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ization process must therefore deduce the initial ro-
bot state and then determine the correct position and 
orientation during its motion.

The most difficult of localization problems is the 
kidnapped robot problem [9], where in addition to 
the problems introduced by the global localization, 
the robot state can suddenly change in a way unre-
lated to robot actions. One may say that the robot has 
been “kidnapped” during operation and placed in 
some other unknown place.

For execution of the robot localization task, the 
probabilistic methods are widely applied [10]–[13]. 
It is due to the fact that all information gathered by 
robot sensor systems is burdened with some level of 
error. Minimization of influence of those errors on the 
localization accuracy can be achieved with probabi-
listic methods, whose task is to create the representa-
tion of probability that describes the robot localiza-
tion in the best way. Based on the chosen probability 
function representation, the estimation of position 
and orientation is carried out.

The probabilistic methods are most often based 
on the recursive Bayesian filter principle, which is the 
principal tool in the task of estimation of the unknown 
probability distribution function. This task is made 
recursively in time using both measurements from 
sensors and information about actions undertaken by 
the robot. The task is executed in two basic phases: 
prediction phase and update (correction) phase.

The inherent element of the prediction phase is 
the robot motion model, by means of which the trans-
formation of the probability function before and after 
single movement step is described. Most often this 
model is based on modification of the Gaussian distri-
bution after prediction.

In turn, update of position and orientation of the 
robot is made based on measurements from the robot 
sensors. By means of the adopted observation model, 
update of the probability distribution function takes 
place by minimization of uncertainty caused by errors 
accumulated in the preceding steps.

The best known methods of probabilistic local-
ization are the Kalman filter methods [12], Markov 
localization [14] and particle filters [15]. They differ 
mainly in terms of ways of representation of the prob-
ability distribution function, and each one of them 
has certain advantages and drawbacks as compared 
to others.

One of the newest methods based on the proba-
bilistic concept is the Simultaneous Localization and 
Mapping (SLAM) [16]. This task is difficult because of 
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1. Introduction
One of the elements necessary for autonomous 

realization of robot motion is its localization in the 
global reference system [1]. The problem of robot lo-
calization is widely studied in scientific publications 
[2]–[4], because of its key significance. The knowledge 
of position and orientation of an autonomous robot is 
fundamental for its proper and reliable operation.

Artificial intelligence algorithms based on which 
the control is determined, must have the largest pos-
sible knowledge of the state in which the controlled 
object currently is. For many such algorithms, correct 
localization is essential, as for example in the global 
path planning problem [5] or the local motion plan-
ning problem [6].

Robot localization can be considered from vari-
ous points of view, the most straightforward of which 
is the position tracking [7]. In this situation, the ini-
tial position and orientation of the robot are known 
and the only objective is determination of position in 
particular time instants based for example on robot 
odometry. Simultaneously, compensation for errors 
which accumulate in time is required. Another, more 
difficult, problem is the global localization problem 
[8], where robot initial pose is not known. The local-
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the nature of the problem, since the map is required 
for localization and conversely the information about 
localization is required to construct the map.

A key to efficient localization is also the appropri-
ate model of the robot environment. The most often 
used solution is the introduction of the map defined 
adequately to the given problem.

The amount of information delivered by robot sen-
sors can directly affect the effectiveness of its local-
ization. Taking into account the presence of noise in 
sensor signals, uncertainties and limited applicability 
of sensors themselves, it is beneficial to apply a larger 
number of different types of sensors. The data fusion 
is a tool that allows to combine knowledge from vari-
ous sources to maximize their usefulness [17]. In this 
way, in the considered cases it is possible to improve 
the quality of the results, by simultaneously allowing 
smaller amount or worse quality of the required in-
put data.

The aim of the present work is robot global local-
ization on the known environment map, based on the 
aggregation of sensor data. For the task of localization 
robot odometry (encoders), inertial sensors and the 
laser scanner will be used. The proposed localization 
algorithm will use the Monte Carlo localization meth-
od and the hybrid representation of the environment. 

