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and phosphorus removal). Additionally, energy con-
sumption of aeration processes has the major share 
in energy bill at a WWTP.

	Dissolved oxygen (DO) concentration is the most 
important control parameter in the biological WWTP. 
Unfortunately, in industrial practice, the control of DO 
is usually carried out using a simple feedback loop 
(e.g. linear PI algorithm with constant parameters) 
that does not aim at all at combining the tracking 
functions with the energy cost optimization. Good 
control performance for all the operating conditions 
cannot be achieved. Furthermore, the lack of on-line 
measurements at the WWTP, may result in limited use 
of advanced control systems. 

1.2. Survey of related works
As mentioned earlier, control of DO is very impor-

tant and difficult activity in the activated sludge pro-
cesses. As the DO dynamics is nonlinear and typically 
WWTP operates under high variability of the influent 
quality and pollutant parameters. 

Works related to control of DO have a long history. 
Different control technologies have been researched 
over the last years, e.g. adaptive controller [2], on/off 
controller with genetic algorithms [11], multivariable 
PID controller [22], nonlinear multiregional PI con-
troller [23], fuzzy controller [2].

The second group of DO control strategies are al-
gorithms, where beside DO measurement, addition-
ally ammonia nitrogen (NH4), nitrate (NO3) and phos-
phate (PO4) measurements are included for control 
system design [21,17]. 

An interesting and comprehensive review of DO 
control can be found in [1]. 

The model predictive control (MPC) technology is 
an attractive method for dynamic optimizing control. 
The MPC optimizer enables for direct incorporation 
of the constraints in the control problem into the opti-
mization task at each time step, what is a great advan-
tage of this technology. During the last years, many in-
dustrial applications of control systems have utilized 
the MPC technology [20].

The MPC algorithm was also applied for DO con-
trol at the WWTP. The linear MPC algorithm was pro-
posed in [12] and its application to benchmark simu-
lation WWTP. In [5] the hybrid nonlinear predictive 
controller was applied. The binary control signals 
were reformulated to nonlinear programming task 
at every sampling time. Interesting control results 
were obtained. In [7] the MPC system of DO control 
based on self-organizing radial basis function neural 
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1. Introduction
1.1. General information

	Progressive development of technology and hu-
man population growth caused the amount of pro-
duced sewage to increase. Years of experience and 
scientific research, gave rise to the idea about waste-
water treatment plant (WWTP). It is a complex, 
nonlinear biological-chemical-physical system with 
strong interactions between processes. Processes are 
difficult to control due to large disturbances such as 
inflow and load, nonlinearity, time-varying and com-
plexity with strong coupling of the process variables. 

	The popular treatment technology used in the 
field of WWTPs is the biological. Most of the munici-
pal WWTPs use activated sludge processes. Activated 
sludge refers to a mass of microorganisms where 
help clean up wastewater. This is a process in which 
air or oxygen is forced into sewage liquor to develop 
a biological floc which reduces the organic content of 
the sewage. Activated sludge is used where high re-
moval of organic pollution is required. For effective 
wastewater treatment, an activated sludge requires 
a continuous supply of oxygen/air. Aeration is used 
in different parts of a WWTP, especially is applied to 
biological processes (e.g. nitrification, denitrification 
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network model was designed and examined for the 
benchmark simulation WWTP. 

In [16] a decentralized nonlinear hierarchical pre-
dictive control system was proposed. Biological reactor 
to be coupled with an aeration system and in order to 
track prescribed DO trajectories. The upper level con-
troller (UCL) prescribes trajectories for airflows de-
sired to be delivered into the aerobic biological reactor 
zones. The lower level controller (LLC) forces the aera-
tion system to follow those set point trajectories. This 
controller was synthesized as a hybrid (discrete and 
continuous manipulated variables) nonlinear MPC.

Authors of the paper [6] derived a nonlinear hy-
brid predictive control algorithm for the LLC. Dedicat-
ed operators were used to derive genetic algorithms, 
thus allowing for efficient handling of the switching 
constraints and nonlinear hybrid system dynamics.

In [15] a nonlinear multivariable hierarchical MPC 
was applied to design the ULC. This controller extends 
to plants with several aerobic zones supplied by an 
aeration system of limited capacity. This controller 
handles the airflow distribution between the zones. 
The constraint on the airflow that can be delivered by 
the aeration system is then active. The ULC produces 
the airflow demands as set points for the LLC.

