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time to complete, interference, communication effi-
ciency, and duplication of efforts. In their work, when-
ever agents are allowed to communicate information, 
they broadcast every value update once obtained. Au-
thors concluded that varying the type of information 
that agents communicate can significantly affect the 
performance of the multi-agent system with respect 
to different metrics, especially if no implicit commu-
nication present. Moreover, their results showed that 
more communication does not always guarantee bet-
ter performance. The latter conclusion has crucial im-
plication. It indicates that even in applications where 
communication is free, the system designer should 
not allow full communication and assume that the 
system is performing at its best level.

The progress that the work presented above made 
in understanding the impact of communication on 
MAS performance, together with the fact that sys-
tem designers must choose a performance goal [1], 
motivated us to propose a genetic algorithm-based 
approach for learning a goal-oriented communica-
tion strategy. Therefore, rather than manually creat-
ing different communication conditions (as in Figure 
1.a), the system designer can start from selecting his 
performance goal and feed it to the learning system. 
The system, then, learns a centralized goal-effective 
strategy that determines what information instances 
should be communicated during task execution, when, 
and to whom in order to achieve the best performance 
of the system with respect to the selected goal (see 
Figure 1.b). During task execution, agents execute the 
evolved strategy in a decentralized manner. At each 
time-step, each agent consults the strategy to decide 
whether it needs to communicate or not. Therefore, 
in this work, agents’ collective behavior, and hence 
performance, improves as a result of executing a goal-
oriented communication strategy, evolved offline by 
the GA.

The goal of this work is to propose and prelimi-
nary test an evolutionary approach that automati-
cally generates an effective communication strategy 
with respect to a user-defined performance goal in 
multi-agent systems. Our ultimate aim is to allow sys-
tem designers to easily vary the goal and automati-
cally obtain the corresponding communication strat-
egy. Therefore, the system designer does not need to 
know or analyze the properties of each information 
instance and its effect on the performance goal of the 
system. This can eliminate a significant design task in 
developing a multi-agent system. Moreover, the pro-
posed approach can assist system designers to find 
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1.	 Introduction

A number of research efforts investigated the im-
portance of communication and its impact on the per-
formance of multi-agent systems. Studies are usually 
conducted by varying communication conditions and 
testing the performance of the system. We consider 
the work in [1] and [19], where experiments were 
carried out to study the effect of communicating dif-
ferent types of information when agents are assigned 
different tasks. As shown in Figure 1.a, the process 
starts by manually determining the type of informa-
tion that agents are allowed to communicate - i.e. 
none, only goals, only beliefs, or both. Then, the av-
erage performance of the system over multiple runs 
is measured with respect to different metrics such as 
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out the potentially best performance that the system 
can achieve with respect to a specific goal, such as 
the minimum time or energy that a task takes to be 
completed. Therefore, a system designer will be able 
to choose among the performance of the system with 
multiple communication strategies of varying goals 
and select the one that has the best fit to the system’s 
needs. A multi-agent version of the Wumpus World 
[16, 22] is used in this work as a testing domain for 
our approach, where a team of carriers and fighters 
cooperate to kill wumpuses and collect gold.

a)

b)

Fig. 1. Reversal of the (a) communication-to-perfor-
mance investigation process to obtain (b) performance-
to-communication learning process

The remainder of this paper is organized as 
follows. Section 2 briefly overviews related work. In 
section 3, we analyze the problem of designing a goal-
oriented communication strategy for a multi-agent 
system, and explain why it is a challenge to design 
one manually. The Wumpus World, our test domain, is 
explained in section 4. In section 5, we provide detailed 
information on how we utilize a genetic algorithm to 
design a learning system that automatically generates 
an effective goal-oriented communication strategy. We 
show, in section 6, promising results in preliminary 
experiments with two performance goals using the 
Wumpus World domain, and we finally conclude in 
section 7 and discuss future work.