2. Four-wheeled Mobile Robot
The object of research, on which the developed 

localization method will be investigated, is the PIAP 
SCOUT mobile robot [18].

In Fig. 1a the commercial version of the robot is 
shown. It was designed for quick reconnaissance of 
places with difficult access, i.e., vehicle chassis, places 
under seats in means of transportation, narrow rooms 
and ventilation ducts. The robot is manufactured in 
various versions, differing mainly in type of equip-
ment installed on-board, which makes it suitable for 
specialized tasks. 

The robot locomotion system is hybrid. It consists 
of tracks and non-steered wheels which operate si-
multaneously. Two rear wheels are driven indepen-
dently by DC motors equipped with gear units and 
encoders, which enable measurement of angular ve-
locity of spin of the driving wheels. The drive from the 
rear wheels is transmitted to the front wheels via two 
toothed belts or tracks.

During investigations the manipulator, camera and 
auxiliary front tracks were dismantled. The robot has 
been adapted to realization of experimental research 
by installing additional frame to mount the necessary 
equipment (Fig. 1b).

On the frame were installed: the laptop computer, 
the Inertial Measurement Unit and the 2D laser scan-
ner.

The kinematic structure of the robot is illustrated 
in Fig. 2 [19]. 

The following basic robot components can be dis-
tinguished: 0 – mobile platform (robot body with ad-
ditional frame), 1-4 – wheels, 5-6 – tracks. The mobile 
platform of the robot is approximately 0.5 m by 0.5 m 
(length x width), and its mass is about 22 kg.

Because the robot is equipped with non-steered 
wheels, large wheel slips occur during its turning 
(particularly large during pivot turning). For this 
reason, in a general case it is not possible to deter-
mine robot motion parameters based only on the en-
coder data. As a result the robot localization is much 
more difficult.

As far as the robot localization is concerned, actual 
robot state vector has the form:
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where: OxR, OyR and Oφ0z are respectively actual coordi-
nates of the point R of the robot and its heading in the 
global (stationary) reference system {O}.

By analogy, the prediction of the robot state vector 
can be written as:
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where elements of this vector are counterparts of the 
elements of the x vector.

In turn, the error of the robot state vector will be 
denoted as:
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where the error of robot position (Euclidean norm) 
and error of heading will be respectively equal to   
and  , and

a) b)

Fig. 1. PIAP SCOUT wheeled mobile robot: a – commer-
cial version [18], b – version adapted to experimental 
investigations

Fig. 2. Kinematic structure of the robot
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The space of possible robot states is represented 
by the collection of particles S of which every i-th 
particle is described by the state vector:

 , (5)

where: OxRi, OyRi, Oφ0zi are respectively possible coordi-
nates of the point R and its heading in the global coor-
dinate system {O} for the i-th particle.

In turn, the prediction of the state vector of the i-th 
particle in the successive step of the algorithm has the 
form:

 , (6)

 where the elements of the vector are the counterparts 
of the vector xi.

3. Environment Representation
Robot environment can be [20]: observable 

where both map and robot in each time instant can 
be uniquely defined, or partly observable, where nei-
ther map nor robot can be uniquely determined in 
each time instant. Partial non-observability makes 
localization task more difficult, because significant 
increase of robot admissible state space is necessary 
in this case. 

The environment can be also [20]: deterministic, 
where result of the actions performed by the robot is 
certain and completely defined or stochastic, where 
result of actions performed by the robot is uncertain. 
For stochastic environments additional probabilistic 
coefficients have to be introduced.

Additionally, robot environment can be [20]: stat-
ic, where the map of environment does not change 
during robot operation, or dynamic, where the envi-
ronment map can change. Dynamic environments are 
characterized by the presence of moving obstacles, 
which must be properly recognized and appropriate 
actions must be undertaken to check their influence 
on localization.

