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Abstract:
Our work involves hand posture recognition based on 
3D data acquired by the KinectTM sensor in the form 
of point clouds. We combine a descriptor built on the 
basis of the Viewpoint Feature Histogram (VFH) with 
additional feature describing the number of extended 
fingers. First, we extract a region corresponding to the 
hand and then a histogram of the edge distances from 
the palm center is built. Based on quantized version of 
the histogram we calculate the number of extended fin-
gers. This information is used as a first feature describ-
ing the hand which, together with VFH-based features, 
form the feature vector. Before calculating VFH we 
rotate the hand making our method invariant to hand 
rotations around the axis perpendicular to the camera 
lens. Finally, we apply nearest neighbor technique for 
the posture classification. We present results of cross-
validation tests performed on a representative dataset 
consisting of 10 different postures, each shown 10 times 
by 10 subjects. The comparison of recognition rate and 
mean computation time with other works performed on 
this dataset confirms the usefulness of our approach. 

Keywords: hand posture recognition, depth cameras, 
Kinect, point cloud, Viewpoint Feature Histogram

1. Introduction
Nowadays, people tend to use gesture-based com-

puter interfaces which are present in mobile device 
applications, computer games, control systems used 
in television sets, etc. Gesture recognition is therefore 
one of the most important problems of human-com-
puter or human-robot interaction. Currently available 
gesture recognition methods are relatively primitive, 
compared to vision of mammals [4], and offer satis-
factory reliability only in controlled laboratory envi-
ronment. This makes vision based recognition algo-
rithms an important and challenging research area. 
This paper presents an approach to recognize hand 
postures, which are often referred to as static hand 
gestures, based on three-dimensional depth data in 
a form of point clouds. 3D representation of visual 
information is more natural to humans than images 
obtained from standard 2D cameras. It is because we 
have two eyes that enable us to estimate our distances 
from particular objects.

Recently introduced Microsoft’s KinectTM sen-
sor, used mainly to control computer games, became  

a low-cost device that can be used to depth data acqui-
sition. Another worth mentioning 3D imaging devices 
are time-of-flight cameras which are now becoming 
more and more affordable to the mass market. Grow-
ing popularity of these devices caused researchers’ 
interest in hand gesture recognition using depth cam-
eras. However, most often the depth data is used only 
for hand segmentation or as an auxiliary information 
included in feature vectors of classified objects [11], 
[12], [19], [21]. Depth data combined with color data 
is used by [20] to classify postures based on Average 
Neighborhood Margin Maximization Transforma-
tion approximated by Haarlets (i.e., Haar wavelet-like 
features). Another approach to hand posture recog-
nition based on depth data is presented by Keskin 
et al. [7] where KinectTM data is used to obtain hand 
skeletons by the Mean Shift Local Mode Finding algo-
rithm. Then a skeleton fitting method is used with the 
random decision forests to classify depth pixels into 
hand parts. Skeletal data is also utilized by Jiang et al. 
[3] along with depth data by calculating histograms 
of points’ distances from the hand joints. The mean, 
variance and symmetry of the histograms are used as  
features to recognize hand gestures.

Two of the most interesting methods of depth-
based segmentation data are presented by Opris-
escu et al. [12] and Dominio et al. [2]. In the first of 
these works the region growing algorithm is used. 
The growing stops at the boundaries of the region de-
tected using three thresholds: (i) the depth distance 
of the current point from the seed (the point near-
est the camera), (ii) the depth distance of the current 
point from its neighborhood, and (iii) the luminance 
threshold based on the intensity time-of-flight image. 
In [2] palm is separated from fingers and forearm us-
ing the largest circle (or ellipse) that can be fitted in 
the palm region. A center of palm is found by perform-
ing Gaussian blur on the binarized arm image and 
searching for the point with sufficiently large value 
that is close enough to the point nearest the camera. 
Proposed by us segmentation method, described 
in Subsection 3.1, is based on this approach. In the 
discussed work depth information is also used in 
the extraction of the classified objects’ features. The 
combined descriptor includes the following feature 
sets: (i) the distances of the fingertips from the palm 
center, (ii) the distances of the fingertips from a plane 
fitted on the palm samples, (iii) the curvature of the 
contour of the hand region, and (iv) the shape of the 
palm region. The authors’ another work [10] includes 
the addition of features extracted from the Leap Mo-
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tion data. This device provides 3D information as a set 
of relevant hand points and some hand pose features. 
The Leap Motion-based descriptor contains three fea-
tures: (i) the position of the fingertips, (ii) the palm 
center, and (iii) the hand orientation.