2.	 Related Work
Given the impact of using an effective communi-

cation on MAS performance, it is not surprising that 
approaches for learning all aspects of communica-
tion, including language, protocols, and strategies, 
have been proposed in the literature. We focus in this 
section on existing work related to communication 
strategies, which help agents decide what, when, and 
to whom they communicate. The main contribution of 
this work is not only learning a communication strat-
egy, but also learning communication strategies with 
respect to flexible goals. We refer to goals as the cri-
teria or metrics used in the communication decision 
process to determine whether a specific communica-
tion act should take place. A rule of thumb is that in-
formation should be communicated only if doing so is 
beneficial to the system’s performance, [2]. 

Different metrics have been used in the litera-
ture to value communication decisions of agents. Ex-
amples include performance-based metrics such as 
minimum communication cost [10, 22], task progress 
[20], minimum time [8, 9], and avoiding coordination 
errors [14]. Also, information-based metrics have 
been used such as timeliness and relevance [22], in-
formation redundancy [6], and KL divergence [20]. As 
stated above, the advantage of this work over existing 
ones is that it is designed with no assumptions about 
the desired system’s performance. Therefore, system 
designers have the ability to design their own metric, 
with which they would like to improve the system’s 
performance. 

Communication decisions in cooperative MAS can 
be either centralized, where a coordinator agent that 
has a full observation of the global state compute 
a central strategy, or decentralized, where each agent 
with local observation compute its own strategy. In 
the latter case, however, cooperative agents need ac-
cess to their teammates’ states and actions to be able 
to estimate the overall communication benefits, and 
hence make communication decisions. Therefore, 
researchers have designed different approaches to 
allow agents obtain such information. For example, 
[10] allowed agents to send feedback about the use-
fulness of the information they received to senders, 
[14] allowed agents to take actions based on shared 
information, and hence know the actions taken by the 
teammates, and [22] extended agents’ observability to 
enable agents to track team members’ mental states, 
and hence infer what teammates know and when. 
Based on the domain characteristics, some research 
efforts, such as [14, 15, 18, 20], proposed approaches 
based on modeling the team’s decision problem using 
variations of Markov Decision Process (MDP), such as 
Dec-MDP and Dec-POMDP, to enable agents to esti-
mate the impact of communication, and hence com-
pute their communication policies. The computation, 
however, is usually based on myopic assumptions, 
where each agent evaluates the benefit of communi-
cation in isolation for 1-step horizon assuming others 
never communicate. The work in [2, 4] proposed ap-
proaches that relax these assumptions, yielding bet-
ter performance. As mentioned previously, the work 
presented in this paper addresses this issue by adapt-
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ing a centralized learning offline and distributed ex-
ecution at runtime. 

Existing work based on MDP framework have pro-
posed approaches to compute a communication pol-
icy online [20], offline [8], or in a hybrid manner [5], 
as part of the solution to the problem, in a centralized 
[3], distributed, and round-robin fashion [12]. Other 
efforts have proposed approaches to learning com-
munication strategies include [10], where authors 
proposed a distributed probabilistic control system 
that observes the information entering and leaving an 
agent and learns the classes of information and com-
munication frequency that are beneficial to the agent 
and its neighbors using their feedback. Moreover, the 
work in [7] introduces a Hierarchical Reinforcement 
Learning (HRL) algorithm to allow agents learn a hi-
erarchical communication and action policy, where 
the main task is decomposed into cooperative and 
non-cooperative tasks and a communication task is 
added under each cooperative task. Using the algo-
rithm, agents can decide when to communicate with 
other agents to obtain their actions. Moreover, rein-
forcement learning is used in [11] to allow agents 
learn action policies, which are extended to include 
communication by adding linguistic state variables in 
receivers’ state space and linguistic action variables 
to senders’ action space. Furthermore, [9] used Ge-
netic Programming (GP) to evolve agents’ behavior, 
represented by parse trees, which include commu-
nication actions that enable an agent to request data 
from another.