In the present work the environment has hybrid 
representation in the form of the 2-dimensional static 
deterministic and fully observable map. It consists of 
two layers, the first of which is the map of features. 
In this layer, the walls (obstacles) are represented by 
segments of known start and end coordinates in the 
global coordinate system {O}. The second layer has 
the form of grid occupancy map. The algorithm uses 
one of the two layers (environment representations) 
in the way so as to minimize the time of computa-
tions. In case of parts of the environment that consist 
of straight segments, the algorithm uses the map of 
features, and in case of complex shapes of the envi-
ronment, the grid occupancy map is used.

For the purpose of simulation research, the first 
layer of the map is created in AutoCAD and then it is 
converted to the .bmp format in order to obtain the 
second layer of the map.

In the case of experimental research, the spa-
tial scanning technique using the 2D laser scanner 
mounted on the robot is used to obtain the second 
map layer, and after subsequent conversion of the 
point cloud into lines, the first layer is obtained.

 
4.  Localization Based on Multi-sensor Data 

Fusion
The theme of the work is wheeled mobile robot lo-

calization using data aggregation from the sensors. To 
this end, the probabilistic method based on the par-
ticle system, that is Monte Carlo localization, will be 
used. It relies on recursive algorithm which uses the 
Bayesian theory for posteriori estimation of the dis-
tribution.

Main features of the Monte Carlo localization are:
•	 capability of using independent sensor data from 

multiple devices, also burdened with large errors,
•	 flexibility of adaptation of the number of particles 

and map complexity to the computing power of 
the computer,

•	 the estimate of robot current state is represented 
by a multimodal probability density function, 
which enables global localization,

•	 total computation cost of the algorithm is 
concentrated around places where the largest 
probability of robot occurrence exists.
The Monte Carlo algorithm consists of 3 main  

phases:
•	 prediction,
•	 update of weights,
•	 resampling.

The phases are preceded by the initialization pro-
cess, which generates M particles on the map and 
assigns an identical normalized weight  to each 
i-th particle.

In the prediction phase, the algorithm predicts the 
 state for each i-th particle from the set S using the 

motion model.
In the subsequent weight update phase, the weight 

wi is calculated for each i-th particle from the S set. Af-
ter calculation of weights, the process of their normal-
ization takes place, that is, determination of weights  
such that the sum of weights of all particles is equal to 1.

In the last phase, resampling of the S set takes place. 
Particles from the S set are drawn with replacement 
proportionally to the value of the weights (particles 
with large weights are chosen more often) and put into 
new S’ set. Analogy to the survival of the fittest is no-
ticeable. Particles with large weights are chosen more 
frequently so in the map concentrations are created 
where larger probability of robot position exists. After 
sampling is completed, the S’ set becomes the S set for 
the next calculation loop. In this phase, algorithm of re-
duction of the number of particles based on the Effec-
tive Sample Size (ESS) coefficient can be additionally 
introduced [21]. In the case, when nearly whole popu-
lation of particles will be close to the unknown robot 
state x, this coefficient can be used for gradual removal 
of particles from the remaining region of the map. 

Process of robot localization was carried out on 
PIAP premises using the available mobile platform 
and the following sensors:
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•	 HOKUYO UTM-30LX 2D laser scanner and 
environment map,

•	 STM iNEMOv2 sensors module, of which the 
accelerometer was used,

•	 encoders mounted on the shafts of robot drives.
The laser scanner with the environment map has 

a primary function in the process of determination of 
weights of the particles in the Monte Carlo localization 
method by comparing the real readouts from selected 
laser beams with virtual measurements of each of the 
particles. 

The measurements using accelerometer have a 
corrective function in cases of robot motion with 
wheel slip. 

Measurement from encoders is in turn used in the 
phase of prediction, in the robot motion model.

The iterative process of the method takes place in 
parallel, on two planes:
•	 robot control with sensor data reading and
•	 execution of localization process using the Monte 

Carlo method.
The robot control and sensor data reading plane is 

responsible for providing information in the form of 
distance, speed and accelerometer readouts. During 
experiment the operator moves the robot by tilting 
the joystick axis. Sensor readouts are made by means 
of programmatic real-time layers.