Viewpoint feature histogram (VFH) has been in-
troduced by Rusu et al. [16]. It is a descriptor of 3D 
objects in a point cloud form. Particular VFH com-
ponents describe geometry and viewpoint of the 
surface robustly to large surface noise and even 
missing depth information. In [5] an approach to 
recognition of dynamic hand gestures based on 
VFH and time-of-flight data has been described. 
Our later work includes the recognition of dynamic 
hand gestures as well as hand postures using both 
time-of-flight and KinectTM data [6]. In these works  
a modification of VFH calculation has been proposed, 
which consists in dividing the observed scene into 
smaller cuboidal cells and calculating VFH for each 
of them. This method increases distinctiveness of 
the descriptor, especially for objects with subtle dif-
ferences in shape, which has been proved by experi-
ments resulting in significantly higher recognition 
rates for a divided scene. The approach is not fully ro-
tation-invariant since while rotating the cloud some 
of its parts move between neighboring cells. There-
fore, a transformation of the hand area should be ap-
plied before its division into cells and VFH calculation. 
We propose a fast way of hand rotation based on the 
most protruding hand point location.

The feature vector contains one additional feature 
encoding the number of extended fingers (including 
thumb) as a discrete value. A different approach to 
gesture recognition using the number of extended 
fingers is presented in [9]. The fingers are counted, 
identified and then the algorithm tracks the fingertips 
while they arrange to form a posture. In our method, 
the finger information is not crucial and is used only 
for discriminatory purposes that can be achieved by 
properly adjusting the importance of this feature with 
respect to other features.

The contributions of this paper are: (i) introduc-
ing the extended fingers feature, (ii) proposing some 
modifications to the hand segmentation and rotation 
methods that result in faster and easier to implement 
recognition algorithm, (iii) comparing the proposed 
algorithm (in terms of recognition rate and time) with 
the approaches from two significant and recent works.

The paper is organized as follows: Section 2 dis-
cusses the VFH descriptor; Section 3 describes every 
step of our proposed posture recognition system; In 

Section 4 we present the experimental results; Sec-
tion 5 contains the conclusions and the plans for the 
future work related to this subject.

2. Viewpoint Feature Histogram
VFH is the global descriptor of a point cloud –  

a data structure representing a multidimensional set 
of points in a clockwise coordinate system [17]. The 
system’s x-axis is horizontal and is directed to the 
left, the y-axis runs vertically and faces up, the z-axis 
coincides with the optical axis of the camera and is 
turned towards the observed objects. VFH consists 
of two components: a surface shape component and  
a viewpoint direction component. They describe ge-
ometry and viewpoint of surface created by clouds. 
The descriptor is able to detect subtle variations in 
the geometry of objects even for untextured surface, 
which has been shown experimentally [16].

The first component consists of values Ɵ, cos(α), 
cos(Φ) and d measured between the gravity center pc 
and every point pi belonging to the cloud (see Fig. 1). 
nc is the vector with initial point at pc with coordinates 
equal to the average of all surface normals. ni is the 
surface normal estimated at point pi. The angles Ɵ 
and α can be described as the yaw and pitch angles 
between two vectors while d denotes the Euclidean 
distance between pi and pc. The vectors and angles 
shown in Fig. 1 are defined as follows:

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

where dot denotes the scalar product and cross de-
notes the vector product. The viewpoint component 
consists of a histogram of the angles that the view-
point direction makes with each normal. The method 
of VFH calculation has one parameter nn denoting 
the number of points belonging to local neighbor-
hood used to estimate the surface normals. Default 
histograms consist of 45 bins for each feature of the 
surface shape component and 128 for the viewpoint 
component (308 bins in total). Computational com-
plexity of VFH is quadratic with respect to the num-
ber of cloud points. The more detailed descriptions 
of VFH calculation are presented in [15], [18] (PFH 
and FPFH descriptors) and [16]. In our experiments 
we process point clouds and calculate VFH using PCL 
library described in [17]. 

Fig. 1. Values of the surface shape component of the 
VFH
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3. Posture Recognition System
Proposed by us posture recognition system is 

shown as a diagram in Fig. 2. It consists of the follow-
ing steps: hand segmentation, conversion of the depth 
map to the point cloud, rotation and downsampling of 
the point cloud, extraction of the features, and clas-
sification. 

Our method imposes the following requirements 
to the person showing postures: (i) the hand should 
be the object closest to the camera, (ii) the hand 
should be situated at some distance, greater than a 
specified parameter Tdepth, from the other body parts, 
(iii) at least a small part of the forearm should be vis-
ible. Note that all these requirements are satisfied al-
most every time if the postures are shown in a natural 
way and if there are no visible unwanted objects situ-
ated closer to the camera than the user’s hand. The 
requirement (i) results from the fact that we exploit 
depth information only.

3.1. Hand Segmentation
Proposed by us method of recognition begins with 

the segmentation of the hand. It is based on the ap-
proach described in [2] with some modifications in-
troduced in order to make the algorithm faster and 
simplify it.

