ∈ [0, 𝛽], where 𝑃: reϔlexiv-
ity, irreϔlexivity, symmetry, asymmetry, antisymmetry,
connectedness, total connectedness, transitivity.

Proof. Let 𝛼 ⩽ 𝛽. We use the fact, which is easy to see
for each property 𝛼-𝑃, where 𝑃: reϐlexivity, irreϐlex-
ivity, symmetry, asymmetry, antisymmetry, connect-
edness, total connectedness, transitivity, that if 𝑅 ∈
ℱℛ(𝑋) is 𝛽-𝑃, then it is 𝛼-𝑃.

If we have a reciprocal fuzzy relation 𝑅 describ-
ing preferences, then the properties in Deϐinition 10
may provide some practical information according to
the preferences over the given set of alternatives. For
example, the 0.5-asymmetry of a reciprocal fuzzy re-
lation guarantees that at least one of the alternatives
𝑥௜ or 𝑥௝ is preferred to the other one with the fuzzy
value lower than or equal to 0.5 (or these alterna-
tives are indifferent), which means that if 𝑥௜ is pre-
ferred to 𝑥௝ , then it is not true that 𝑥௝ is preferred to
𝑥௜ . This interpretation of 0.5-asymmetry for a recipro-
cal fuzzy relation is analogous to the one of asymme-
try for crisp relations (i.e., if element 𝑥௜ is in relation
with 𝑥௝ , then it is not true that 𝑥௝ is in relation with
𝑥௜ [33]). Similarly, we can interpret the other proper-
ties. For 𝛼-connectedness, the greater the value of 𝛼
(namely, the closer it is to the value1), the choice of the
alternative is more precise (conϐident/sure). For pref-
erence relations, if it comes to 𝛼-reϐlexivity, practically
only 0.5-reϐlexivity occurs and with the given deϐini-
tion, if 𝑅 is 0.5-reϐlexive then it is automatically 0.5-
irreϐlexive. Moreover, reciprocal preference relation
is always totally 0.5-connected and 0.5-asymmetric.
Since the ϐixed value of 0.5 on the diagonal may un-
derstate or inϐlate the value of 𝛼 for these proper-
ties, it makes sense to distinguish total connectedness
and connectedness and similarly, asymmetry and an-
tisymmetry. 𝑅 ∈ ℱℛ(𝑋) has the highest value of 𝛼-
symmetry for preference relation 𝑅 in the case when
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all elements in the set of alternatives𝑋 are indifferent.
In fact, in such situation relation 𝑅 is symmetric (it is
𝛼-symmetric for𝛼 ∈ [0, 1]).Moreover,we have the fol-
lowing statement: if 𝑅 ∈ ℱℛ(𝑋) is reciprocal, then 𝑅
is totally 𝛼-connected (𝛼-connected) if and only if 𝑅 is
𝛼-asymmetric (𝛼-antisymmetric). That is not the case
for𝑅 ∈ ℱℛ(𝑋)which is not reciprocal (cf. Example 5).
In the sequelwewill present the results in general set-
ting of fuzzy relations, sometimes with the comments
on reciprocal preference relations.

For practical reasons it is useful to ϐind the great-
est value of 𝛼 for which 𝑅 ∈ ℱℛ(𝑋) is 𝛼–𝑃 for a given
property 𝑃: reϐlexivity, irreϐlexivity, symmetry, asym-
metry, antisymmetry, connectedness, total connect-
edness, transitivity. Applying deϐinitions of the given
properties and Corollary 4 one can ϐind this value in
the following way.
Corollary 5. Let 𝑅 ∈ ℱℛ(𝑋),

𝛼଴ = 1 − sup
௫,௬∈௑

min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)),

𝛽଴ = 1 − sup
௫ஷ௬

min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)),

𝛾଴ = inf
௫,௬∈௑

max(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)),

𝛿଴ = inf
௫ஷ௬

max(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)),

𝜇଴ = inf
௫∈௑

𝑅(𝑥, 𝑥),

𝜈଴ = inf
௫∈௑

(1 − 𝑅(𝑥, 𝑥)) = 1 − sup
௫∈௑

𝑅(𝑥, 𝑥).

Thus a relation 𝑅 is: 𝛼–asymmetric for 𝛼 ∈ [0, 𝛼଴],
𝛽–antisymmetric for 𝛽 ∈ [0, 𝛽଴], totally 𝛾–connected
for 𝛾 ∈ [0, 𝛾଴], 𝛿–connected for 𝛿 ∈ [0, 𝛿଴], 𝜇–reϔlexive
for 𝜇 ∈ [0, 𝜇଴] and 𝜈–irreϔlexive for 𝜈 ∈ [0, 𝜈଴].

For symmetry and transitivity we have adequate
half-closed intervals. Moreover, for checking the 𝛼-
transitivity of a fuzzy relation 𝑅, the composition of 𝑅
by itself will be useful.
Corollary 6. Let 𝑅 ∈ ℱℛ(𝑋). Thus 𝑅 is 𝛼-symmetric
for 𝛼 ∈ [0, 1] if 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 or 𝑅 is
𝛼-symmetric for 𝛼 ∈ [0, 𝛼଴) if there exist 𝑥, 𝑦 ∈ 𝑋 such
that 𝑅(𝑥, 𝑦) ≠ 𝑅(𝑦, 𝑥), where

𝛼଴ = 1 − sup
ோ(௫,௬)ஷோ(௬,௫), ௫,௬∈௑

𝑅(𝑥, 𝑦).

𝑅 is 𝛽-transitive for 𝛽 ∈ [0, 1] if 𝑅ଶ(𝑥, 𝑦) ⩽ 𝑅(𝑥, 𝑦) for
all 𝑥, 𝑦 ∈ 𝑋 or 𝑅 is 𝛽-transitive for 𝛽 ∈ [0, 𝛽଴) if there
exist 𝑥, 𝑦 ∈ 𝑋 such that 𝑅(𝑥, 𝑦) < 𝑅ଶ(𝑥, 𝑦), where

𝛽଴ = 1 − sup
ோ(௫,௬)ழோమ(௫,௬), ௫,௬∈௑

𝑅ଶ(𝑥, 𝑦).

Example 5. Let 𝑐𝑎𝑟𝑑 𝑋 = 2, 𝑅 ∈ ℱℛ(𝑋), where

𝑅 = ቈ 0.7 0.2
0.5 0.4 ቉ .

The relation 𝑅 is totally 𝛼–connected and 𝛼-reϔlexive
for 𝛼 ∈ [0, 0.4] and 𝛼–connected for 𝛼 ∈ [0, 0.5]. It
is 𝛼-asymmetric and 𝛼-irreϔlexive for 𝛼 ∈ [0, 0.3] and

𝛼-antisymmetric for 𝛼 ∈ [0, 0.8]. 𝑅 is 𝛼-symmetric for
𝛼 ∈ [0, 0.5) and 𝛼-transitive for 𝛼 ∈ [0, 1] (it follows
from the fact that 𝑅ଶ = 𝑅).
Let 𝑐𝑎𝑟𝑑 𝑋 = 3. We consider 𝑅 ∈ ℱℛ(𝑋) which is re-
ciprocal, where

𝑅 = ቎
0.5 0.8 0.3
0.2 0.5 0.4
0.7 0.6 0.5

቏ , 𝑅ଶ = ቎
0.5 0.5 0.4
0.4 0.5 0.4
0.5 0.7 0.5

቏ .

The relation 𝑅 is totally 𝛼–connected and 𝛼-reϔlexive
for 𝛼 ∈ [0, 0.5] and 𝛼–connected for 𝛼 ∈ [0, 0.6]. It
is 𝛼-asymmetric and 𝛼-irreϔlexive for 𝛼 ∈ [0, 0.5] and
𝛼-antisymmetric for 𝛼 ∈ [0, 0.6]. 𝑅 is 𝛼-symmetric for
𝛼 ∈ [0, 0.2) and 𝛼-transitive for 𝛼 ∈ [0, 0.3).

Remark 2. The presented 𝛼-properties (graded prop-
erties) for 𝛼 = 1 become the basic properties of fuzzy
relations [39]. Graded properties are „fuzzy versions” of
properties introduced by Zadeh. It means that, if a fuzzy
relation, e.g. is not reϔlexive, it may be reϔlexive to some
grade 𝛼, where 𝛼 ∈ [0, 1].