The amount of particles in the Monte Carlo 
localization method was experimentally chosen so as 
to ensure quick and accurate localization in the given 
environment. One of available resampling algorithms 
was implemented and a module for optimization of 
speed of algorithm execution was added.

4.1. Prediction Phase – Robot Motion Model
The motion model is used for prediction of the  

state vector for each i-th particle depending on the 
previous estimated state vector xi and the action an 
identical for all particles. In the work, for prediction of 
robot motion speed its odometry and accelerometer 
were used.

From robot odometry, based on known angular 
speeds of spin of the driven wheels  obtained 
based on the encoder indications, are calculated: robot 
longitudinal velocity Rvex and angular velocity of turn-
ing Rωe and the transverse  velocity is assumed Rvey = 
0, where all those velocities are expressed in the mov-
ing coordinate system {R} associated with the robot. 
Those velocities, on the assumption of zero wheel slip, 
are determined from the following relationships [19]:

 , , (7)

 , (8)

where: r – geometric radius of wheel (the same for all 
wheels), W – wheel track (distance between geometric 
centers of left- and right-hand side wheels).

Because of existence of large wheel slips during 
robot turning, which was pointed out, for instance, in 
the work [19], those relationships are then burdened 
with large errors, but thanks to use of the Monte Carlo 

localization method, despite those errors localization 
of the robot is possible with relatively high accuracy.

Robot motion velocities can be also determined 
based on the Raax and Raay accelerations read from 
accelerometer, based on the following relationships:

      (9)

     (10)

where t denotes time instant of prediction, and Δt is 
the step time.

Similarly as previously, it is assumed that the 
ground on which the robot moves is horizontal, so 
the influence of the gravitational acceleration on the 
accelerometer indications is neglected. Additionally, 
the centripetal (normal) acceleration occurring 
during robot turning and Coriolis acceleration 
associated with Earth rotation (which is small) are 
not taken into account.

Next, the robot longitudinal velocity is calculated 
as a fusion of longitudinal velocities obtained from 
robot odometry and accelerometer according to the 
formula:

 , (11)

where the following weights were assumed: µe = 0.7, 
µa = 0.3.

In turn, robot motion velocities in the global ref-
erence system, on the assumption of robot motion 
on a horizontal ground, can be determined based on 
the relationship:

   . (12)

Based on it, from the robot motion model predic-
tion of the state vector of i-th particle  is determined 
on the basis of the relationship [8]:

   (13)

where xni is declared noise (uncertainty) of motion, 
which is determined in each iteration for every par-
ticle separately.

The noise is defined by standard deviations σtrans 
and σdrift, respectively for longitudinal and lateral di-
rections of robot motion.

The motion model described above is applied for 
each i-th particle from the S set.

4.2. Weight Update Phase
To each i-th particle from the S set must be as-

signed appropriate weight wi, proportional to the 
level of probability that the given measurement is 
equal to the real value. The particles, from the point 
of view of which the measurement is close to real val-
ues should be given larger weights than those, whose 
measurements differ significantly.
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To this end, for the laser scanner the sensor model 
based on the Gauss distribution is used, that is:

  (14)

where: olaser,k – measurement from the k-th laser scan-
ner beam, k = 0, ..., n, op,k,i – indication “from the point 
of view” of the i-th particle, σ0

2 – experimentally cho-
sen variance describing the sensor noise.

In case of the laser scanner, one obtains measure-
ments from n equally spaced beams. Therefore each 
of the particles also contains n indications.

As far as the variance σ0
2

 is concerned, its small 
value results in narrow Gauss function, so only the 
particles of measurements very close to real obtain 
significant weights. For large values of σ0

2, this distri-
bution is wider, so the differences between weights 
are smaller.