The first step of the hand segmentation is the ex-
traction of the arm region (hand with forearm) from 
the depth map DM (see Fig. 3b) which is our input 
data. To this end, the pixel with the least depth value 
(closest to the camera) is localized and marked as na 
and its depth in [m] is denoted as dna. Then all the pix-
els with the depth value greater than dna + Tdepth are 
rejected by setting them to 0. As a result we obtain 
depth map representing arm that is shown in Fig. 3c. 
In our experiments we set Tdepth to 0.1 [m] according 
to the empirical observations and taking the example 
from [2]. Subsequently, we threshold DA in order to 
obtain a binary image BA (see Fig. 3d):

  (7)

where DAz
i is the depth value of i-th DA pixel and BAi 

is the i-th BA pixel. Note that if Tdepth value is too large, 
BA may contain some torso or hand pixels adjacent 
to the hand parts. However, if the value is too small, 
there may be no forearm parts in BA. Both cases may 
result in improper hand segmentation. To remove 
defects resulting from measurement errors of the 
imaging device, we propose to perform morphologi-
cal operations on BA preparing it to the next step of 
the segmentation process. First, the jagged edges 
are smoothed using opening and closing with a 3×3 
structuring element. Then, small gaps within the arm 
region, that are not larger than the rectangular struc-
turing element of size 35×35 pixels, are filled. This 
size turned out sufficient for the data acquired by Ki-
nectTM in good lighting conditions.

The next step of the hand segmentation is the se-
lection of the central hand point. For this purpose, 
we apply the Gaussian filter on BA with the kernel of  
a large size depending on the depth value of na: fex 
= fey = roundo(100/dna) pixels, where roundo is a func-
tion rounding the value to the nearest odd integer. 
With such calculated kernel size the hand is wholly 
embraced by the kernel. The resulting grayscale im-
age has a global maximum (the brightest point) Co at 
the object’s center (see Fig. 3e). We must, however, 

Fig. 2. Architecture of the proposed posture recogni-
tion system. Blocks represent functions; labels, next to 
arrows, represent input/output data

Fig. 3. Segmentation and rotation of the hand: (a) Color image (not used in our method); (b) Depth map DM; (c) Depth 
map with the arm region only (na is marked as a red dot); (d) Binary arm image BA (fa is marked as a blue dot);  
(e) Output of the Gaussian filter on BA (Ch is marked as a green dot); (f) BA with circle Cc (Cf is marked as a brown dot);  
(g) Binary hand image BH; (h) Rotated and downsampled point cloud

(a)              (b)        (c)     (d)                (e)          (f)       (g)                   (h)
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ensure that Co belongs to the hand (not the wrist or 
the forearm region). Therefore, we create a set M con-
taining every local maximum not smaller than 85% of 
the Co value. Let us denote by Dm,na the Euclidean 2D 
distance (on the xy plane) from the maximum point 
m to na and by mv the value (brightness level) of m. As 
a central hand point Ch we select a maximum from the 
set M for which the difference Dm,na – mv is minimal. 
Thus, the hand center is not too far from the point of 
the least depth na, and it has similar (if not the same) 
brightness as the global maximum Co. In [2] the point 
Ch is selected by minimization of Dm,na, without using 
mv. Our approach to selection of Ch turned out to be 
more precise which was confirmed by the experi-
ments.

After the calculation of the central hand point, the 
palm region of the hand is roughly estimated by the 
largest circle that can be fitted on it. The circle with 
the center Ch is iteratively enlarged, starting from the 
radius equal to one pixel, until the hand area inside 
it, denoted as hcarea, is less than 95% of the circle area 
carea. Then the circle is moved to a neighboring posi-
tion maximizing the hcarea, and finally the radius is in-
creased once more. After this step, we obtain the up-
dated central hand point Cf with coordinates Cfx,Cfy and 
the central palm circle Cc with radius RCc.

The last segmentation stage is the rejection of the 
pixels corresponding to the forearm as well as the 
eventual unwanted objects. We begin with the pixels 
not belonging to the arm. Such fragments might not 
be filtered during the first segmentation step because 
of not using the color-based skin detection in con-
trast to [2]. They are usually not adjacent to the hand 
pixels, and we exploit this fact by applying a region 
growing algorithm with the seed point Cf. The output 
of this operation is the arm region without the un-
wanted fragments that were previously isolated from 
the arm pixels in the BA image. Note that if the algo-
rithm requirements (i) and (ii), mentioned at the be-
ginning of this section, are satisfied, we are sure that, 
at this point, BA contains only the pixels belonging to 
the arm region. The corresponding pixels are also re-
jected in the depth map DA.