Remark 3. Taking into account 𝛼 = 0, each fuzzy
relation is 0-reϔlexive, 0-irreϔlexive, 0-asymmetric, 0-
antisymmetric, 0-connected and totally 0-connected.
However, it is not true for graded symmetry and tran-
sitivity. If in Corollary 6, 𝛼଴ = 0 (or similarly 𝛽଴ = 0),
then 𝑅 is not 𝛼-symmetric for any 𝛼 ∈ [0, 1] (𝑅 is not
𝛽-transitive for any 𝛽 ∈ [0, 1]).

Example 6. Let card 𝑋 = 3, relations 𝑅, 𝑆 ∈ ℱℛ(𝑋) be
presented by matrices:

𝑅 = ቎
0 0 1
0 0 0
1 0 0

቏ , 𝑆 = ቎
0 0 0
0 0 0
1 0 0

቏ .

The relation 𝑅 is not 0-transitive because
min(𝑟ଵଷ, 𝑟ଷଵ) = 1 but 0 = 𝑟ଵଵ < min(𝑟ଵଷ, 𝑟ଷଵ) = 1.
The relation 𝑆 is not 0-symmetric because 𝑠ଷଵ = 1 and
0 = 𝑠ଵଷ < 𝑠ଷଵ = 1.

Notions of𝛼-properties have their connectionwith
cuts and strict cuts of a fuzzy relation.

Theorem 2 (cf. [17]). Let 𝛼 ∈ [0, 1], 𝑅 ∈ ℱℛ(𝑋).
A fuzzy relation 𝑅 is totally 𝛼-connected (𝛼-connected,
𝛼-reϔlexive) if and only if relation 𝑅ఈ is totally con-
nected (connected, reϔlexive). A fuzzy relation 𝑅 is 𝛼-
asymmetric (𝛼-antisymmetric, 𝛼-irreϔlexive) if and only
if relation 𝑅ଵିఈ is asymmetric (antisymmetric, irreϔlex-
ive). If a fuzzy relation 𝑅 is 𝛼-transitive, then relation
𝑅ଵିఈ is transitive. If a fuzzy relation 𝑅 is 𝛼-symmetric,
then relation 𝑅ଵିఈ is symmetric.

Similar characterizations for other properties for
fuzzy relations one may ϐind in [12] (Theorem 1). The
conditions for 𝛼-symmetry and 𝛼-transitivity are only
the sufϐicient ones.

Example 7 (cf. [17]). Let card 𝑋 = 2, 𝑅 ∈ ℱℛ(𝑋),

𝑅 = ቈ 0.3 0.5
0.7 0.4 ቉ .
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The cuts 𝑅ఉ are symmetric for 𝛽 ∈ [0, 0.5] ∪ (0.7, 1],
so the cuts 𝑅ଵିఈ have this property for 𝛼 ⩾ 0.5 and
𝛼 < 0.3. Relation 𝑅 is 𝛼-symmetric for 𝛼 ∈ [0, 0.3), as a
result for 𝛼 = 0.5, the cut 𝑅଴.ହ is symmetric, while 𝑅 is
not 0.5-symmetric.

Let 𝑅 ∈ ℱℛ(𝑋), card 𝑋 = 3,

𝑅 = ቎
0.7 0 0
0.8 0.9 0
0.6 0.9 0.8

቏ , 𝑆 = 𝑅ଶ = ቎
0.7 0 0
0.8 0.9 0
0.8 0.9 0.8

቏ .

The cuts 𝑅ఉ are transitive for 𝛽 ∈ [0, 0.6] ∪ (0.8, 1],
so the cuts 𝑅ଵିఈ have this property for 𝛼 ∈ [0, 0.2) ∪
[0.4, 1]. Since 0.8 = 𝑠ଷଶ ⩾ 1 − 𝛼 for 𝛼 ∈ [0.4, 1] and
𝑠ଷଶ = 0.8 > 0.6 = 𝑟ଷଶ, relation 𝑅 is not 𝛼-transitive
for 𝛼 ∈ [0.4, 1] (it is 𝛼-transitive for 𝛼 ∈ [0, 0.2), see
Corollary 6).

Other results describing gradedproperties one can
ϐind in [10] (p. 78–79).

5. AggregaƟon of Fuzzy RelaƟons
In this section we will present 𝛼-properties of

fuzzy relations and diverse approaches of aggregating
such relations. There will be presented the following
type of theorems for aggregated fuzzy relation 𝑅ி:
- aggregation of𝑅ଵ, … , 𝑅௡ all having the same grade of
a given 𝛼-property to obtain𝑅ி with the same grade
𝛼,

- aggregation of 𝑅ଵ, … , 𝑅௡ with possible diverse
grades 𝛼ଵ, … , 𝛼௡ of a given graded property to
obtain 𝑅ி with the suitable grade 𝛼,

- starting from 𝑅ி having some grade 𝛼 and check-
ing whether 𝑅ଵ, … , 𝑅௡ all have the same grade 𝛼 of
a given graded property.

5.1. Reflexivity
Graded reϐlexivity was considered by many au-

thors, e.g. [8], [10].

Theorem 3 ([16]). Let 𝛼 ∈ [0, 1]. 𝐹 ∶ [0, 1]௡ → [0, 1]
preserves 𝛼-reϔlexivity of fuzzy relations, if and only if

𝐹|[ఈ,ଵ]೙ ⩾ 𝛼.

Theorem 4 ([16]). 𝐹 ∶ [0, 1]௡ → [0, 1] preserves 𝛼-
reϔlexivity of fuzzy relations for arbitrary 𝛼 ∈ [0, 1] if
and only if 𝐹 ⩾ min.

By Lemma 1 we know that every increasing and
idempotent function preserves 𝛼-reϐlexivity of fuzzy
relations for arbitrary 𝛼 ∈ [0, 1]. In particular, we get

Corollary 7. Quasi-linearmeans preserve 𝛼-reϔlexivity
of fuzzy relations for any 𝛼 ∈ [0, 1].

Theorem 5. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], a function 𝐹 ∶
[0, 1]௡ → [0, 1] be increasing in each variable. If re-
lations 𝑅௜ ∈ ℱℛ(𝑋) are 𝛼௜-reϔlexive for 𝑖 = 1,… , 𝑛,
then relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-reϔlexive for 𝛼 =
𝐹(𝛼ଵ, … , 𝛼௡).

Proof. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], a function 𝐹 ∶ [0, 1]௡ →
[0, 1] be increasing in each variable, 𝑅௜ ∈ ℱℛ(𝑋) be
𝛼௜-reϐlexive for 𝑖 = 1,… , 𝑛, 𝑥 ∈ 𝑋. Then

𝑅(𝑥, 𝑥) = 𝐹(𝑅ଵ(𝑥, 𝑥), … , 𝑅௡(𝑥, 𝑥)) ⩾ 𝐹(𝛼ଵ, … , 𝛼௡),

so relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-reϐlexive for 𝛼 =
𝐹(𝛼ଵ, … , 𝛼௡).

Each aggregation function is increasing, so we get

Corollary 8. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], 𝐹 ∶ [0, 1]௡ → [0, 1]
be an aggregation function. If relations 𝑅௜ ∈ ℱℛ(𝑋)
are 𝛼௜-reϔlexive for 𝑖 = 1,… , 𝑛, then relation 𝑅ி =
𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-reϔlexive for 𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡).

Theorem6. Let𝛼 ∈ [0, 1] and𝐹 ⩽ min. If a fuzzy rela-
tion 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-reϔlexive, then all relations
𝑅ଵ, … , 𝑅௡ are 𝛼-reϔlexive.

Proof. Let 𝛼 ∈ [0, 1], 𝐹 ⩽ min, 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) be
𝛼-reϐlexive, 𝑥 ∈ 𝑋, 𝑘 ∈ {1,… , 𝑛}. Then

𝑅௞(𝑥, 𝑥) ⩾ min
ଵ⩽௜⩽௡

𝑅௜(𝑥, 𝑥) ⩾

𝐹(𝑅ଵ(𝑥, 𝑥), … , 𝑅௡(𝑥, 𝑥)) ⩾ 𝛼.
As a result relation 𝑅௞ is 𝛼-reϐlexive.

In virtue of Lemma 3 we get

Corollary 9. Let 𝛼 ∈ [0, 1], 𝐹 be a t-seminorm
or a t-norm. If a fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡)
is 𝛼-reϔlexive, then all relations 𝑅ଵ, … , 𝑅௡ are also 𝛼-
reϔlexive.

The next example shows that the condition pre-
sented in Theorem 6 is only sufϐicient.