In summary, the aim of the paper is the design of 
the hybrid nonlinear control system to perform an 
efficient control quality of DO concentration for dif-
ferent operating conditions. This paper further devel-
ops the results presented in [16,15]. Two advanced 
hierarchical nonlinear predictive control systems are 
designed and compared. Only DO and airflow mea-
surements are applied for control systems design. In 
this paper, as opposite for previous research works 
[16,15] dynamic of aeration system is omitted and 
treated as a static system, which provides the amount 
of air required by the control system. Simulation tests 
for case study plant are presented.

2.	 Description of the WWTP
Kartuzy WWTP is typical system with a continu-

ous flow throughout the plant. This system consists 
of two parts. One is the mechanical where solids, min-
eral and insoluble organic pollutants are removed. 
The second is the biological part that is composed 

of the activated sludge process. The activated sludge 
method is applied for biological wastewater treat-
ment processes. Only a biological part is considered 
in the paper. The structure of biological part for the 
case study plant is shown in Fig. 1.

The advanced biological treatment with nutrient 
removal is accomplished in the activated sludge reac-
tor designed and operated according the University of 
Cape Town (UCT) process. The first zone where the 
phosphorus is released is anaerobic. The second zone 
where the denitrification process is conducted is an-
oxic. The internal recirculation 2 of mixed liquor origi-
nates from the anoxic zone. The returned activated 
sludge from the bottom of the clarifiers and the inter-
nal recirculation 1 from the end of the aerobic zone 
(containing nitrates) are directed to the anoxic zone. 
The last part of the reactor (aerobic) is aerated by a 
diffused aeration system. This zone is divided into four 
compartments of various intensity of aeration. The an-
aerobic, anoxic, and four aerobic tanks have volumes 
of 800, 800, 700, 1760, 860, and 1150 m3, respectively. 
Oxygen is supplied to aerated tanks by the aeration 
system (blowers, pipes, throttling valves and diffus-
ers). Wastewater is mixed with activated sludge, which 
helps during the process of wastewater treatment. 
Different aeration methods are applied: high-purity 
oxygen aeration, mechanical aeration, and diffused 
aeration [13]. The last technique is used at the Kartuzy 
WWTP. The aeration system delivers air to each of the 
aeration tanks. The wastewater and activated sludge 
are separated into two parallel secondary settlers. The 
volume of each secondary settler is approximately 
1600 m3. The activated sludge is internally recircu-
lated from the anoxic tank to the anaerobic zone and 
from the last aerobic zone to the anoxic tank. These re-
circulations are typically set to 45 to 100% and 210% 
of influent waste. Additionally, the wastewater is re-
circulated from the secondary settlers to the anoxic 
tank (45 to 100% of influent waste). The excess waste 
sludge is removed, chemically stabilized, and stored.

 
3.	 Control structures

It is industry practice that simple technology is used 
to control  of DO: manual control, rule-based control 
and PI controller with fixed parameters. High quality of 
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Fig. 1. Scheme of biological WWTP at Kartuzy
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control cannot be obtained by conventional and linear 
control methods. 

MPC technology is an attractive optimizing method 
for advanced control of dynamic nonlinear systems. The 
nonlinear MPC algorithm uses the DO model for pre-
diction. The predictive control adjusts its operation in 
advance, before there are changes in the output of the 
control system. The two structures of the new control 
systems are illustrated in Figs. 2–3.

The controller’s objective is to force the So,j (con-
trolled variable) into zones indicated by prescribed 
references So,j

ref and, at the same time, to minimize the 
associated electricity cost by blowing air. The control-
ler’s objective is to force the So,j (controlled variable) 
into zones indicated by prescribed references So,j

ref and, 
at the same time, to minimize the associated electricity 
cost by blowing air. The manipulated variables in the 
control systems are airflows to the each of the aerobic 
tanks. Decentralized control system (Fig. 2, control sys-
tem 1), based on information about DO concentration 
calculates control trajectories of the airflows, taking 
into account its constraints on minimum and maximum 
value as well as the rate of change in one step prediction. 
Respiration R is the disturbing variable that affects DO 
concentration. 