After calculation of the weights of all particles, 
additional normalization of weights is necessary. 
Without it, the distribution is not the probability dis-
tribution. To this end, all weights are divided by the 
following normalization constant:

  (15)

This constant is the sum of all original weights. Fi-
nally, weights of particles are given values according 
to the following formula:

  (16)
 
4.3. Resampling Phase

Resampling consists in selection of particles from 
the S set proportionally to their weights and creation 
of the new set S’, which will be used in the successive 
iteration. It is the so called draw with replacement, 
which means that elements not selected (because of 
small weight) will be replaced with elements with 
higher weights. This selection results in keeping in the 
memory only those places, which are probable from 
the point of view of localization. After performing the 
estimation of robot localization, the created S’ set is 
exchanged with the S set for successive iteration.

Next point of iteration is appropriate estimation of 
robot position based on the cloud of points. To this 
end, the following two principal methods are used:
•	 maximum weight of the particle and
•	 superposition proportional to weights of particles.

The first method is trivial, since the particle with 
the largest weight is assumed as the position of the 
robot (the result of the localization). This solution has 
the disadvantage of “jumping” behavior in successive 
steps of the iteration.

The second method relies on estimation of 
position using both weight and position of each 
particle. Keeping in mind that sum of weights of all 
particles is equal to one; it is possible to carry out 
superposition of all coordinates and orientations of 

particles proportionally to their weights, using the 
following relationship:

   (17)

where  is the eventual prediction 
of the robot state vector, obtained as a result of data 
fusion.

Next, exchange of the S and S’ sets is performed, 
and execution of the successive iteration in the next 
time step.

Finally, optimization of the number of particles is 
done, which allows reduction of time of computation 
in successive iterations.

Because of lack of information on the initial state 
of the robot (global localization), the Monte Carlo 
localization requires a large number of particles only 
at the very beginning of the process. For the task 
without the problem of the kidnapped robot, keeping 
large number of particles is less important with time, 
because the localization problem smoothly transitions 
to the problem of position tracking. Therefore, it is 
possible to reduce the number of particles then.

To this end, the mechanism reducing the number 
of particles, when the algorithm discovers that the 
problem of tracking is more pronounced than the 
problem of localization, has been introduced. The 
measuring quantity ESS (Effective Sample Size) was 
introduced, which informs about the level of closeness 
of all weights of particles to each other, which is 
calculated based on the relationship [21]:

   
(18)

It means that at the time instant, when most of the 
particles will be concentrated in one place, their num-
ber will be reduced.

Reduction of the number of particles by the im-
posed percentage η takes place at the moment of sat-
isfaction of the condition:

  (19)

where: τ ∊ (0, 1) is the experimentally chosen index of 
rate of reduction of the number of particles (0 – very 
high rate of reduction, 1 – no reduction). 

5. Simulation Research
Within the present work multiple investigations 

in the prepared simulation environment were carried 
out. On the ideal map (Fig. 3a) created in two variants, 
by means of lines and in the occupancy map, a series 
of localization processes was conducted for the simu-
lated robot. In the figure, the map contour is marked 
red and particular particles – blue.

The developed application was also able to show 
simulated beams of distance readouts from chosen 
particles in the form of green lines (Fig. 3b).
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In the simulation research, the following proper-
ties were checked: 
•	 algorithm speed for various number of particles 

M (from 2000 to 20 000) and number of lines 
constructing the map (70 and 140),

•	 algorithm speed for various number of particles M 
(from 2000 to 20 000) and length of the radius in 
the case of the bitmap of 1000 x 1000 pixels,

•	 accuracy of localization in the 25-th step of iteration 
for identical sequence of robot motion (for initial 
number of particles M = 10 000 and M = 20 000),

•	 influence of value of variance of sensor noise σ0
2 

on the localization process.
In the simulation, robot position and its error in 

the map coordinate system, and also all performed 
simulations of distance measurement were repre-
sented in generic units.

Additionally, in every trial the initial pose of the 
robot and its control were the same.