Example 8. Let 𝑐𝑎𝑟𝑑 𝑋 = 2. We consider fuzzy rela-
tions with matrices:

𝑅 = ቈ 0 1
1 1 ቉ , 𝑆 = ቈ 1 1

1 0 ቉ ,

𝑊ଵ = max(𝑅, 𝑆) = ቈ 1 1
1 1 ቉ ,

𝑊ଶ =
𝑅 + 𝑆
2 = ቈ 0.5 1

1 0.5 ቉ .

Relation 𝑊ଵ is 𝛼-reϔlexive for 𝛼 ∈ [0, 1], 𝑊ଶ for 𝛼 ∈
[0, 0.5], but relations 𝑅, 𝑆 do not have this property for
any 𝛼 ∈ (0, 1].

5.2. Irreflexivity
For irreϐlexivity, generallywe get dual results to re-

ϐlexivity.

Theorem 7 ([16]). Let 𝛼 ∈ [0, 1]. A function 𝐹 ∶
[0, 1]௡ → [0, 1] preserves 𝛼-irreϔlexivity of fuzzy rela-
tions if and only if

𝐹|[଴,ଵିఈ]೙ ⩽ 1 − 𝛼.

Theorem 8 ([16]). A function 𝐹 ∶ [0, 1]௡ → [0, 1]
preserves 𝛼-irreϔlexivity of fuzzy relations for arbitrary
𝛼 ∈ [0, 1] if and only if 𝐹 ⩽ max.
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Corollary 10. Quasi–linear means preserve 𝛼-
irreϔlexivity of fuzzy relations for arbitrary 𝛼 ∈ [0, 1].
Deϐinition 11 (cf. [7]). A function 𝐹 ∶ [0, 1]௡ → [0, 1]
is super additive, if for all 𝑖 = 1,… , 𝑛 and all 𝑥௜ , 𝑦௜ , 𝑥௜ +
𝑦௜ ∈ [0, 1]
𝐹(𝑥ଵ + 𝑦ଵ, … , 𝑥௡ + 𝑦௡) ⩾ 𝐹(𝑥ଵ, … , 𝑥௡) + 𝐹(𝑦ଵ, … , 𝑦௡).

(19)
Example 9. Weighted arithmetic means andminimum
are super additive functions.
Theorem 9. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], 𝐹 ∶ [0, 1]௡ → [0, 1]
be a super additive aggregation function. If relations
𝑅௜ ∈ ℱℛ(𝑋) are 𝛼௜-irreϔlexive for 𝑖 = 1,… , 𝑛, then
relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-irreϔlexive for 𝛼 =
𝐹(𝛼ଵ, … , 𝛼௡).
Proof. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], 𝐹 ∶ [0, 1]௡ → [0, 1] be a
super additive aggregation function, 𝑅௜ ∈ ℱℛ(𝑋) be
𝛼௜-irreϐlexive for 𝑖 = 1,… , 𝑛, 𝑥 ∈ 𝑋. Then 𝑅௜(𝑥, 𝑥) +
𝛼௜ ⩽ 1, so

𝐹(𝑅ଵ(𝑥, 𝑥), … , 𝑅௡(𝑥, 𝑥)) + 𝐹(𝛼ଵ, … , 𝛼௡)
⩽ 𝐹(𝑅ଵ(𝑥, 𝑥)+𝛼ଵ, … , 𝑅௡(𝑥, 𝑥)+𝛼௡) ⩽ 𝐹(1,… , 1) = 1.
As a result

𝐹(𝑅ଵ(𝑥, 𝑥), … , 𝑅௡(𝑥, 𝑥)) ⩽ 1 − 𝐹(𝛼ଵ, … , 𝛼௡),
so 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-irreϐlexive for 𝛼 =
𝐹(𝛼ଵ, … , 𝛼௡).
Corollary 11. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1]. If relations 𝑅௜ ∈
ℱℛ(𝑋) are 𝛼௜-irreϔlexive for 𝑖 = 1,… , 𝑛, then relation

𝑅 =
௡
∑
௜ୀଵ

𝑤௜𝑅௜ is 𝛼-irreϔlexive, where
௡
∑
௜ୀଵ

𝑤௜ = 1, 𝑤௜ ∈

[0, 1] and 𝛼 =
௡
∑
௜ୀଵ

𝑤௜𝛼௜ .

Analogously to reϐlexivity we obtain the following
result.
Theorem 10. Let 𝛼 ∈ [0, 1] and 𝐹 ⩾ max. If a fuzzy
relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-irreϔlexive, then all re-
lations 𝑅ଵ, … , 𝑅௡ are also 𝛼-irreϔlexive.

In virtue of Lemma 3 we get
Corollary 12. Let 𝛼 ∈ [0, 1], 𝐹 be a t-conorm or a
t-semiconorm. If a fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡)
is 𝛼-irreϔlexive, then all relations 𝑅ଵ, … , 𝑅௡ are also 𝛼-
irreϔlexive.

The next example shows that the condition given
in Theorem 10 is only sufϐicient.
Example 10. Let 𝑐𝑎𝑟𝑑 𝑋 = 2. We consider fuzzy rela-
tions with matrices:

𝑅 = ቈ 0 1
1 1 ቉ , 𝑆 = ቈ 1 1

1 0 ቉ ,

𝑊ଵ = min(𝑅, 𝑆) = ቈ 0 1
1 0 ቉ ,

𝑊ଶ =
𝑅 + 𝑆
2 = ቈ 0.5 1

1 0.5 ቉ .

Relation 𝑊ଵ is 𝛼-irreϔlexive for 𝛼 ∈ [0, 1], 𝑊ଶ for 𝛼 ∈
[0, 0.5], but relations 𝑅, 𝑆 do not have this property for
any 𝛼 ∈ (0, 1].

5.3. Connectedness
Here graded connectedness and total connected-

ness will be examined. The total 0.5-connectedness
was regarded in [32] (p. 619). In that paper this prop-
erty is called weak comparability. It was shown there
that maximum preserves the total 0.5-connectedness
([32], Table 1).
Theorem 11 ([16]). Let 𝛼 ∈ [0, 1], 𝑐𝑎𝑟𝑑 𝑋 ⩾ 2.
A function 𝐹 ∶ [0, 1]௡ → [0, 1] preserves total 𝛼-
connectedness (𝛼-connectedness) of fuzzy relations, if
and only if for any 𝑠, 𝑡 ∈ [0, 1]௡

( ∀
ଵ⩽௞⩽௡

max(𝑠௞ , 𝑡௞) ⩾ 𝛼) ⇒ max(𝐹(𝑠), 𝐹(𝑡)) ⩾ 𝛼.

Theorem 12 ([16]). Let 𝑐𝑎𝑟𝑑 𝑋 ⩾ 2. A function
𝐹 ∶ [0, 1]௡ → [0, 1] preserves total 𝛼-connectedness
(𝛼-connectedness) of fuzzy relations for arbitrary 𝛼 ∈
[0, 1], if and only if

∀
௦,௧∈[଴,ଵ]೙

max(𝐹(𝑠), 𝐹(𝑡)) ⩾ min
ଵ⩽௞⩽௡

max(𝑠௞ , 𝑡௞).

Corollary 13. Maximum and the weighted maximum
preserve total 𝛼-connectedness (𝛼-connectedness) of
fuzzy relations for arbitrary 𝛼 ∈ [0, 1].
Theorem 13. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], a function 𝐹 ∶
[0, 1]௡ → [0, 1] be increasing in each variable and
max ≫ 𝐹. If relations 𝑅௜ ∈ ℱℛ(𝑋) are totally 𝛼௜-
connected (𝛼௜-connected) for 𝑖 = 1,… , 𝑛, then rela-
tion 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is totally 𝛼-connected (𝛼-
connected) for 𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡).
Proof. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], a function 𝐹 ∶ [0, 1]௡ →
[0, 1]be increasing in each variable,max ≫ 𝐹 and𝑅௜ ∈
ℱℛ(𝑋)be𝛼௜-connected for 𝑖 = 1,… , 𝑛, 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦.
Then by Lemma 2 and by the fact that max ≫ 𝐹 we
obtain

max(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)) =
max(𝐹(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)),
𝐹(𝑅ଵ(𝑦, 𝑥), … , 𝑅௡(𝑦, 𝑥))) ⩾
𝐹(max(𝑅ଵ(𝑥, 𝑦), 𝑅௡(𝑥, 𝑦)), … ,
max(𝑅௡(𝑥, 𝑦), 𝑅௡(𝑦, 𝑥))) ⩾

𝐹(𝛼ଵ, … , 𝛼௡) = 𝛼.
It means that a fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is
𝛼-connected for 𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡). Proof for total 𝛼-
connectedness is analogous.