In research efforts, some researchers applied heu-
ristics to allow agents to reason on-line about when 
and what to communicate. Examples include using 
hill-climbing heuristic to find out what information 
maximizes the expected reward [15]. Another work 
in [22] used implicit communication to allow agents 
reason about teammates’ needs and productions, and 
hence communicate proactively. 

Most of the works, presented above, address only 
part of the communication decisions in MAS. For ex-
ample, [2, 4, 5, 6, 7, 9, 12, 14, 20] address only when 
agents communicate, [15] addresses what agents 
communicate, and [8, 11, 18, 22] address what and 
when agents communicate. Similar to our work, [10] 
addresses what, when, and to whom agents com-
municate. However, authors provided agents with 
only one timing strategy, which is frequency of com-
munication, equivalent to one of our timing strategy, 
EveryTimeInterval, which will be explained in a later 
section. 

3.	 Goal-Oriented Communication Strategy
Results of the work in [19] imply that communi-

cating each information instance that agents obtain 
during task execution affects the performance of the 
system with respect to multiple metrics. Therefore, 
depending on the desired performance goal, it may 
not be necessary to communicate all available infor-
mation instances. If it is determined that one should 
be communicated, determining when (timing) and to 
whom (recipients) becomes essential as communica-
tion incurs cost. 

Therefore, it is crucial to consider designing a com-
munication strategy for each information instance. 
Moreover, if there are multiple types of agents in the 
system, a separate communication strategy should be 
designed for each information instance and a recipi-
ent type combination. To explain this, consider our 
test domain, the Wumpus World, where a team of car-
riers and fighters cooperates to collect gold and kill 
wumpuses, where carriers are responsible of collect-
ing gold, and fighters kill wumpuses. In this domain, 
the “wumpus location” information instance means 
danger to carriers and a spot they should keep them-
selves away from, while, to fighters, this information 
means a target and a place that they should run to in 
order to kill the wumpus and help carriers collect gold 
in the same location. Moreover, some information in-
stance might be important to only carriers or fighters. 
For example, “gold location” is only important to car-
riers. Consequently, the system’s designer must keep 
in mind the properties of each information instance 
and how it can possibly affect the performance of 
each agent type and hence the overall performance. 

A comprehensive communication strategy guides 
agents on all their communication needs: what, when, 
and who. Consider a domain where agents can obtain k 
Information inStances (IS).

IS = {ISi: 1 ≤ i ≤ k}

In this work, we formulate the communication de-
cisions problem to learning the communication pat-
terns that improve the system performance with re-
spect to flexible, user-defined goals. It is assumed that 
for each Information instance (ISi), there are n alter-
natives for when it can be communicated, and m alter-
natives for who it can be communicated to. Therefore, 
the total number of Communication Strategies (Com-
mSt) for ISi is computed by:
	  CommSt (ISi) = (n*m) + 1	 (1)

The number of alternatives for the when component 
multiplied by the number of alternatives for the who 
component, plus the option of not communicating the 
information instance. Hence, for k information instances, 
and c types of agents, the total number of possible 
communication strategies can be computed as:

	 TotalCommSt = (n*m+1)k*c 	 (2)

The total number of possible communication 
strategies increases exponentially with the number 
of information instances k and number of agents’ 
types  c. Besides, due to the randomness in multi-
agent systems, it is usually not clear upfront which 
communication strategy will be effective with respect 
to the task and performance goal [1, 12], and it is dif-
ficult and time-consuming to manually try all possible 
communication strategies. Yet, combinations of dif-
ferent sub-strategies for each information instance 
may result in unexpected performance. This calls for 
an automated approach for determining an effective 
communication strategy with respect to a stated per-
formance goal, which is proposed in this paper. We as-
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sume that a communication language already exists, 
and communication is always reliable.