The main difference in relation to the original 
segmentation method is the separation of the fore-
arm from the hand. Dominio et al. [2] propose to first 
rotate the arm in a way that its main axis, extracted 
using PCA (Principal Component Analysis), coincides 
with y-axis and faces up. Then, every arm pixel with x 
coordinate smaller than Cfy-RCc is considered as fore-
arm pixel and therefore discarded. The direction of 
the main axis computed in this way is not very pre-
cise because it depends on the position not only of 
the hand, but also of the forearm (which can be dif-
ferent). The approach proposed by us consists in dis-
carding the forearm region first and performing the 
rotation of the hand later (for the feature extraction 
purposes), without the forearm pixels. The hand rota-
tion is described in Subsection 3.3. For the separation 
of the forearm pixels we use region growing method, 
as for the previous operation. In this case, as a seed 
point we use the pixel with the largest depth value 
(furthest to the camera) marked as fa. In almost ev-

ery case this pixel belongs to the forearm. The region 
growing is applied for BA image with drawn circle Cc 
(see Fig. 3f). The region boundaries are the edges of 
the forearm and the lower part of Cc. The designated 
pixels are considered to belong to the forearm region 
and are therefore rejected forming a binary hand im-
age BH. In some rare cases, which may be the conse-
quence of showing the posture while not following 
the requirement (ii), fa may belong to a hand region 
situated outside the circle Cc. Such a small part is then 
rejected and the forearm region remains. To give the 
algorithm another chance to remove the proper pix-
els, the region growing is repeated when the number 
of removed points in the last operation is smaller than 
5% of the whole arm area in BA. As a new seed point, 
the arm pixel closest to fa is selected provided it lies 
outside Cc. An example of a segmented hand is pre-
sented in Fig. 3g.

3.2. Conversion to the Point Cloud
In order to calculate VFH, each depth map has to 

be converted into the point cloud format. For this pur-
pose, we define the set H of hand pixels belonging to 
binary image BH: H = {x ∈ BH∣ x = 1}. The conversion 
is applied for each DA pixel if H contains a pixel of the 
same coordinates. Therefore, the created point cloud 
consists only of points belonging to the hand, with-
out forearm and isolated objects. The coordinates of 
cloud points: , , and  were set with respect 
to the DA pixels’ depth value  based on the per-
spective projection equations and KinectTM camera’s 
parameters:

  (8)

  (9)

  (10)

where DAwidth is the number of depth map columns; 
DAheight is the number of depth map rows; fl is the Ki-
nectTM infrared camera’s focal length; psx and psy are 
the pixel dimensions, width and height, respectively. 
The values of KinectTM camera’s parameters were 
taken from http://kinectexplorer.blogspot.com and set 
as follows: fl = 4.73 mm, psx = psy = 0.0078 mm. After 
the conversion clouds observed from different angles, 
look realistic compared to corresponding real life ob-
jects.

3.3. Rotation and Downsampling of the Point 
Cloud

Since the approach of calculating VFH for cells, 
which is explained in Subsection 3.4, is not invariant 
to hand rotations around the z-axis, the point cloud 
has to be properly rotated before its division into 
cells. To this end, we calculate 3D distance (exploit-
ing depth information) between the central point Cf 
and each hand pixel Hi. Then we choose the point for 
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which the distance is maximal and denote it as Mf. 
This point indicates the position of the most protrud-
ing hand point which is usually the longest finger’s tip 
when at least one finger is extended in the posture. 
The point cloud is then rotated in a way that the vec-
tor Mf - Cf has the same direction as the y-axis.

The obtained cloud is redundantly dense. We do 
not need such a large number of points to compute  
a representative VFH. For this reason the cloud is 
downsampled which reduces the number of points 
and, therefore, speeds up the process of histograms 
calculation. This operation is performed by the  
so-called voxel grid filter which creates a 3D voxel grid 
over the input point cloud data. Every point situated 
within each voxel (i.e., 3D cuboid) is approximated 
by its centroid. The voxel dimensions Vx× Vy× Vz are 
the parameters of the filter. We decided to use cubic 
voxels and set the dimensions as follows: Vx× Vy× Vz 
=0.00439 m, which in our previous work [6] turned 
out to be the optimal value in terms of postures rec-
ognition rate. An example of a rotated and downsam-
pled point cloud is shown in Fig 3h.

3.4. Extraction of the Features
For the classification purposes we collect the fea-

ture set based on the VFH descriptor and one addi-
tional feature of extended fingers, denoted as Fvfh and 
Fef , respectively.