We can also compute the value of 𝛼 for which a
fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-connected (to-
tally 𝛼-connected) for concrete functions 𝐹 in another
way than it is presented in Theorem 13. It is shown in
the following example.
Example 11. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1]. If relations 𝑅௜ ∈
ℱℛ(𝑋) are𝛼௜–connected (totally𝛼௜–connected) for 𝑖 =
1,… , 𝑛, then relation 𝑅 ∈ ℱℛ(𝑋) is 𝛼-connected (to-
tally 𝛼-connected), where

𝑅 = 1
𝑛

௡

෍
௜ୀଵ

𝑅௜ , 𝛼 = 1
𝑛 max

ଵ⩽௜⩽௡
𝛼௜ .

31



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 10, N∘ 2 2016

Note that the arithmeticmean is not dominated bymax-
imum.

Theorem 14. Let 𝛼 ∈ [0, 1] and 𝐹 ⩽ min. If a fuzzy
relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is totally 𝛼-connected (𝛼-
connected), then all fuzzy relations𝑅ଵ, … , 𝑅௡ are totally
𝛼-connected (𝛼-connected).
Proof. Let 𝛼 ∈ [0, 1], 𝐹 ⩽ min and a fuzzy
relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) be 𝛼-connected,
𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦, 𝑘 ∈ {1,… , 𝑛}. As a re-
sult we have max(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑥)) ⩾ 𝛼, so
𝐹(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)) = 𝑅(𝑥, 𝑦) ⩾ 𝛼 or
𝐹(𝑅ଵ(𝑦, 𝑥), … , 𝑅௡(𝑦, 𝑥)) = 𝑅(𝑦, 𝑥) ⩾ 𝛼. Let us
consider the ϐirst case. Since 𝐹 ⩽ min, we get

𝑅௞(𝑥, 𝑦) ⩾ min
ଵ⩽௜⩽௡

𝑅௜(𝑥, 𝑦) ⩾

𝐹(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)) ⩾ 𝛼.
It means that max(𝑅௞(𝑥, 𝑦), 𝑅௞(𝑦, 𝑥)) ⩾ 𝛼. Similarly
we may consider the second case, i.e. 𝑅(𝑦, 𝑥) ⩾ 𝛼.
Thus relations 𝑅௜ are 𝛼-connected for 𝑖 ∈ {1, … , 𝑛}.
The proof for total 𝛼-connectedness is analogous.

By Lemma 3 we get
Corollary 14. Let 𝛼 ∈ [0, 1], 𝐹 be a t-norm or a t-
seminorm. If a fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is
totally 𝛼-connected (𝛼-connected), then all fuzzy rela-
tions 𝑅ଵ, … , 𝑅௡ are totally 𝛼-connected (𝛼-connected).
Example 12. The condition given in Theorem
14 is only sufϔicient. For total 𝛼-connectedness
it is enough to consider relations from Exam-
ple 8. Relation 𝑊ଵ is totally 𝛼-connected for
𝛼 ∈ [0, 1], 𝑊ଶ for 𝛼 ∈ [0, 0.5], but relations 𝑅, 𝑆
do not have this property for any 𝛼 ∈ (0, 1]. For
𝛼-connectedness let us take 𝑅 = [𝑟௜௝], with 𝑟௜௝ = 1 and
𝑆 = [𝑠௜௝], with 𝑠௜௝ = 0 for 𝑖, 𝑗 = 1,… , 𝑛. Then relation
𝑊 = max(𝑅, 𝑆) = 𝑅 and 𝑅, 𝑊 are 𝛼-connected for
𝛼 ∈ [0, 1], while 𝑆 is not 𝛼-connected for any 𝛼 ∈ (0, 1].
5.4. Asymmetry

Now graded asymmetry and antisymmetry will
be discussed. The obtained results are dual to the
ones obtained for total 𝛼-connectedness and 𝛼-
connectedness, respectively. It is worth mentioning
that in [32] (p. 619) the 0.5-asymmetry was consid-
ered. However, in that paper this property is called
weak asymmetry. It was shown there that minimum
preserves the 0.5-asymmetry ([32], Table 1).
Theorem15 ([16]). Let 𝛼 ∈ [0, 1], card𝑋 ⩾ 2. A func-
tion 𝐹 ∶ [0, 1]௡ → [0, 1] preserves 𝛼-asymmetry (𝛼-
antisymmetry) of fuzzy relations, if and only if for any
𝑠, 𝑡 ∈ [0, 1]௡

( ∀
ଵ⩽௞⩽௡

min(𝑠௞ , 𝑡௞) ⩽ 1−𝛼) ⇒ min(𝐹(𝑠), 𝐹(𝑡)) ⩽ 1−𝛼.

Theorem 16 ([16]). Let 𝑐𝑎𝑟𝑑 𝑋 ⩾ 2. A function
𝐹 ∶ [0, 1]௡ → [0, 1] preserves 𝛼-asymmetry (𝛼-
antisymmetry) of fuzzy relations for arbitrary 𝛼 ∈
[0, 1], if and only if

∀
௦,௧∈[଴,ଵ]೙

min(𝐹(𝑠), 𝐹(𝑡)) ⩽ max
ଵ⩽௞⩽௡

min(𝑠௞ , 𝑡௞).

Corollary 15. The minimum and the weighted mini-
mum (11) preserve 𝛼-asymmetry (𝛼-antisymmetry) of
fuzzy relations for arbitrary 𝛼 ∈ [0, 1].

Dually to graded connectedness properties, by
Lemma 2, similarly to the proof of Theorem 9 we may
prove

Theorem 17. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], a function 𝐹 ∶
[0, 1]௡ → [0, 1] be a super additive increasing in each
variable function and 𝐹 ≫ min. If relations 𝑅௜ ∈
ℱℛ(𝑋) are totally 𝛼௜-asymmetric (𝛼௜-antisymmetric)
for 𝑖 = 1,… , 𝑛, then relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-
asymmetric (𝛼-antisymmetric) for 𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡).

In Theorem 1 we have the characterization of
increasing functions which dominate minimum. Ap-
propriate examples are presented in Example 4 and
among them minimum is a super additive function
(because, by Lemma 2, it dominates any increasing
function which coincides with the inequality (19)).

We can also compute the value of 𝛼 for which a
fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-asymmetric
(𝛼-antisymmetric) for concrete functions𝐹 in another
way than it is presented in Theorem 17. It is shown in
the following example.

Example 13. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1]. If relations 𝑅௜ ∈
ℱℛ(𝑋) are 𝛼௜–asymmetric (𝛼௜–antisymmetric) for 𝑖 =
1,… , 𝑛, then relation 𝑅 ∈ ℱℛ(𝑋) is 𝛼-asymmetric (𝛼-
antisymmetric), where

𝑅 = 1
𝑛

௡

෍
௜ୀଵ

𝑅௜ , 𝛼 = 1
𝑛 min

ଵ⩽௜⩽௡
𝛼௜ .

Note that the arithmetic mean does not dominate min-
imum.

Dually to Theorem 14 we may prove

Theorem 18. Let 𝛼 ∈ [0, 1] and 𝐹 ⩾ max. If a
fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-asymmetric (𝛼-
antisymmetric), then also all relations 𝑅ଵ, … , 𝑅௡ are 𝛼-
asymmetric (𝛼-antisymmetric).

By Lemma 3 we obtain

Corollary 16. Let 𝛼 ∈ [0, 1], 𝐹 be a t-conorm or a
t-semiconorm. If a fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡)
is 𝛼-asymmetric (𝛼-antisymmetric), then all relations
𝑅ଵ, … , 𝑅௡ are 𝛼-asymmetric (𝛼-antisymmetric).

Example 14. The condition given in Theorem 18 is
only sufϔicient. For 𝛼-asymmetry it is enough to con-
sider relations from Example 10. The relation 𝑊ଵ is 𝛼-
asymmetric for 𝛼 ∈ [0, 1],𝑊ଶ for 𝛼 ∈ [0, 0.5], but rela-
tions 𝑅, 𝑆 do not have this property for any 𝛼 ∈ (0, 1].
For 𝛼-antisymmetry let us take 𝑅 = [𝑟௜௝], with 𝑟௜௝ = 1
and 𝑆 = [𝑠௜௝], with 𝑠௜௝ = 0 for 𝑖, 𝑗 = 1,… , 𝑛. Then rela-
tion𝑊 = min(𝑅, 𝑆) = 𝑆 and 𝑆,𝑊 are 𝛼-antisymmetric
for 𝛼 ∈ [0, 1], while 𝑅 is not 𝛼-antisymmetric for any
𝛼 ∈ (0, 1].
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5.5. Symmetry
Now graded symmetry will be discussed.