In Fig. 4 simulation results were presented where 
time of simulation T dependency on the number of 
particles M, for two methods of representation of en-
vironment of the robot and for two chosen levels of 
complexity of those maps, was investigated. The vec-
tor map was investigated for the case of 70 and 140 
lines, whereas the raster map of the size 1000 x 1000 
units for maximum length of the beam equal to re-
spectively 500 and 1000 units.

 From the obtained results it follows that the time 
of computation decreases more or less linearly as 
a function of the number of particles used for robot 
localization. The time necessary for calculation of the 
algorithm for the map based on lines can be noticeably 
smaller. However, geometric complexity of the envi-
ronment can cause significant increase of the number 

of lines necessary for map construction, which is not 
a problem when using a discrete map of occupation 
based on a bitmap. It can be also noticed that for small 
numbers of particles, the level of complexity of the 
map becomes unimportant. This information is, how-
ever, of little use in practical applications, where the 
common trend is to increase the number of particles.

In the following figures, results of simulations of 
robot localization are shown for various numbers of 
particles M and various values of variance of sensor 
noise σ0

2 as a function of the iteration step.
On the basis of the obtained results, it is possible 

to evaluate the accuracy of robot localization depend-
ing on the used number of particles M and the value of 
σ0, which is one of the method settings and has large 
influence on the results. 

Fig. 4. Dependency of time of computation on the num-
ber of particles for two levels of complexity of the map

Fig. 5. Position  and heading  errors for  
M = 10 000 and σ0 = 70

In the case of standard deviation σ0 = 70 conver-
gence of position of the simulated robot with its es-
timate in the initial steps of the algorithm slightly in-
creased when the number of particles was increased 
from M = 5000 to M = 10 000 (Figs. 5-6).

In turn, in the case of analysis of the problem of 
robot localization for the standard deviation σ0 = 200 

a)

b)

Fig. 3. Robot environment map: a –visible particles,  
b – example of simulated beams
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and identical number of particles (Figs. 7-8), the initial 
error of heading is significantly greater and gradually 
tends to zero. On the other hand, the position error 
is smaller right from the beginning and ultimately 
reaches smaller value.

In the case of significant reduction of the parameter, 
that is, to σ0 = 10 and for M = 20 000 (Fig. 9), the 
correct localization of the robot was achieved already 
after completion of the first step. 

Fig. 6. Position   and heading  errors  for  
M = 5 000 and σ0 = 70

Fig. 7. Position   and heading  errors  for  
M = 10 000 and σ0 = 200

Fig. 8. Position   and heading  errors  for  
M = 5 000 and σ0 = 200

Fig. 9. Position   and heading  errors  for  
M = 20 000 and σ0 = 10

Fig. 10. Position  and heading  errors   
M = 10 000 and σ0 = 10

Therefore, decreasing the value of σ0 resulted in 
significant increase of convergence for the case of 
large number of particles. However, it turned out to 
be critical for the case in which M = 10 000 and σ0 = 10 
(Fig. 10), where the error was large, and in the case of 
heading, error convergence to zero is not visible.

It means that large number of particles in the 
simulation with small number of the σ0 parameter 
can significantly increase the speed and accuracy 
and simultaneously involves risk of failure of the 
localization task as a whole.

The presented results clearly point to experimental 
character of selection of number of particles M and 
the parameter σ0 for the given map and used sensors.

6. Experimental Investigations
Experimental investigations concerning localiza-

tion of the PIAP SCOUT robot were carried out in the 
research environment, whose schematic diagram is 
shown in Fig. 11.

The research platform consists of three main com-
ponents:
•	 the PIAP SCOUT mobile robot controlled via CAN 

bus,
•	 the laptop with software running on Ubuntu 

operating system with Xenomai real-time 
framework,
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•	 the system of sensors communicating with the 
laptop via USB and CAN interfaces.