All aeration tanks are connected to a single aeration 
system. Hence, four independently operating controllers 
may have a problem with distributing required amounts 
of air correctly (e.g., for large inflow to the WWTP and/
or a sudden increase in concentration of pollutants in 
wastewater flow). Therefore, a multivariable, nonlinear 
MPC is also designed (Fig. 3, control system 2).

4.	 Mathematical models
4.1.	Model of biological WWTP

The most popular mathematical description of 
biological processes at WWTP is a series defined by 
Activated Sludge Models (ASMs) proposed by Inter-
national Water Association (IWA). The models (ASM1, 
ASM2, ASM2d, ASM3) were presented and summa-
rized in [10]. A critical reviews of activated sludge 
modelling for seven most commonly used models 
were presented in [8]. In the paper the biological pro-
cesses are modelled by ASM2d model. ASM2d consists 
of 21 state variables and 20 kinetic and stoichiomet-
ric parameters. Values of those parameters are equal 
to their default values at 20°C [9]. ASM2d model was 
calibrated based on real data sets from the Kartuzy 
WWTP. Additionally, data from the plant permitted to 
define the quality of load: chemical oxygen demand 
(COD), total nitrogen concentration (TN) and total 
phosphorous concentration (TP). Verification of the 
modelling results was satisfactory and so they were 
used for control purposes.

4.2. Model of DO concentration
A dynamics of dissolved oxygen for the j-th aera-

tion tank is described by the following nonlinear dif-
ferential equation:

(1)
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where So – dissolved oxygen concentration, kLa – oxy-
gen transfer function, Qair – airflow, R - respiration, 
So,sat = 8.637 g O2 /m3 – dissolved oxygen saturation 
concentration, Ko = 0.2 g/m3 – Monod’s constant. 

The function, kLa(Qair), describes the oxygen trans-
fer and depends on the aeration actuating system and 
sludge conditions. Different approaches to modelling 
this function are presented in literature. In this paper, 
the linear model is applied:

	 	
(2)

where α = 0.208 1/m3 [18].
The respiration R is an important parameter to bi-

ological processes taking place in aerobic zones. The 
respiration varies with time, depends on the biomass 
concentration, and describes oxygen consumption by 
the microorganism. This variable can be calculated 
using the ASM2d model [9]; however, to determine 
R, another 18 nonlinear differential equations in the 
ASM2d model are required. Because of the complex-
ity of the ASM2d model, respiration R is treated as an 
external disturbance signal. 

Respiration can be measured by a respirometer. In 
some research, respiration was assumed to measure 
and be used for monitoring and control of biological 
processes. However, dedicated measuring equipment 
is very expensive; hence, this variable is rarely being 
measured. Therefore, respiration has to be estimated 
to be used for control. Different approaches based on 
the augmented Kalman filter were taken for joint es-
timation of respiration and oxygen transfer functions 
[14]. Another approach was presented in literature 
[19]. A sequential algorithm with the Kalman filter 
was proposed and investigated. The approach pre-
sented in [4] is used in this paper. It is based on point 
estimation of respiration at the appropriate time in-
stant valid for a particular prediction horizon suffi-
cient to be taken as constant.

5. Predictive controllers design
A model of DO concentration is needed to design 

an MPC (see (1)). For the j-th aeration tank, the fol-
lowing discrete model can be formulated:

	 	

(3)

where k and T are the discrete time instant and dis-
solved oxygen sampling interval. 

At the time instant ( )+ 1k T , the estimate ( )ˆ
jR k   of 

( )jR kT  can be obtained by discretizing (3), solving 
the resulting discrete time equation for the unknown 
respiration value ( ) ( )=j jR k R kT

∆
, and substituting the 

expression ( ) ( )+, ,, 1o j o jS k S k  with the measurements 
( ) ( )+, ,, 1m m

o j o jS k S k  where ( ) ( )=, ,o j o jS k S kT
∆

. Hence:

	 	

(4)

where  .	

In (4), it is important to note that there is a one-
step delay. This has no practical significance because 
of the variability of the aforementioned slow respi-
ration in relation to the rate dissolved oxygen con-
centration changes. Moreover, it is possible to treat 
the temporary estimate as a constant prediction of 
respiration over a suitably selected length of predic-
tion horizon. Because (4) contains measurements, 
respiration (i.e., differentiation of the measurement 
noise present in the measurement of dissolved oxy-
gen) occurs during estimation. Results of previous 
studies [4] indicate that, provided a typical signal is 
within acceptable noise levels, its effect on the quality 
of estimates can be omitted (see Figs. 4–7). In Figs. 
4–7 the examples trajectories of the DO concentration 
and respiration R are presented, with (Fig. 4 and 6) 
and without (Fig. 5 and 7)  measuring noise. Knowing 
the measurement errors characteristic of devices for 
measuring the DO concentration, the standard devia-
tion of measurement equal 0.1 g O2/m3 was assumed.