Theorem 19 ([18]). Let 𝛼 ∈ [0, 1]. If a function 𝐹 ∶
[0, 1]௡ → [0, 1] fulϔils

𝐹|[଴,ଵ]೙⧵[ଵିఈ,ଵ]೙ < 1 − 𝛼,
then it preserves 𝛼-symmetry of relations 𝑅ଵ, … , 𝑅௡ ∈
ℱℛ(𝑋).
Theorem 20 ([18]). If a function 𝐹 ∶ [0, 1]௡ → [0, 1]
fulϔils condition 𝐹 ⩽ min, then it preserves 𝛼-symmetry
of fuzzy relations for arbitrary 𝛼 ∈ [0, 1].
Corollary 17. Any triangular norm or a t-seminorm
preserves 𝛼-symmetry of fuzzy relations for arbitrary
𝛼 ∈ [0, 1].
Example 15. Since any projection 𝑃௞ , 𝑘 ∈ , preserves
the 𝛼-symmetry for each 𝛼 ∈ [0, 1] but it is not true
that 𝑃௞ ⩽ min, then Theorem 20 gives only a sufϔicient
condition for preservation of the 𝛼-symmetry for any
𝛼 ∈ [0, 1].
Theorem 21. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], 𝐹 ⩽ min. If rela-
tions 𝑅௜ ∈ ℱℛ(𝑋) are 𝛼௜-symmetric for 𝑖 = 1,… , 𝑛,
then relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is 𝛼-symmetric for
𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡).
Proof. Let relations 𝑅௜ be 𝛼௜-symmetric for 𝑖 = 1,… , 𝑛
and 𝑥, 𝑦 ∈ 𝑋. If 𝑅(𝑥, 𝑦) = 𝐹(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)) ⩾
1 − 𝛼 and 𝐹 ⩽ min, then for 𝑘 = 1, ..., 𝑛

𝑅௞(𝑥, 𝑦) ⩾ min(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)) ⩾
1 − 𝛼 = 1 − 𝐹(𝛼ଵ, … , 𝛼௡).

Moreover, for 𝑘 = 1, ..., 𝑛
1 − 𝐹(𝛼ଵ, … , 𝛼௡) ⩾ 1 −min(𝛼ଵ, … , 𝛼௡) ⩾ 1 − 𝛼௞ .

As a result 𝑅௞(𝑥, 𝑦) ⩾ 1 − 𝛼௞ for 𝑘 = 1, ..., 𝑛. It
means that 𝑅௞(𝑥, 𝑦) = 𝑅௞(𝑦, 𝑥) for 𝑘 = 1, ..., 𝑛, so
𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥) and 𝑅 is 𝛼-symmetric for 𝛼 =
𝐹(𝛼ଵ, … , 𝛼௡).

If it comes to the „converse problem” for 𝛼-
symmetrywehave several counter-examples. Observe
that diverse functions were applied for aggregation of
fuzzy relations, namely greater (smaller) thanor equal
to minimum (maximum).
Example 16. Let 𝑐𝑎𝑟𝑑 𝑋 = 2. We consider fuzzy
relations with matrices:

𝑅 = ቈ 0 1
0 0 ቉ , 𝑆 = ቈ 0 0

1 0 ቉ ,

𝑊ଵ = min(𝑅, 𝑆) = 𝑅 ⋅ 𝑆 = ቈ 0 0
0 0 ቉ ,

𝑊ଶ = max(𝑅, 𝑆) = 𝑅 + 𝑆 − 𝑅 ⋅ 𝑆 = ቈ 0 1
1 0 ቉ ,

𝑊ଷ =
𝑅 + 𝑆
2 = ቈ 0 0.5

0.5 0 ቉ .

Relations 𝑊ଵ,𝑊ଶ,𝑊ଷ are 𝛼-symmetric for 𝛼 ∈ [0, 1],
but relations 𝑅, 𝑆 do not have this property for any 𝛼 ∈
[0, 1].

Remark 4. Let 𝛼 ∈ [0, 1]. If we would assume that 𝐹 is
idempotent, increasing and injective with respect to all
arguments, then if a fuzzy relation 𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡)
is 𝛼-symmetric, then also all relations 𝑅ଵ, … , 𝑅௡ are 𝛼-
symmetric. However, idempotency and injectivnesswith
repsect to all arguments makes a contraposition (if
𝐹(𝑥, 𝑥) = 𝑥, then for the remaining arguments there
are no values). Moreover, injectivness with repsect to all
arguments, as a property itself, is not so easy to be ful-
ϔilled (arithmetic mean, minimum, maximum, geomet-
ric mean, uninorms – including t-norms and t-conorms,
are not injective with respect to all arguments). As-
suming injectivness with respect to a ϔixed variable, i.e.
𝐹(𝑥ଵ, 𝑦) = 𝐹(𝑥ଶ, 𝑦) ⇒ 𝑥ଵ = 𝑥ଶ for all 𝑦 ∈ [0, 1], in
general (𝐹 should bewithout a zero element) is not con-
tradictorywith idempotency of𝐹, but this assumption is
not enough to obtain the required result which is shown
by the counter-example above (relations 𝑅, 𝑆,𝑊ଷ in Ex-
ample 16, where the arithmeticmean is idempotent and
injective with a ϔixed variable).

5.6. TransiƟvity
In [31] a special case of the graded transitivity is

considered. Namely, this is the 0.5-transitivity (there
this property is called moderate transitivity). How-
ever, the problem of preservation of this property dur-
ing aggregation process is not discussed. The property
of the 0.5-transitivity is also known as one of the types
of a stochastic transitivity (e.g. [19]).

Theorem 22 ([18]). Let 𝛼 ∈ [0, 1]. If an increasing
function 𝐹 ∶ [0, 1]௡ → [0, 1] fulϔils

𝐹|[଴,ଵ]೙⧵[ଵିఈ,ଵ]೙ < 1 − 𝛼,

and 𝐹 ≫ min, then it preserves 𝛼-transitivity of fuzzy
relations.

Example 17 ([18]). Let 𝑎 ∈ (0, 1] and 𝐹 ∶ [0, 1]ଶ →
[0, 1] be of the form

𝐹(𝑠, 𝑡) = ൝0, (𝑠, 𝑡) ∈ [0, 𝑎) × [0, 𝑎)
min(𝑠, 𝑡), otherwise

𝐹 is a 𝑡–norm and 𝐹|[଴,ଵ]೙⧵[ଵିఈ,ଵ]೙ < 1 − 𝛼 but it does
not dominate minimum. However, the function 𝐹 pre-
serves the 𝛼-transitivity for each 𝛼 ∈ [0, 1) and 𝛼 ⩽
1 − 𝑎. As a result conditions for preservation of the 𝛼-
transitivity stated in Theorem 22 are only sufϔicient.

Theorem 23 ([18]). If a function 𝐹 ∶ [0, 1]௡ → [0, 1]
is increasing in each variable, fulϔils 𝐹 ≫ min and 𝐹 ⩽
min, then it preserves 𝛼-transitivity of fuzzy relations
for any 𝛼 ∈ [0, 1].

Corollary 18. Minimum and the aggregation function

𝐴௪(𝑡ଵ, … , 𝑡௡) = ൝1, (𝑡ଵ, … , 𝑡௡) = (1,… , 1)
0, otherwise

preserve the𝛼-transitivity of fuzzy relations for any𝛼 ∈
[0, 1] (because both functions fulϔil assumptions of The-
orem 23).
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Theorem 24. Let 𝛼ଵ, … , 𝛼௡ ∈ [0, 1], 𝐹 ⩽ min, 𝐹 ≫
min and a function 𝐹 be increasing. If relations 𝑅௜ ∈
ℱℛ(𝑋) are 𝛼௜-transitive for 𝑖 = 1,… , 𝑛, then relation
𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡) is𝛼-transitive for𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡).

Proof. Let relations 𝑅௜ be 𝛼௜-transitive for 𝑖 = 1,… , 𝑛
and 𝑥, 𝑦, 𝑧 ∈ 𝑋. If

min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧)) =

min(𝐹(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)), 𝐹(𝑅ଵ(𝑦, 𝑧), … , 𝑅௡(𝑦, 𝑧)))
⩾ 1 − 𝛼

and 𝐹 ⩽ min, then by the monotonicity of minimum
we get

min(𝑅௞(𝑥, 𝑦), 𝑅௞(𝑦, 𝑧)) ⩾
min(min(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)),
min(𝑅ଵ(𝑦, 𝑧), … , 𝑅௡(𝑦, 𝑧))) ⩾
1 − 𝛼 = 1 − 𝐹(𝛼ଵ, … , 𝛼௡)

for 𝑘 = 1, ..., 𝑛. Moreover, for 𝑘 = 1, ..., 𝑛

1 − 𝐹(𝛼ଵ, … , 𝛼௡) ⩾ 1 −min(𝛼ଵ, … , 𝛼௡) ⩾ 1 − 𝛼௞ .