In order to calculate VFH, we must define the 
bounding box, i.e., the cuboidal area around the point 
cloud. Its walls are determined by the points situated 
furthest in each main direction of the coordinate sys-
tem: Bxmin, Bxmax, Bymin, Bymax, Bzmin, Bzmax. The bounding 
box size is thus matched to the cloud size embracing 
it entirely with no space between each furthest point 
and the box wall. To increase the distinctiveness of 
the descriptor, we divide bounding boxes into several 
cells of equal sizes and VFH is calculated for each of 
them. Such a modification is inspired by the method 
of dividing image into smaller blocks in order to cal-
culate histogram of oriented gradients (HOG) descrip-
tor [1]. It seems reasonable to try to divide areas of 
interest into different numbers of small regions. Ko-
szowski [8] showed that the number of blocks signifi-
cantly affects the recognition rate in the case of the 
HOG-based hand posture recognition. Therefore, our 

experiments involve the division of point cloud area 
into: (i) nine cells, (ii) three horizontal cells, and (iii) 
three vertical cells (see Fig. 4).

To avoid problems with high dimensionality, Fvfh 
does not include full histograms. Instead, VFH calcu-
lated for every descriptor value is represented by its 
mean and standard deviation. We use the two VFH 
values: ∣d∣ and cos(Φ) since our previous work [6] in-
dicates that this combination is the best in terms of 
the hand posture recognition and adding new values 
or replacing some of them does not yield better re-
sults. The experiments undertaken in the mentioned 
work and other previous works also led us to the con-
clusion that VFH calculated for the entire point cloud 
(without the division into cells) was significantly less 
distinctive, and in this case the postures recognition 
most often resulted in misclassification, even for the 
seemingly dissimilar hand shapes. For these reasons 
we decided to omit the experiments with different 
VFH values as well as with the VFH calculated for the 
entire cloud. The Fvfh feature set has a cardinality of 
Nc· Nv· Nhs , where Nc is the number of cells, Nv is the 
number of VFH values, and Nhs is the number of his-
tograms representative values (in our case mean and 
standard deviation). Every feature is normalized to 
the range [0-1], with maximum and minimum values 
determined on the basis of the training data, and the 
whole set is added to the feature vector F. 

The additional feature is the number of extended 
fingers (including thumb). To extract it, a histogram 
of the edge distances from the central hand point Cf is 
calculated. For each hand pixel Hi we determine its 2D 
distance from the central point dHi = ∣∣Hi – Cf ∣∣ as well 
as the angle γHi between the vector Hi – Cf and the vec-
tor perpendicular to the y-axis with the opposite di-
rection. The calculated set of angles is then quantized 
with the uniform quantization step Δ=6° and assigned 
to the set γ’. All Hi pixels with the same discrete value 
γ’Hi are grouped together dividing H as follows: H = {C1, 
C2, ... , C60}, where Cj denotes the angular range, i.e., the 
group of Hi pixels for which γ’Hi = j, and j ∈{1,2,…,60}. 
For each group Cj the maximum dHi value is chosen and 
added to the histogram L:

  (11)

Fig. 4. Point clouds of postures and their divided bounding boxes (marked by red edges): (a) nine cells; (b) three horizon-
tal cells; (c) three vertical cells

(a)                 (b)           (c)
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Thus, L contains the distances of a subset of the 
hand edge pixels. 

Then we find every local maximum of L that is not 
smaller than the threshold ft equal to 145% of the Cc 
radius. These points represent the tips of the extend-
ed fingers. In our method, a maximum is a point that 
is greater than its left neighbor and not smaller than 
its right neighbor (the first and the last point are also 
considered as neighbors). The threshold ft ratio is set 
to 145% after some experimentation, so that the al-
gorithm can properly identify extended fingers (even 
relatively short thumbs). Fig. 5. contains the histogram 
calculated for the posture presented in Fig. 3. The ob-
tained number of extended fingers is normalized to 
the range [0–1] and added to the feature vector F. 

3.5. Classification
For the classification of postures the k-nearest 

neighbors technique with k=1 was utilized. Each 
hand posture was represented by the feature vector 
F = [Fvfh , Fef]. We noticed that Fef feature was too im-
portant for the classifier to treat it like Fvfh features 
whose number is usually much greater. Thus, while 
calculating the distance of classified object to each 
pattern from the training set, we multiply the Fef by 
a weight ief to increase its importance in classifica-
tion. The distance Do,p from the object o to pattern p is 
therefore calculated in the following way:

 (12)

where Nvfh is the number of Fvfh features. The best ief 
value, in terms of recognition rate, depends on Nvfh. 
We thus performed cross-validation experiments 
with different number of cells and VFH values which 
resulted in changing Nvfh. This let us roughly estimate, 

through logarithmic regression, the following de-
pendency allowing to calculate ief:

  (13)

We also observed that larger ief values did not cause 
much worse recognition results. We may then assume 
that ief should be greater than or equal to the value 
determined by equation (13). Later experiments were 
performed with ief estimated as above.

As one can observe, Do,p is calculated based on the 
Euclidean distance. We also examined the city-block 
distance as well as k-nearest neighbors classifier with 
different values of k but the results were not better.