4.	 Application Domain
We have designed and built a multi-agent version 

of the Wumpus World Problem [16, 22] to use as our 
test domain. This is done using the Repast Symphony 
plugin for Eclipse [13], which is an open source Java-
based agents modeling and simulation toolkit. We 
designed the world of our domain to contain several 
rooms that contain gold and wumpuses. This new 
feature in the domain allows having multiple differ-
ent beliefs and goals that provide variety of informa-
tion instances, which adds a key property that makes 
it effective for evaluating communication strategies. 
The considered information instances along with 
their values are listed in Table 1, and will be explained 
throughout this section. 

Our world consists of 12 rooms in a 140x140 grid. 
One room is the drop-off room, where agents have 
to drop any gold that they collect, and others either 
contain gold and/or wumpuses or are empty. Figure 2 
shows a screenshot of our world. The long-term goal 
of the team, carriers and fighters, is to kill wumpuses 
and collect gold. In our experiments, the world con-
tains 5 carriers, 3 fighters, 5 wumpuses, and 10 pieces 
of gold, all of which distributed randomly at the begin-
ning of each simulation. Carriers have the information 
about rooms’ locations, but not their contents. Carri-
ers are capable of finding gold and wumpuses, picking 
up and dropping off gold, while fighters are capable of 
shooting wumpuses. Similar to [22], the only way that 
fighters can know about the location of a wumpus is 
by getting a message from a carrier that observed it 
(Wumpus location IS4). When a wumpus is killed, car-
riers who observed it can determine that the wumpus 
is dead and the room is safe only by getting a message 
(Safe room IS8) from the fighter who killed it. 

In order to facilitate the achievement of the long-
term goal and enhance collaboration, each agent also 
has a short-term goal. Carriers’ and fighters’ goals are 
listed in Table 1. Initially, all carriers have the “Ex-
ploreRoom” goal, and have to decide on a goal room. 
Each carrier can only hold one piece of gold at a time. 
Therefore, once a carrier picks up gold, its goal will be 
“DropOffGold” as it must go to the drop-off room and 
drop the gold there. 

Carriers and fighters states, Sc and Sf, respectively, 
are defined as follows:

Sc = {(s1, s2)}

Sf = {s1},  Where: s1, s2 = {0, 1, f}.

The first element s1 indicates agent’s location, 
whether inside a room (1), in the hallway (0), or dis-
regarded (ϕ). Although agents can recognize what 
room that they are in, this is abstracted in the state to 
only three cases to deliver a coherent choice to when 
an agent can communicate, as we will explain in the 
timing strategies section. The second element s2 indi-
cates the carrier’s possession of gold, whether it holds 
gold (1), nothing (0), or disregarded (ϕ). 

At each time-step, every agent performs (observe, 
communicate, act) execution cycle. In observe, agents 
are able to make the observations {IS3, IS4, IS5, IS8}, 
in Table 1, as well as deciding on a goal room or 
change goal. In the communicate step, agents refer 
to their communication strategy to see if they should 
communicate any information at the current time-
step. In the act step, both agent types are able to move 
UP, DOWN, RIGHT, and LEFT. In addition, carriers are 
able to PICK UP, and DROP OFF gold, and fighters are 
able to SHOOT a wumpus. 

Moreover, each agent maintains a mental model 
about other agents by communicating goals and goal 
rooms, if allowed by the assigned communication 
strategy. The behavior of agents, both carriers and 
fighters, can be summarized as follows:

•	 A carrier will choose the closest room that contains 
gold. If it has no information about gold locations, 
it will choose the closest room it has never visited 
to explore.

•	 When a carrier decides to go to a room, which it 
knows nothing about the content, the carrier must 
explore the room.

•	 A carrier will not explore a room that is currently 
being explored by another carrier, unless it has no 
other options.

•	 If a carrier knows that a room contains gold, it will 
not need to explore the room; instead the carrier 
will target the gold and collect it.