As a result min(𝑅௞(𝑥, 𝑦), 𝑅௞(𝑦, 𝑧)) ⩾ 1 − 𝛼௞
for 𝑘 = 1, ..., 𝑛. By assumptions it means that
min(𝑅௞(𝑥, 𝑦), 𝑅௞(𝑦, 𝑧)) ⩽ 𝑅௞(𝑥, 𝑧) for 𝑘 = 1, ..., 𝑛.
Since 𝐹 ≫ min and 𝐹 is increasing, one obtains

min(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧)) =

min(𝐹(𝑅ଵ(𝑥, 𝑦), ..., 𝑅௡(𝑥, 𝑦)), 𝐹(𝑅ଵ(𝑦, 𝑧), ..., 𝑅௡(𝑦, 𝑧))) ⩽
𝐹(min(𝑅ଵ(𝑥, 𝑦), 𝑅ଵ(𝑦, 𝑧)), ..., min(𝑅௡(𝑥, 𝑦), 𝑅௡(𝑦, 𝑧))) ⩽

𝐹(𝑅ଵ(𝑥, 𝑧), ..., 𝑅௡(𝑥, 𝑧)) = 𝑅(𝑥, 𝑧)
which proves the𝛼-transitivity of a relation𝑅ி for𝛼 =
𝐹(𝛼ଵ, … , 𝛼௡).

If we look for functions 𝐹 which fulϐil both condi-
tions 𝐹 ≫ min and 𝐹 ⩽ min we see that 𝐹 = min
which is an aggregation function, fulϐils these condi-
tions. Moreover, we have the following property

Corollary 19 ([18]). For a function𝐹 ∶ [0, 1]௡ → [0, 1]
which has a neutral element 𝑒 = 1 the following holds
true: F is increasing in each variable, 𝐹 ≫ 𝑚𝑖𝑛 and 𝐹 ⩽
min if and only if 𝐹 = min.

It means that the only t-seminorm that fulϐils con-
ditions of Corollary 19 is minimum. If it comes to the
„converse problem” for𝛼-transitivityweobtained sev-
eral counter-examples. In the following example di-
verse functions were applied to aggregate fuzzy rela-
tions, namely greater (smaller) than or equal to mini-
mum (maximum).

Example 18. Let card 𝑋 = 3. For fuzzy relations
described by matrices:

𝑅 = ቎
0 1 1
1 1 0
0 0 1

቏ , 𝑆 = ቎
1 0 0
0 1 1
1 1 0

቏

we have the following aggregated fuzzy relations

min(𝑅, 𝑆) = 𝑅 ⋅ 𝑆 = ቎
0 0 0
0 1 0
0 0 0

቏ ,

max(𝑅, 𝑆) = 𝑅 + 𝑆 − 𝑅 ⋅ 𝑆 = ቎
1 1 1
1 1 1
1 1 1

቏ ,

𝑅 + 𝑆
2 = ቎

0.5 0.5 0.5
0.5 1 0.5
0.5 0.5 0.5

቏ ,

which are 𝛼-transitive for each 𝛼 ∈ [0, 1], while rela-
tions𝑅 and 𝑆 do not have this property for any𝛼. For ex-
ample for 𝛼 = 1 and relation𝑅we havemin(𝑟ଵଶ, 𝑟ଶଵ) =
1 ⩾ 0, but 0 = 𝑟ଵଵ < min(𝑟ଵଶ, 𝑟ଶଵ) = 1.

Remark5. Let𝛼 ∈ [0, 1]. If𝐹 is idempotent, increasing
and injective, then if a fuzzy relation𝑅ி = 𝐹(𝑅ଵ, … , 𝑅௡)
is 𝛼-transitive, then also all relations 𝑅ଵ, … , 𝑅௡ are 𝛼-
transitive. However, these assumptions on 𝐹 are contra-
dictory (cf. Remark 4).

6. Reciprocity Property and Other Concepts
Related to Decision Making Problems
In this section we present notions, concepts and

concerns which occur in decision making algorithms.
6.1. Reciprocity

Preservation of reciprocity may be useful in aggre-
gation of fuzzy relations. Sometimes this property is
required in such situations, so we present adequate
assumptions on functions to preserve this property.

Deϐinition 12 (cf. [4]). Relation 𝑅 ∈ ℱℛ(𝑋) is called
reciprocal if for any 𝑥, 𝑦 ∈ 𝑋 it holds𝑅(𝑥, 𝑦)+𝑅(𝑦, 𝑥) =
1.

Deϐinition 13 (cf. [7], p. 31). Let 𝐹 ∶ [0, 1]௡ → [0, 1].
A function 𝐹ௗ is called a dual function to 𝐹, if for all
𝑥ଵ, … , 𝑥௡ ∈ [0, 1]

𝐹ௗ(𝑥ଵ, … , 𝑥௡) = 1 − 𝐹(1 − 𝑥ଵ, … , 1 − 𝑥௡).

𝐹 is called a self-dual function, if it holds 𝐹 = 𝐹ௗ .

Theorem 25. Let 𝐹 ∶ [0, 1]ଶ → [0, 1]. 𝐹 is self-dual if
and only if 𝐹 preserves the reciprocity property of fuzzy
relations.

Proof. Let 𝑥, 𝑦 ∈ 𝑋, 𝑅௜ ∈ ℱℛ(𝑋) for 𝑖 = 1,… , 𝑛 be
reciprocal fuzzy relations,𝐹 be self-dual, whichmeans
that 𝐹 = 𝐹ௗ . Thus 𝑅௜(𝑦, 𝑥) = 1 − 𝑅௜(𝑥, 𝑦) and

1 − 𝑅ி(𝑦, 𝑥) = 1 − 𝐹(𝑅ଵ(𝑦, 𝑥), … , 𝑅௡(𝑦, 𝑥)) =

1 − 𝐹(1 − 𝑅ଵ(𝑥, 𝑦), … , 1 − 𝑅௡(𝑥, 𝑦)) =
𝐹ௗ(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)) =

𝐹(𝑅ଵ(𝑥, 𝑦), … , 𝑅௡(𝑥, 𝑦)) = 𝑅ி(𝑥, 𝑦).
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The dual functions to fuzzy conjunctions are fuzzy
disjunctions and vice versa, and since these two
classes are disjoint, it follows that neither a fuzzy con-
junction nor a fuzzy disjunction (including t-norms
and t-conorms) is a self-dual function. For any binary
function 𝐹, if it is without zero divisors (with the zero
element 0), then 𝐹 cannot be self-dual (see [5]). Any
self-dual and commutative binary aggregation func-
tion 𝐹 satisϐies 𝐹(𝑥,1 − 𝑥) = ଵ

ଶ for all 𝑥 ∈ [0, 1]. The
concept of self-duality is especially developed for ag-
gregation functions. Interesting properties and char-
acterizations of self-dual aggregation functions one
can ϐind in [29]. A weighted arithmetic mean, median
and all quasi-linearmeans forwhich𝜑 ∶ [0, 1] → [0, 1]
fulϐils 𝜑(1 − 𝑥) = 1 − 𝜑(𝑥), are self-dual aggregation
functions.

If a relation 𝑅 ∈ ℱℛ(𝑋) is not reciprocal (deci-
sion makers were not informed to make such choices)
there exist the ways to make it reciprocal. We present
such a formula for a ϐinite case, since practically, in de-
cision making problems, we have ϐinite set of alterna-
tives. Let 𝑅 ∈ ℱℛ(𝑋), where 𝑋 = {𝑥ଵ, … , 𝑥௡}. We may
obtain from 𝑅 a normalized fuzzy reciprocal relation
𝑅∗ ∈ 𝐹𝑅(𝑋) in the following way

𝑅∗௜௝ = ൝
ோ೔ೕ

ோ೔ೕାோೕ೔ if 𝑅௜௝ + 𝑅௝௜ ≠ 0
0 otherwise .