Fig. 11. Schematic diagram of experimental environ-
ment

Fig. 12. Robot environment map in the experimental 
investigations

Fig. 13. Schematic illustration of robot desired move-
ment in the experiment 1

Robot control takes place by means of the control 
panel, using joystick. Both systems, which are of the 
robot and of the control panel, were connected using 
the Wi-Fi network.

Experimental investigations of robot localization 
using the proposed method were performed using the 
PIAP SCOUT robot described in point 2. Robot envi-
ronment was the 9 m2 area made out of the part of the 
room. The robot environment map with the adopted 
coordinate system is shown in Fig. 12.

The map used with the algorithm was created us-
ing the space scanning technique. Raw laser measure-

ments were used to build a 1000 x 1000 points oc-
cupancy map. 

Next, the layer of the map obtained in this way was 
linearized using one of the available algorithms, and 
as a result the second layer of the vector map consist-
ing of 120 lines was obtained.

The conducted experimental research involved 
a series of experiments of localization using the ear-
lier described Monte Carlo method, with aggregation 
of sensor data taken into account.

At first, the experimental standard deviations 
were chosen: σtrans = 0.1 m, σdrift = 0.09 rad, σ0 = 50 m. 
Next, the proper experimental research was done.

During investigations, after measurement of the 
initial robot pose, the operator using joystick made 
maneuvers aimed at moving the robot into new lo-
cation. The task of the algorithm was robot localiza-
tion during motion and after its completion. After 
finishing the control process, the final robot pose was 
measured and also its estimate as a result of localiza-
tion algorithm operation was determined. During al-
gorithm execution, several quantities were recorded, 
for instance, values of predicted robot velocities and 
times required for computation at the given number 
of particles.

In the present work, results of two selected experi-
ments are shown.

Experiment 1
The first experiment consisted in driving the robot 

forwards, then making 90 degrees counter-clockwise 
pivot turn and driving forwards again. In Fig. 13 the 
desired robot motion is shown in a schematic way.

In turn, in Fig. 14 and in Table 1, accuracy of the 
final robot pose estimation is illustrated, whereas in 
Fig. 23 selected corresponding steps of the algorithm 
are shown.

As a result of the experiment also the following 
quantities were recorded:
•	 the number of active particles M involved in the 

localization process (Fig. 15),
•	 duration of algorithm computation T (Fig. 16)
•	 estimated robot velocities (Fig. 17).

Experiment 2
The second experiment was a natural follow up to 

the first one and it consisted in robot returning to the 
starting point from the first experiment. The desired 
motion of the robot is shown in Fig. 18.

The accuracy of the final estimation of the robot 
pose are illustrated in Fig. 19 and in Table 2, whereas 
in Fig. 24 are shown selected intermediate steps of 
the algorithm execution. Similarly as in the previous 
experiment, the following quantities were recorded 
during experiment:
•	 number of the active particles M involved in the 

localization process (Fig. 20), 
•	 duration of computations of the algorithm T 

(Fig. 21),
•	 estimated robot velocities (Fig. 22).

As a result of the conducted experiments with 
a map of little geometric complexity, relatively good ac-
curacy of robot localization was achieved (Tables 1-2).
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Fig. 14. Results of robot localization in the experiment 1

Fig. 15. Change of the number of particles  
– experiment 1

Fig. 16. Time of computation for successive steps of the 
algorithm  –  experiment 1

Despite larger difficulties in localization in uni-
form spaces or spaces containing repeating ele-
ments, the results of this quality can be considered 
attractive from the point of view of mobile robotics.