•	 A carrier will avoid empty room. 
•	 A carrier will escape the room once it observes 

a wumpus.
•	 A carrier will avoid wumpus rooms unless it 

receives information that the wumpus is killed, or 
a carrier tells the agent that it contains gold, which 
implies that the sender was able to explore the 
room, and hence the wumpus is killed.

•	 A carrier will choose a different goal room if it 
receives information that its goal room is empty/
has a wumpus while the agent is moving to it. 

•	 Fighters do not move unless they receive 
information about a wumpus location.

•	 If a fighter receives multiple requests, it will choose 
the closest one.

•	 A fighter will choose a different wumpus/stay still 
if it receives information that another fighter has 
killed the wumpus that the agent is going to kill.

Fig. 2. Screenshot of the Wumpus World
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5.	 Algorithmic Approach
We use a steady state Genetic Algorithm (GA) to 

evolve goal-oriented communication strategies in 
a multi-agent system. GA is a model of machine learn-
ing that simulates the natural phenomenon of evolu-
tion. Starting with a number of random solutions for 
the problem, GA mimics natural selection by favor-
ing fit solutions in selecting parents for producing 
offsprings. Once parents are selected, crossover and 
mutation operations are applied and new offsprings 
are placed in population to form the next generation. 
This process continues until a termination condition 
is met. Although GA is not guaranteed to find optimal 
solutions, it has been successfully applied to problems 
in different application domains to find near-optimal 
solutions. 

The key elements required to apply GA to a prob-
lem are to seek a suitable coding for the solution in-
dividual (chromosome), to design a fitness function 
to evaluate solution candidates, and to determine 
a termination condition. Other parameters such as 
crossover rate, mutation rate, selection approach, and 
replacement approach need to be tuned to improve 
the performance of the algorithm. 

The proposed evolutionary approach determines 
a communication strategy for each information in-
stance, whether goal or observation, that could be ob-
tained by any agent during task execution. Hence, the 
evolved strategy will consist of a set of sub-strategies 
for the communicated information instances. 

5.1. Solution Representation
Each individual in GA population represents a solu-

tion candidate, and in our case, a goal-oriented com-
munication strategy. An individual is made of a vector 
of cells. We define a cell to be a 4-tuple vector: (ISi, RT, 
R, T). A cell represents a communication strategy for 
one information instance. It indicates that an informa-
tion instance ISi should be communicated to agents R 
of type RT only at time-steps that conform to T. The 
possible values that each token can take are listed in 
Table 2 and explained below. Individuals in a GA popu-
lation have different lengths because the number of 
cells in an individual may differ. This is due to the fact 
that an individual contains only cells corresponding to 
communication strategies for information instances 
that should be communicated. If an information in-
stance should not be communicated, it will not be in-
cluded in the evolved individual. This flexibility allows 
learning what information instances should be com-
municated, and hence keeps the communication cost 
minimum by evolving a strategy that communicates 
only information instances that contribute to the per-
formance goal. An example of GA individual, i.e. goal-
oriented communication strategy is shown in Figure 3. 

5.1.1 Recipients Strategies
The recipients type RT and recipients R in a cell de-

fine who an information instance IS should be sent to. 
The former defines, as the name indicates, the receiv-
ing agents type, which in our case takes two values; 
either carriers or fighters, and the later determines 
the number of recipients of type RT, which can be (1) 
Peer-to-Peer, (2) Broadcast, or (3) Subset.