If we have a reciprocal relation, then we get speciϐic
interpretation of properties of this relation (see Sec-
tion 4, pages 7-8). Reciprocity is in a sense a form of
consistency or clearness of choices of decision mak-
ers. However, not every function which preserves a
given 𝛼-property, preserves also reciprocity. To sim-
plify the considered algorithms, we do not consider
the requirement of reciprocity at any stage. We con-
centrate on𝛼-properties and their behaviour in aggre-
gation process, which is the main topic of this paper.
6.2. Improving Judgements of Decision Makers

Itmay happen that someof the individual relations
will not have the required property, for example 𝛼-
transitivity for some 𝛼. In such situation we may as-
sume two options in the algorithms. The ϐirst one will
be not to run algorithm in such a case. The second one
will be to improve a little preferences of decisionmak-
ers to obtain more ’regular’ results, i.e. to obtain all
relations with the required property. >From mathe-
matical point of view, if it comes to standard fuzzy re-
lation properties, there are known some results how
to improve the relation (for example, to make it tran-
sitive, if it is not transitive, cf. [35]). Namely, if rela-
tion 𝑅 is not reϐlexive it is enough to consider 𝑅 ∨ 𝐼,
where 𝐼 ∈ ℱℛ(𝑋) is the identity relation. 𝑅 ∨ 𝐼 is ob-
viously reϐlexive. If 𝑅 is not symmetric we may con-
sider symmetric closure𝑅∨𝑅ିଵ or symmetric interior
𝑅 ∧ 𝑅ିଵ, which are symmetric relations. For asymme-
try (antisymmetry) and there is no appropriate clo-
sure/interior, so there is no unique method to create
the asymmetric (antisymmetric) or connected (total
connected) relation from the given one. However, for
example the relation 𝑅 ⧵ 𝑅ିଵ is asymmetric. To obtain

the transitive relation from the given 𝑅 we may con-
sider its closure as the sum of powers of 𝑅, but often
such closure is the full relation (𝑅 ≡ 1), so it is not
useful from practical point of view. However, there are
also othermethods to obtain a transitive relation from
the given non-transitive one, which are not so differ-
ent from the original relation (cf. [37]). Moreover, the
proposed in that paper concept enables to determine
relations which are transitive only for a part of the el-
ements under consideration.

If it comes to 𝛼-properties, thanks to the gradual-
ness of these properties we may, in most of the cases,
obtain some grade of𝛼 towhich a relation has the con-
sidered property.Wemay treat a given𝛼-property as a
measure of this property of the fuzzy relation 𝑅. How-
ever, it may happen that we get 𝛼 = 0, and in the
case of 𝛼-symmetry and 𝛼-transitivity it may be none
of 𝛼 ∈ [0, 1] (cf. Remark 3). If we need some improve-
ments of the grade of the given property, wemay have
two approaches. The ϐirst one is to use the existing
methods for obtaining standard properties and what
is equivalent, in the same way, to obtain 𝛼-properties
for any 𝛼 ∈ [0, 1] (cf. Remark 2, Corollary 4). The sec-
ondone is to increase the gradeof𝛼 (not necessarily to
themaximumpossible value) towhich a given relation
has the considered 𝛼-property. To change the grade of
𝛼 for these properties we may apply Corollaries 5 and
6 in an adequateway (using the properties of inϐimum
and supremum and changing the values of the given
relation 𝑅). Moreover, for reciprocal relations, taking
into account properties connected with the diagonal
(𝛼-reϐlexivity, 𝛼-irreϐlexivity) there is no need tomake
any improvements, since by deϐinition, the values on
the diagonal are ϐixed. Furthermore, for reciprocal re-
lations we rather would like to obtain asymmetric
than symmetric relations and reciprocal relation is
always 0.5-asymmetric and totally 0.5-connected, so
practically the following 𝛼-properties may be consid-
ered: antisymmetry, connectedness, transitivity.

6.3. Methods to Obtain the Final Order of AlternaƟves
There exist diverse methods to ϐind an alterna-

tive as solution from a given 𝑅 ∈ ℱℛ(𝑋). One of the
most widely used is the weighted vote (see [26, 27]).
If we have a given preference relation 𝑅 ∈ ℱℛ(𝑋),
where 𝑋 = {𝑥ଵ, … , 𝑥௡}, then the weighted vote strat-
egy means taking as the preferred alternative the so-
lution of

arg 𝑚𝑎𝑥
௜ୀଵ,⋯,௡

෍
ଵஸ௝ஷ௜ஸ௡

𝑅௜௝ . (20)

However, in some situations this method does not al-
low us to choose an alternative as solution in a unique
way (cf. [3]). When this happens, sometimes it is ad-
visable to apply a different method. One of the most
widely used methods is the one given by Orlovsky
in 1978 and called nondominance method [30]. This
method extracts as the solution the least dominated
alternative/alternatives of the fuzzy decision making
problem starting froma fuzzy preference relation. The
maximal nondominated elements of a fuzzy prefer-
ence relation 𝑅 are calculated by means of the follow-
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ing operations:
1) Compute the fuzzy strict preference relation

𝑅௦௜௝ = ൝𝑅௜௝ − 𝑅௝௜ if 𝑅௜௝ > 𝑅௝௜
0 otherwise (21)

2) Compute the nondominance degree of each alter-
native 𝑁𝐷௜ = 1 − ⋁

௝ୀଵ,…,௡
𝑅௦௝௜ , so we get a fuzzy set

𝑁𝐷 = [(𝑥௜ , 𝑁𝐷(𝑥௝)) ∶ 𝑥௜ ∈ 𝑋].
3) Select as alternative: 𝑎𝑟𝑔 max

௜ୀଵ,…,௡
{𝑁𝐷௜}.

However, with this method we may also not obtain
the clear unique result. In such situation there is also
a method to obtain an interval-valued fuzzy relation
from the given fuzzy relation and then use one of the
many possible linear orders for interval-valued fuzzy
setting [3], which allows us to obtain the unique alter-
native from a given set of alternatives 𝑋.

7. Comparison of Algorithms
We present here three algorithms to obtain the

ϐinal solution from a given set of alternatives. We
use here theoretical results presented in the paper.
Our aim is to compare these approaches for decision
making problems. Here, we do not pay attention to
the reciprocity requirements (as it was explained
before) and ways of obtaining the best alternative.
This is why, in the algorithms, we omit this ϐinal step
of ϐinding the best alternative.

For all presented algorithms, we will have the
following inputs:
𝑋 = {𝑥ଵ, ..., 𝑥௠}, 𝐹 - aggregation function,
𝑅ଵ, ..., 𝑅௡ ∈ ℱℛ(𝑋). The given 𝛼-property will be
denoted for short 𝛼 − 𝑃.

In Algorithm 1 we assume aggregation of fuzzy
relations with the common grade of 𝛼 for the given
property 𝛼 − 𝑃. Function 𝐹 is one of those which
preserves such 𝛼-property.

Algorithm 1 – the steps:
1) Check the grade of the property 𝛼௞ − 𝑃 of each 𝑅௞

for 𝑘 = 1, ..., 𝑛
2) Fix the common grade of the property𝛼−𝑃 of each

𝑅௞ for 𝑘 = 1, ..., 𝑛
3) Determine the relation 𝑅ி with the use of aggrega-

tion function 𝐹
Output: the aggregated fuzzy relation 𝑅ி with the

property 𝛼 − 𝑃.

In Algorithm 2 we aggregate fuzzy relations with
possible diverse grades of 𝛼 for the given property
𝛼 − 𝑃, i.e. 𝛼ଵ-𝑃, 𝛼ଶ-𝑃, ..., 𝛼௡-𝑃. Function 𝐹 is one
of those which preserves such 𝛼ଵ-𝑃, 𝛼ଶ-𝑃, ..., 𝛼௡-𝑃
properties.

Algorithm 2 – the steps:
1) Check the grade of the property 𝛼௞ − 𝑃 of each 𝑅௞

for 𝑘 = 1, ..., 𝑛

2) Determine the relation 𝑅ி with the use of aggrega-
tion function 𝐹

3) Determine the value 𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡)
Output: the aggregated fuzzy relation 𝑅ி with the

property 𝛼-𝑃, where 𝛼 = 𝐹(𝛼ଵ, … , 𝛼௡).

Note that, if for a given function 𝐹 the grade 𝛼 in
step 3 is different from 𝐹(𝛼ଵ, … , 𝛼௡), then it is enough
to put in this step appropriate value of 𝛼 (cf. Example
13).

In Algorithm 3 we do not determine the grades
of 𝛼 for individual fuzzy relations, but we do it for
the ϐinal result, i.e. the aggregated fuzzy relation.
Algorithm 3, with applied appropriate aggregation
function 𝐹, guarantees that 𝑅ଵ, … , 𝑅௡ have the same
grade of 𝛼-𝑃, for a given property 𝑃.