At the beginning of each experiment (Figs. 23-
24), relatively large uncertainty of estimation of 
position can be observed in the form of scattered 
distribution of particles all over the map. This dis-

Tab. 1. Accuracy of localization in the final position for 
the experiment 1

Unit [m] [m] [deg]

Actual pose OxR = 2.23 OyR = 2.03 Oφ0z = 142.1

Estimated 
pose R

O x̂ =2.25 R
O ŷ =2.09 z

O
0ϕ̂ =139.4

Estimation 
error R

O x~ =–0.02 R
O y~ =–0.06 z

O
0

~ϕ =+2.7

Tab. 2. Accuracy of localization in the final position for 
the experiment 2

Unit [m] [m] [deg]

Actual pose OxR = 1.14 OyR = 0.64 Oφ0z = 44.21

Estimated 
pose R

O x̂ =0.91 R
O ŷ =0.57 z

O
0ϕ̂ =55.85

Error of 
estimation R

O x~ =+0.23 R
O y~ =+0.07 z

O
0

~ϕ =–11.64

Fig. 17. Estimated velocities of robot motion 
 – experiment 1

Fig. 18. Schematic illustration of robot desired move-
ment in the experiment 2
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Fig. 19. Results of robot localization in the experiment 2

Fig. 20. Change of the number of particles  
– experiment 2

Fig. 21. Time of computation for successive steps of the 
algorithm – experiment 2

Fig. 22. Estimated velocities of robot motion 
– experiment 2

tribution underwent consolidation in the successive 
steps, which resulted in more and more accurate lo-
calization. During every experiment, the algorithm 
gradually reduced the number of particles used for 
localization depending on the ESS value (Effective 
Sample Size). Moreover, the results of investigations 
for selected steps of algorithm operation illustrated 
in Figs. 23-24 show consistency of estimation of ro-
bot pose during robot motion with desired move-
ments presented in Figs. 13 and 18. In the figures 
also the visualized laser beams drawn from the esti-
mated robot position can be noticed, which are con-
sistent with the environment map. It is the evidence 
of correctness of the localization process (position 
tracking) during experiment, and not only after 
its completion.

The time of computations required by the algo-
rithm was dependent proportionally on the number 
of particles and the level of map complexity (that is, 
on the number of lines required to its representation 
for the vector map or the maximum length of the ray 

for the raster map). One can notice, however, that the 
mentioned time was significantly different in case of 
the feature map in comparison to the results of sim-
ulation investigations. The explanation is lack of op-
eration of the real-time layer during simulation in-
vestigations and absence of the associated latencies 
(acceleration integration, laser measurements, etc.). 
The real-time system, in order to achieve high accu-
racy, operates in the top priority mode with respect 
to any application in the user space of the Ubuntu 
system, so its influence on the efficiency is signifi-
cant.

In Figs. 15-16 and Figs. 20-21 it is possible to 
notice a distinct fall in the required time of compu-
tation for the steps where the number of particles 
was reduced.

Linear and angular velocities of the robot exhibit 
high local variability, because of measurement inac-
curacy and instability of robot motion during turn-
ing maneuvers (Figs. 17 and 22). Moreover, the drift 
of error of acceleration integration is also significant. 
This justifies the supposition that those measure-
ments were burdened with quite significant errors, 
which, however, was not a problem for robot local-
ization with relatively good accuracy. It was possible 
due to the fact that the Monte Carlo localization algo-
rithms are robust to this kind of errors, because they 
themselves operate on the principle of introduction 
of noise to motion and sensor models.
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Fig. 23. Selected steps of localization – experiment 1

Fig. 24. Selected steps of localization – experiment 2

7. Conclusions and Future 
Works
The proposed algorithm of lo-

calization works quickly and ef-
fectively on the real mobile robot. 
The results of localization are sat-
isfactory, and because of speed of 
algorithm operation its use in real 
time is possible. Thanks to data 
aggregation, distance sensors, ac-
celerometers and encoders fulfill 
their role as components gather-
ing information required for as-
signing weights to particles and 
prediction of robot motion.

In order to further develop the 
presented method and increase 
the accuracy of prediction of ro-
bot motion, the following works 
are planned:
•	 enhancement of fusion of data 

from the sensors with data 
from the gyroscope in order to 
improve accuracy of prediction 
of robot heading and/or with 
the global navigation satellite 
system (GNSS) [22] in case of 
robot motion in open terrain.

•	 addition of the third spatial 
dimension of the environment, 
which will enable localization 
in the environment of variable 
surface inclination.
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