4. Experiments
Our method was evaluated on a dataset first 

introduced in [14] and used in later works: [13], 
and [2]. This is a set of 10 postures from which 8 is  
a subset of American Sign Language finger alpha-

Table 1. Mean accuracies obtained by 5-folds cross vali-
dation tests and mean running times of our approach 
compared to authors’ method from [2]. The tests were 
performed on the computer (i) - PC with Intel® Core™ 
Quad, 2.4 GHz CPU

Method Recognition 
rate [%]

Mean 
running 

time [ms]

Fvfh: 9 cells + Fef 95.4

57 Fvfh: 3 horizontal cells + Fef 98

 Fvfh: 3 vertical cells + Fef 91.1

 Fvfh: 9 cells (without Fef) 82.6

56Fvfh: 3 horizontal cells 
(without Fef)

88.9

Fvfh: 3  vertical cells (without Fef) 83.4

Four combined depth features 
(Dist. + curv. + elev. + area) [2] 99 114

Three combined depth features 
(Dist. + curv. + area) [2] 99 114

Two combined depth features  
(Dist. + curv.) [2] 98.5 104

Fig. 5. Histogram of the edge distances from the hand 
center. Local maxima corresponding to the tips of the 
extended fingers are marked as red dots

Fig. 6. Postures included in the dataset used for the evaluation of our recognition method

(a)       (b)    (c) (d) (e) (f)     (g)           (h)               (i)               (j)
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bet. Hands are shown on a cluttered background, in  
a various orientation around the z-axis differing up to 
about 135 degrees. They also differ in scale and ar-
ticulation. The postures were shown 10 times by 10 
subjects (1000 executions in total). Fig. 6 contains an 
example of each posture from the dataset.

4.1. Evaluation of the Segmentation Method
The segmentation method was evaluated first. We 

visually analyzed generated binary hand images BH 
for every posture file from the database. Only 5 (out 
of 1000) images were improperly segmented. In each 
case some hand parts were deleted and in four cases 
the forearm parts were present. These errors occur 
when the furthest arm point fa does not belong to the 
forearm. It is hard to determine whether this is the 
consequence of not following the algorithm require-
ment (i) or (ii) by the person showing postures, or this 
results from a measurement error of the camera.

4.2. Evaluation of the Rotation Method
The next step was the evaluation of the rotation 

method. The visual analysis of the rotated clouds 
showed that the point Mf did not always correspond 
to the actual longest extended finger because of little 

differences between the lengths of some fingers and 
the camera measurement errors. We checked all 100 
realisations of the posture G6. Mf corresponded to the 
middle finger in 93 postures, to the ring finger in 4 
postures, and to the index finger – in 3 postures. We 
also checked 100 realisations of the posture G7. Mf 
corresponded to the little finger in 83 postures, to the 
thumb – in 15 postures, and 2 postures were improp-
erly segmented (the forearm pixels were not reject-
ed). These inaccuracies do not become a significant 
problem if we use sufficiently large training dataset 
and the k-nearest neighbors classifier. In such cases, 
for some posture classes we have 2 or 3 variants of ro-
tated postures according to the finger to which Mf cor-
responds. In most cases the classifier is able to prop-
erly find the nearest neighbour among each variant 
leading to proper classification, which can be seen on 
the recognition rates presented later in this section.

4.3. Evaluation of the Extended Fingers Counting
The approach to count the extended fingers was 

also evaluated. 97.6% of all the postures have their 
fingers properly counted. Analyzing the failures we 
observed that 62.5% of them were related to the pos-
ture G1 (clenched fist). In most cases the thumb does 
not appear on the background of the fingers but on 
the left side of the fist. It is also not clenched at all or 
bent only a little. Sometimes even the forefinger is not 
entirely clenched which appears unnatural even for 
a human. Increasing the threshold ft prevents such 
mistakes. However, it also causes the situations where 
relatively short extended thumbs are not counted, es-

Table 2. Mean accuracies obtained by template match-
ing tests and mean running times of our approach com-
pared to authors’ and classic methods provided by Ren 
et al. [13]. The tests were performed on the computer 
(ii) - PC with Intel® Core™ Quad, 2.66 GHz CPU

Method Recognition 
rate [%]

Mean 
running 

time [ms]

 Fvfh: 9 cells + Fef 71.3

46 Fvfh: 3 horizontal cells + Fef 93.8

Fvfh: 3 vertical cells + Fef 88.3

Fvfh: 9 cells (without Fef) 49.8

45
Fvfh: 3 horizontal cells 
(without Fef) 77.9

 Fvfh: 3  vertical cells 
(without Fef)