Results confirm the assumption of low impact of 
measurement noise in the measurement of DO con-
centration on the quality of estimate of respiration R. 
In addition, simplification of the model and the result-
ing inaccuracies are eliminated by feedback mecha-
nism which is an integral part of the control system.

5.1. Control system 1
The nonlinear MPC performance function for j-th 

aeration tank is defined as:

	
(5)

The first term in (5) represents the tracking error. 
The second and third terms describe rates of chang-
es of the control input over Hp (prediction horizon) 
while the fourth term represents the control cost. The 
weights α, β and χ are tuning knobs used to achieve 
a desired compromise between the tracking error, the 
intensity of switching the blowers, and the cost of the 
energy used for pumping air. 

Let min
,air jQ  and max

,air jQ  be the minimum and maxi-
mum value of the airflow, respectively. The constraints 
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on minimum and maximum values of control action at 
each prediction step are defined as follows:

	 	
(6)

where    and  .

Moreover, max
,air jQ∆  is the maximum value of the rate 

of change. The constraints are given by:
 

	(7)
where .

At the time instants kT the nonlinear MPC solves 
its optimisation task by minimising the performance 
function (5) with respect to the aeration flows subject 
to the constraints (6) and (7). The DO concentrations

( )+,o jS k i k  at the aerobic zones predicted over Hp are 
calculated by using the discretized models (3). The 
respirations ( )+ − 1jR k i  in these models are re-
placed by their predictions  that are cal-
culated according to (4) based on the DO measure-
ments at the aerobic zones. The initial conditions 

 are taken from the measurements. This re-
sults in the optimised ( ) ( )+ =, ,, ... , 1air j air j pQ k k Q k H k  
DO trajectories over the prediction horizon.

5.2. Control system 2
The MPC performance function is written as:

(8)

The first term in (8) represents the tracking error. 
The second and the third term describe the rate of 
change of the control input over Hp, while the fourth 
term represents the control cost. The weights δ, ϕ, 
and γ  were calculated based on simulation tests. 

The constraints on min
,air jQ  and max

,air jQ  are given by:

( )
{ }∈

≤ + − ≤ =∑ min max
, , ,

1,2,3,4

1| ; 1, ,air j air j air j p
j

Q Q k i k Q i H
	

(9)
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– with measurement noise

Fig. 5. DO concentration in aeration tank  
– with measurement noise

Fig. 6. Respiration in aeration tank  
– without measurement noise

Fig. 4. DO concentration in aeration tank  
– without measurement noise
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where 

	 =min 3
, 0air jQ m h

 
and =max 3

, 5000air jQ m h .	

The constraints on max
,air jQ∆ are defined as follows:

 

( ) ( )
( ) ( )

{ } + − + − ≤ ∈
 =− − − ≤



max
, , ,

max
, , ,

1 1,2,3,4
;

1, ,1 1

air j air j air j

pair j air j air j

Q k i k Q k i k Q j
i HQ k k Q k k Q

∆

∆
	

(10)

where =max 3
, 5000air jQ m h∆ .

The nonlinear MPC generates at time instant k, the 
control sequence, ( ){ } =

+ −
4

, , 1
,..., ( 1ref ref

air j air j p j
Q k Q k H , 

based on a discretised nonlinear model (3) with the 
predicted trajectory of ( )jR k  over ∈ + −[ , 1]pk k k H  
(4) by minimizing the performance function (8) with 
respect to =+ − 4

, , 1{ ( ),...., ( 1)}air j air j p jQ k Q k H  subject to 
the constraints (9)-(10).

6. Simulation tests and comparative analysis
In this section the proposed two novel control sys-

tems (see section 5) were tested by simulation, based 
on real data records from the case study Kartuzy 
WWTP. The commercial simulation package Simba 
[18] was applied to modelling biological processes at 
a WWTP (ASM2d model). Matlab environment was 
applied to implementing two advanced control strat-
egies. The Sequential Quadratic Programming (SQP) 
solver was applied to solve the nonlinear MPC opti-
misation task. 