Figure 3: An example of a GA individual (goal-oriented 
communication strategy)

The first strategy, Peer-to-Peer (P2P), allows send-
ing the information to only the closest agent of type 
RT to the sender, and Broadcast allows sending the 
information to all agents of type RT. However, Sub-
set allows sending the information to the closest m 
agents of type RT, where m is the number of recipi-
ents, and whose value is evolved by GA (see Figure 4). 
As explained in a previous section, it is important to 
determine whether an information instance should 
be communicated to both carriers and fighters, or 
only one type. If one information instance (ISi) is com-
municated to both types, there will be two cells for 
ISi in an individual, each corresponding to one type 
of recipients. So with this solution representation, GA 
will be able to evolve a communication strategy that 
allows communicating information instances to only 

Information Instance Possible Values Producer

Goal (IS1)
“ExploreRoom”, 
“PickUpGold”, 
“DropOffGold”

Carrier

Goal Room (IS2) [1-12] Carrier

Gold Location (IS3) (x,y), 140 > x,y > 0 Carrier

Wumpus Location 
(IS4)

(x,y), 140 > x,y > 0 Carrier

Empty Room (IS5) [2-12] (1 is drop-off room) Carrier

Goal (IS6)
“LookForWumpus”,
“KillWumpus” Fighter

Goal Room (IS7) [2-12] (1 is drop-off room) Fighter

Safe Room (IS8) [2-12] (1 is drop-off room) Fighter

Table 1. Information instances of the Wumpus World 
and their values

Token Values Notes

ISi [1, k] k: number of information 
instances in the domain.

RT [1, c] c: number of agents’ 
types in the domain.

R
P2P (1), 
Subset [2, (n-1)], 
Broadcast (n)

n: total number of agents.

T
EveryUpdate (1), 
EveryTimeInterval [2, i], 
InState [(i+1), (i+s)]

i: maximum time interval.
s: number of possible 
agents’ states.

Table 2. Possible values for each token in a cell/com-
munication strategy
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those agents that make use of it. Individuals that con-
tain two cells for the same information instance and 
same recipients’ type need to go through correction 
for duplication elimination, which will be explained in 
details in a later section.

5.1.2 Timing Strategies
The last token in a GA individual cell is T, which 

corresponds to time or when an information instance 
should be communicated. It determines the time-
steps at which an agent is allowed to communicate 
the information instance. In this work, we consider 
three strategies for the ‘when’ component. Agents are 
able to communicate an information instance (1) ev-
ery update, (2) every time interval, or (3) in a state. 
Graphical illustration of all timing strategies is shown 
in Figure 5, which we will refer to frequently in this 
section. The gray arrow represents the time line of 
one agent, and blue and red dots represent the time-
steps at which communication is allowed or not, re-
spectively. 

Before we explain these time strategies, we need 
to distinguish between two types of information in-
stances; (1) single-value and (2) multi-value informa-
tion instances. The single-value instances are those 
that, at any time-step, an agent is allowed to have only 
one value of them, while the multi-value, an agent can 
possess multiple values of the same information in-
stance. 

Examples of the single-value are ‘goal’ and ‘goal 
room’, since an agent can have only one goal and one 
goal room at any point of time. While “wumpus loca-
tion” and “gold location” are considered multi-value 
since an agent may have a list of all locations where it 
observed wumpuses or gold.

As shown in Figure 5, with the first timing strategy, 
every update, agents are allowed to communicate at 
all time-steps (all blue dots). Therefore, agents com-
municate value updates at the same time-step that 
they obtain them, and hence communicate every val-
ue update. If the information instance is single-value, 
an agent will communicate the information instance 
every time-step the agent updates it with a different 
value. If the information instance is multi-value, then 
whenever a new value is added to the values of the in-
formation instance, the agent will communicate only 
this new value. This strategy is idle for information 
instances that need immediate response or reaction 
from others or when lateness is not tolerated. 