69

Thresholding decomposition + 
FEMD – authors’ method [13] 93.9 4 001

Near-convex decomposition + 
FEMD – authors’ method [13] 93.2 750

Shape context without bending 
cost – classic method [13] 83.2 12 364

Shape context with bending 
cost – classic method [13] 79.1 26 777

Skeleton matching  
– classic method [13] 78.6 2 445

Tab. 3. Confusion matrix for our algorithm with the 
three horizontal cells case and 5-fold cross-validation 
tests. The maximum possible value in every cell is 100. 
For clarity, the cells with value 0 are shown as empty

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

G1 97 2 1

G2 99 1

G3 100

G4 99 1

G5 1 97 2

G6 2 98

G7 94 6

G8 2 98

G9 1 99

G10 1 99
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pecially when they are too close to the palm region. 
The remaining 37.5% of failures result from the seg-
mentation errors or from arranging the extended fin-
gers too close to each other so they appear on the im-
age as nearly adjacent. In such cases an error would 
occur if the tips of these fingers belong to the same 
angular range Cj of the quantized histogram L.

In 70.8% of all the miscounts, the obtained num-
ber of fingers differs by 1 from the actual number. For 
each remaining failure, the difference is equal to 2 
and is related to the posture G1 (not entirely clenched 
forefinger and thumb).

4.4. Comparison of Recognition Rates and Mean 
Running Times

The main evaluation of our method consists in the 
comparison of recognition rates and mean running 
times with the results obtained in [2] and [13] for the 
same dataset. The comparison is shown in Table 1 and 
Table 2. The results from Dominio et al. [2] were ob-
tained for different combinations of their proposed 
depth features. In addition to their own method, Ren et 
al. [13] provide results for three classic shape recogni-
tion algorithms: (i) shape context with bending cost, (ii) 
shape context without bending cost, and (iii) skeleton 
matching. Our comparison also includes those scores. 
Note that Ren et al. [13] exploit a black belt, worn by 
all the people showing postures, in the hand segmenta-
tion. Our method does not require to wear such mark-
ers and therefore the belt information is not used.

The recognition rates shown in Table 1 were 
measured in 5-fold cross-validation tests. We divid-
ed the dataset to five subsets: one used as a training 
set and the remaining four as a test set. The division 
was performed in a way that subjects from the test set 
were not present in the training set. All the gestures of 
the first two subjects created the first test set, the ges-
tures of the next two subjects created the second one, 
and so on. Thus, the ability of the recognition system 
to generalize over unseen subjects was verified. Domi-
nio et al. [2] performed exactly the same cross-valida-
tion tests. The ief value was set according to equation 
(13). Our best score, obtained for the three horizontal 
cells, is 98%. It is slightly lower than for the algorithm 
described in [2] where the best results, obtained for 
three or four combined depth feature sets, are 99%.

In [13] the recognition rates are measured using 
template matching method where the first gesture 
realization of each class is used for creating its tem-
plate. Therefore, the training set consists of only ten 
realizations. For comparison purposes, we decided to 
additionally perform such tests despite the fact that 
our recognition system was designed to be trained 
on much larger data. In our tests first gesture realiza-
tions from person number 5 were used as templates 
since they turned out to be the most representative. 
Using such a small training set does not provide rep-
resentative Fvfh features for each class. Therefore, we 
multiplied by 1.5 the ief value, calculated according to 
equation (13), in order to put more emphasis on the 
extended fingers feature. Our best score, obtained for 
the three horizontal cells, outperforms every classic 
algorithm and the authors’ method near-convex de-

composition + FEMD and is lower by 0.1% in the case 
of thresholding decomposition + FEMD.

To prove the usefulness of the extended fingers 
feature, we also present the results obtained without 
it. For the three horizontal cells case the recognition 
rate is less by 9.1% according to the cross validation 
tests and less by 18.7% according to the template 
matching tests, compared to the case when the ad-
ditional feature is applied. As one can see, the best 
obtained recognition rate is slightly higher than the 
correctness of counting fingers. It is due to the fact 
that if the number of incorrectly detected fingertips 
does not much differ from the actual number (what 
has been observed in every case during our experi-
ments), the classifier is still able to correctly guess the 
posture class.

We can assume that the results for the horizontal 
cells are significantly higher than for the vertical cells 
because in the first case the method is less depen-
dent on the hand rotations around the y-axis while it 
depends more on the hand inclinations around the  
x-axis. Analyzing the postures from the chosen dataset, 
we can observe that the rotation around the y-axis is a 
little more variable than the second one. That explains 
the better results obtained for the three horizontal cells.