Algorithm 3 - the steps:
1) Determine the relation 𝑅ி with the use of aggrega-

tion function 𝐹
2) Check the grade of 𝛼-𝑃 for 𝑅ி

Output: the aggregated fuzzy relation 𝑅ி and
𝑅ଵ, … , 𝑅௡ with the same property 𝛼-𝑃.

In the following subsections we will perform com-
parison of complexity and usefulness of functions
𝐹 preserving diverse properties (more useful prac-
tically, weaker assumptions, losing less information
etc.).
7.1. Comparing AssumpƟons on FuncƟons Used for Ag-

gregaƟon
We will consider reϐlexivity property only in

the case of general fuzzy relations (not necessarily
reciprocal ones). The results for the other properties
can be analyzed in a similar way (with similar conclu-
sions). Comparing assumptions on 𝐹 for the case of
reϐlexivity we cannot conclude clearly which way is
better (Algorithm 1 or Algorithm 2), it depends on the
values of fuzzy relations. Let us see some examples.

Let card 𝑋 = 2, 𝑅ଵ, 𝑅ଶ ∈ ℱℛ(𝑋), 𝑅ி = ோభାோమ
ଶ ,

where

𝑅ଵ = ቈ 0.8 0
0 0.6 ቉ , 𝑅ଶ = ቈ 0.7 0

0 0.9 ቉ ,

𝑅ி = ቈ 0.75 0
0 0.75 ቉ .

𝑅ଵ is 0.6-reϐlexive and 𝑅ଶ is 0.7-reϐlexive, 𝑅ி is 0.75-
reϐlexive. Considering Algorithm 1, the common value
of reϐlexivity of 𝑅ଵ and 𝑅ଶ is 0.6. If we take 𝐹 ⩾ min
(which is for example the arithmetic mean) we have
the guarantee that 𝐹 preserves 0.6-reϐlexivity (cf. The-
orem 4). However, 𝑅ி may also have the greater level
of 𝛼-reϐlexivity, which is the case for our examples.
Considering Algorithm 2, and taking as an aggregating
function any increasing 𝐹 (cf. Theorem 5) we get for
the arithmetic mean 𝛼 = 𝐹(0.6, 0.7) = 0.65, so
𝑅ி is 0.65-reϐlexive but it may have higher value of
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reϐlexivity, which is the case in our situation.

Let card 𝑋 = 2, 𝑅ଵ, 𝑅ଶ ∈ ℱℛ(𝑋), 𝑅ி = ோభାோమ
ଶ ,

where

𝑅ଵ = ቈ 0.8 0
0 0.6 ቉ , 𝑅ଶ = ቈ 0.9 0

0 0.7 ቉ ,

𝑅ி = ቈ 0.85 0
0 0.65 ቉ .

𝑅ଵ is 0.6-reϐlexive and 𝑅ଶ is 0.7-reϐlexive, 𝑅ி is 0.65-
reϐlexive. Considering Algorithm 1, the common value
of reϐlexivity of 𝑅ଵ and 𝑅ଶ is 0.6. The arithmetic mean
(as explained above) preserves 0.6-reϐlexivity. How-
ever,𝑅ி may have higher level of𝛼-reϐlexivity, which is
the case in our example. Considering Algorithm 2, we
get for the arithmetic mean 𝛼 = 𝐹(0.6, 0.7) = 0.65,
so 𝑅ி is 0.65-reϐlexive and this coincides with the real
value of reϐlexivity in the considered example.

If it comes to Algorithm 3, it is enough to check the
grade of𝛼-reϐlexivity of the fuzzy relation𝑅ி and if ag-
gregating function fulϐils the property 𝐹 ⩽ min, then
we know that all aggregated relations 𝑅ଵ, … , 𝑅௡ are of
the same grade of 𝛼-reϐlexivity (cf. Theorem 6). There
is also the risk of loosing information about the real
grade of 𝛼 of particular fuzzy relations involved in the
process of aggregation. Lut us see the example, where
𝑅ଵ, 𝑅ଶ ∈ 𝐹𝑅(𝑋), 𝐹 = min and

𝑅ଵ = ቈ 0.6 0
0 0.8 ቉ , 𝑅ଶ = ቈ 0.2 0

0 0.3 ቉ ,

𝑅ி = ቈ 0.2 0
0 0.3 ቉ .

𝑅ி and 𝑅ଵ, 𝑅ଶ are 0.2-reϐlexive, but 𝑅ଵ is in fact 0.6-
reϐlexive.

To sumup, using thesemethodswe should remem-
ber that the grade of 𝛼-property of the aggregated
fuzzy relation𝑅ி (Algorithms 1 and 2) and input fuzzy
relations𝑅ଵ, … , 𝑅௡ (Algorithm3) ’is theminimal of the
maximum possible’ to be obtained (all depends on the
form of fuzzy relations).

It is also worth mentioning that assumptions
on functions 𝐹 to preserve 𝛼-transitivity are rather
strong. However, if in deϐinition of𝛼-transitivitywe re-
placeminwith arbitrary binary operation ∗ ∶ [0, 1]ଶ →
[0, 1], then we may weaker in a signiϐicant way the
assumptions on function 𝐹 to preserve such 𝛼-∗-
transitivity. Thus it is enough if 𝐹 ≫ ∗ and 𝐹 ⩽ min,
and we have many examples of such functions 𝐹 (cf.
[17]).

For aggregation of fuzzy relations with diverse
grades, some assumptions seem to be strong. In Theo-
rem 17 for preservation of asymmetry we have strong
assumption 𝐹 ≫ min, but for concrete functions 𝐹,
like for example the arithmetic mean in Example 13,
we may compute the value of 𝛼 for the property 𝛼-𝑃
(without following assumptions of Theorem 17). Note
that in this example 𝛼 ≠ 𝐹(𝛼ଵ, … , 𝛼௡).

If it comes to the converse problem, for 𝛼-
symmetry and𝛼-transitivity it is not clear if such func-
tions do exist (cf. Remarks 4 and 5).

7.2. Comparison of Complexity of the Algorithms

We will present the time complexity of the sepa-
rate steps and operations in the presented algorithms
and thenwewill give the complexity of each algorithm
for each property.

Fuzzy relations𝑅ଵ, … , 𝑅௡ are deϐined in a set X con-
sisting of 𝑚 elements, so complexity will depend on
the variable 𝑚 (the size of a matrix representing 𝑅).
We get the following time complexities:
- determining the grade 𝛼 of reϐlexivity (irreϐlexivity)
is 𝑂(𝑚), since this is determining the minimal (max-
imal) value of a list of 𝑚 non-ordered elements (cf.
Corollary 5),
- determining the grade𝛼 of connectedness (total con-
nectedness, asymmetry, antisymmetry) is 𝑂(𝑚ଶ) (cf.
Corollary 5),
- determining the grade 𝛼 of symmetry is 𝑂(𝑚ଶ) (cf.
Corollary 6),
- determining the grade 𝛼 of transitivity is 𝑂(𝑚ଷ) (cf.
Corollary 6).

Taking into account that the remaining operations
in Algorithms1, 2, 3 should be performed atmaximum
𝑛 times (𝑛 is the number of fuzzy relations) we get the
following time complexities.

Corollary 20. Reϔlexivity and irreϔlexivity: Algorithms
1, 2 and 3 take 𝑂(𝑚) computational time complexity.
Connectedness, total connectedness, symmetry, asym-
metry and antisymmetry: Algorithms 1, 2 and 3 take
𝑂(𝑚ଶ) computational time complexity. Transitivity: Al-
gorithms 1, 2 and 3 take 𝑂(𝑚ଷ) computational time
complexity.

8. Conclusion
In this paper preservation of basic classes of 𝛼-

properties of fuzzy relations in the context of aggrega-
tion process were discussed. Mutual dependencies re-
lated to these properties, between relations 𝑅ଵ, … , 𝑅௡
on a set 𝑋 and the aggregated fuzzy relation 𝑅ி =
𝐹(𝑅ଵ, … , 𝑅௡)were examined. Sufϐicient conditions for
functions 𝐹 ∶ [0, 1]௡ → [0, 1] to fulϐill the given prop-
erty were provided (regarding three possible cases
of approach to aggregation procedure). Moreover, di-
verse ’regularities’ and interpretation of 𝛼-properties
were discussed, also in the context of reciprocal re-
lations and decision making problems. Finally, com-
parison of obtained results, including suitable deci-
sion making algorithms were provided (there were
analyzed the time complexities of the presented algo-
rithms and assumptions on fusion functions useful to
obtain the required results). All algorithms were im-
plemented and tested in Java programming language.
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