The amount and composition of the influent 
wastewater to WWTP is varied during the day. Their 
variability is modelled by four parameters (distur-
bances): inflow Qin, COD, TN and TP. The input dis-
turbances were as follows: Qin (between 2200-3500 
m3/h) and COD (between 700-1200 mg/dm3) were 
time-varying; TN (equal 90 mg/dm3) and TP (equal 
10 mg/dm3) were constants over time. Their values 
and variability correspond to the real values of the in-
fluent wastewater for case study WWTP. 

First, it examined the effect of the length of the 
prediction horizon Hp and the length of the prediction 
step T, on control quality and computation time. Con-
trol errors were increase by shortening Hp and length-
ening T. As a result of numerical analysis, simulation 
parameters of predictive controllers were as follows: 
Hp =10 steps and T=5 min.

Simulation results are shown for four aeration 
tanks. Most important parameter disturbing the 
process of aeration is the respiration R (Figs. 8-11). 
It refers to the rate of oxygen consumption by bacte-
ria as a result of biochemical reactions. These results 
show that the respiration disturbance is time-vary-
ing, reflecting the varying load of the WWTP (inflow 
and load).

Control results for DO tracking at Kartuzy WWTP 
are illustrated. The different range of DO changes are 
set, which corresponds to the optimal conditions of 
aeration wastewater. In Figs. 12, 14, 16 and 18 the set 
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Fig. 13. DO concentration in aeration tank 1  
– control system 2

Fig. 12. DO concentration in aeration tank 1  
– control system 1
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Fig. 15. DO concentration in aeration tank 2  
– control system 2

Fig. 14. DO concentration in aeration tank 2  
– control system 1

point So
ref and DO tracking So for control system 1 are 

presented. In Figs. 13, 15, 17 and 19 the results for 
control system 2 are illustrated.

For both control algorithms was calculated Root 
Mean Square (RMS) error, given by:

	

( )−
=

2ref
o oS S

RMS
n 	

(11)

where n denotes the number of samples.
The control results of RMS error are summarized 

in Table 1.

Table 1. DO tracking error

Control system
RMS error – aeration tank

1 2 3 4

Control system 1 0.143 0.110 0.128 0.134

Control system 2 0.044 0.041 0.028 0.049

The control results, for two control systems, show 
on a good tracking performance by using nonlinear 
advanced control strategies. It can be seen to follow 
the DO trajectory with good accuracy. The control sys-
tem 2 demonstrates better quality control, but takes 

longer to complete required calculations. The control 
system 2 is characterized by a larger RMS error. For 
this system, RMS error does not exceed 0.05 in value 
(see Table 1). Control results could be even better, but 
not for constraints included in the predictive control 
systems (see [6]–[7] and [9]–[10]).

The average time to solve one predictive optimiza-
tion task for control system 2 is longer (much larger 
number of decision variables). However, this time is 
small enough to carry out the calculation on-line with 
appropriate prediction horizon, required by the dy-
namics of the plant and the disturbances rate of change.

The main advantage of control system 1 is less 
computations effort. In addition, in case of failure of 
one of the controllers the other three controllers can 
still control the supply of oxygen the individual aer-
ated tanks.

In some cases, for example increased inflows of 
sewage with a high concentration of pollutants,  set 
points trajectories of DO concentration can vary sig-
nificantly and control system 1 may have a problem 
with the proper distribution of the required amount 
of air (it is connected with the fulfillment of con-
straints, see [6]–[7]). This situation can cause a devia-
tion of the control trajectories.

Better quality control for control system 2 takes 
into account the needs of all aerobic tanks and the 
possibility of aeration system and therefore is able to 
find a compromise in the air the division.
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7. Conclusions
Control of dissolved oxygen at a WWTP is impor-

tant for economic and process reasons. The paper has 
addressed an important and difficult control problem. 
A novel approach to the dissolved oxygen concentra-
tion tracking has been presented. Two nonlinear pre-
dictive control systems have been designed and com-
pared. Its properties and tracking performance have 
been investigated by simulation based on real data 
sets from Kartuzy case study plant. Promising results 
have been observed.
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Fig. 13. DO concentration in aeration tank 1  
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