Table 3 is the confusion matrix for our algorithm 
and the three horizontal cells case. The worst result 
has been obtained for the posture G7 which was con-
fused with G8 six times. This can be explained by the 
high similarity between them as well as the same num-
ber of extended fingers. The interesting fact is that the 
posture G3 has been recognized correctly in 100% 
cases, despite that there are three postures with two 
extended fingers in the dataset. It shows that the VFH 
descriptor is able to very well differentiate G3 from 
G7 and G8 for which the Fef feature has the same value. 
In this case, the upper cell of the point cloud bounding 
box seems to be the most discriminant because, after 
the clouds rotation, for G3 it includes two extended 
fingers while for G7 and G8 only one extended finger 
is present in this cell and another one is located in the 
middle or the lower cell.

In the terms of a recognition program’s mean 
computation time, our method turned out to be very 
fast compared to others. The time refers to the entire 
recognition process of a single posture. Obviously, 
this score depends on the computer, on which the 
program is running. We performed experiments on 
two computers: (i) PC with Intel® Core™ Quad, 2.4 
GHz CPU (released in 2007) and (ii) PC with Intel® 
Core™ Quad, 2.66 GHz CPU (released in 2009). Ren et 
al. [13] used a PC with the same CPU as in computer 
(ii). The mean running time differences between our 
method and the methods presented in this paper are 
huge. Our recognition algorithm is about 16 times 
faster than thresholding decomposition + FEMD and 
about 87 times faster than near-convex decomposi-
tion + FEMD. It is worth noting that the usage of much 
larger training sets, as in cross-validation tests, sig-
nificantly improves the recognition rates. In authors’ 
methods from [13] it will cause much greater run-
ning times because the calculation of Finger-Earth’s 
Move Distance, that have to be done in each template 



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  10,      N°  1        2016

Articles56

comparison, is time-consuming. For our method, the 
difference between processing times for test sets con-
taining 10 depth maps and test sets containing 800 
depth maps is below 0.5 ms.

Dominio et al. [2] performed tests on a computer 
with the same CPU as in computer (ii). In this case the 
mean running time of our method is almost twice low-
er. We also compared the segmentation and the rota-
tion stages’ mean running time. The original method 
takes about 75 ms while our modified version – 47 
ms, which shows the advantage of our modifications. 
The computation time of the extended fingers feature 
extraction is very short (not greater than 1 ms on the 
computer (i) and (ii)).

Our recognition system is able to run in real-time 
at about 17 frames per second on the computer (i) and 
21 frames per second on the computer (ii). We were 
able to achieve 35 frames per second while running 
the program on a modern laptop with Intel® Core™ 
i7, 2.5 GHz CPU. In order to achieve greater speed, it 
is possible to apply multithreading to the implemen-
tation of our algorithm since some tasks can be per-
formed concurrently, e.g., creating a histogram of the 
edge distances, converting depth map hand samples 
to point cloud, and determining the position of the 
most protruding hand point (see Fig. 2).

5. Conclusions and Future Work
In this paper we propose the depth-based posture 

recognition method using the Viewpoint Feature Histo-
gram and the extended fingers feature. The accuracy of 
our approach was tested on a challenging dataset with 
the usage of demanding cross-validation tests in which 
the classifier recognized postures shown by unseen 
subjects. The mean running time of the recognition 
program was also measured. The relatively good re-
sults confirm the usefulness of the proposed algorithm.

The recognition system proposed by us can be 
applied to control and interact with computers and 
robots. For example, the user is able to give specific 
commands to the robot showing his hand in a specific 
configuration. Although the recognition of postures 
by the system does not depend on rotation around 
z-axis, the algorithm provides an information about 
how much the hand is rotated. It may be used, e.g., 
for setting some application or system parameters in  
a way that recognized gesture corresponds to partic-
ular parameter and its rotation angle represents the 
parameter value.

The extended fingers feature turned out to be very 
helpful because of the low computation time of its ex-
traction and the accuracy improvement caused by its 
application. This feature is obviously not autonomous 
because of its possible ambiguity (there may be many 
postures with particular number of extended fingers). 
However, it can significantly increase the distinctive-
ness of the descriptor if its importance parameter is 
properly chosen. It can be observed that the extend-
ed fingers feature and the VFH features complement 
each other because the first analyzes the hand con-
tours while the second examines dependencies with-
in the hand surface.

Our method fails to correctly count the number of 

fingers if they are adjacent to each other in a present-
ed posture (i.e., the letter ‘H’ of American Sign Lan-
guage finger alphabet). In such a case each group of 
adjacent fingers would be counted as one. However, 
obtaining the actual number of extended fingers is 
not an end in itself. The method’s purpose is to search 
for sufficiently large local extrema in the shape of the 
hand posture and to exploit this information in the 
distinction of posture classes.

The future work in the subject could consist in 
altering the VFH descriptor. So far only the modifica-
tion of its calculation was proposed, which proved to 
be very effective. Searching for other dependencies 
among the cloud points or the surface normals, that 
better describe the hand shape, is reasonable.
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