With the second strategy, every time interval, 
agents have to wait a specific period of time before 
they are allowed to communicate a value of the in-
formation instance. For this time strategy, GA evolves 
how often agents are allowed to communicate. For 
instance, if T=3, agents are allowed to communicate 
this information every 3 time-steps. If the information 
instance is single-value, an agent will check every 3 
time-steps to see if the information instance’s value 
has been updated since the last time the agent com-

municated it. If an agent 
updates its value more than 
once since the last com-
munication only the last 
update will be communi-
cated, as shown in Figure 5, 
green value is not commu-
nicated but orange value is 
communicated. However, if 
the information instance is 
multi-value, an agent will 
check every 3 time-steps 
to see if it has obtained and 
added any new value to the 
values list. All new added 
values for this information 
instance will be communi-
cated, and hence both green 
and orange values are com-
municated in Figure 5. This 
strategy is more energy effi-
cient than the previous one 
because it allows agents to 
combine multiple values in 
one message. The possible 

Figure 4: Recipients strategies 

Figure 5: Timing strategies
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time interval values are determined by the system 
designer. In this work, we allow time intervals in the 
range [2, 10].

In the last time strategy, in a state, agents are allowed 
to communicate only values of an information instance 
that are obtained when the agent is in a specific state s, 
whose value is evolved by GA. For instance, if an agent 
is only allowed to communicate values obtained in 
state s2, i.e. in the 8th, 9th, and 10th time-steps, as shown 
in Figure 5, only the green value is communicated 
because it is obtained in the 10th time-step. This strategy 
allows agents to communicate only specific values of the 
information instance. For example, if carriers are allowed 
to communicate the ‘goal’ information instance only if 
they are in state Sc=(ϕ, 0), which means an agent is not 
holding gold, and location is disregarded, then agents 
will only communicate their goal values ‘ExploreRoom’ 
and ‘PickUpGold’, because agents will not have the goal 
‘DropOffGold’ if they hold no gold. This strategy is idle 
when agents are interested/can make use of only some 
values of the information instance. For instance, in work 
by [1], a robot performing “forage” or “graze” tasks is 
only interested to know if another robot is in “acquire” 
or “graze” state, respectively. Robots in these states have 
found useful work, and hence if other robots follow 
it, they will potentially find useful work too. For such 
information, it may be beneficial that every agent shares 
its state only when it is in “acquire” or “graze” state.

5.2. Fitness Function
Since the fitness function measures the overall 

performance of the system with respect to a specific goal, 
given a communication strategy, the fitness function 
will be the average performance of multiple runs of the 
system using the current strategy. The performance goal 
can vary according to the system’s designer preference. 
Examples are time to complete, energy cost, and number 
of moves. Technically, any performance metric that 
can be objectively measured can be considered as the 
fitness function. In addition, the fitness function can be 
the combination of two or more performance metrics, 
weighted to reflect the designer’s interest or priorities. 
For instance, if the designer is interested in minimizing 
both the number of messages sent and time to complete, 
then the fitness function is:

MsgTimeFit=(α*time)+(β*MsgSent) 

Where,
α: is weight for time metric.
β: is weight for number of messages metric, where 
β=1-α.

The values of the two parameters can be adjusted 
according to the importance of the associated metrics. 
For instance, if the two metrics are of equal priority, 
α can be assigned the value of 0.5. However, if time is 
more important, then more weight can be added to α 
such as (α, β)=(0.6, 0.4) or (α, β)=(0.7, 0.3) based on 
the designer’s goals.

5.3. Genetic Operators
5.3.1. Crossover

Since each solution candidate consists of multiple 

cells corresponding to sub-strategies for different in-
formation instances, a special crossover operator that 
swaps a subset of cells between two parents is needed. 
Allowing crossover point to only take place between 
cells and never divide a cell can enforce this (see Fig-
ure 6). This special crossover operator has been used 
previously in another work [21], where a cells-like 
GA individual representation has been used. This has 
the advantage of producing valid offsprings, as well 
as preserving GA’s property of maintaining and using 
successful cells, a.k.a., sub-solutions or sub-strategies, 
found in previous generations as a building block to 
discover new valid solutions. In this work, we use 
one-point crossover, where the crossover point is ran-
domly chosen for each parent. Figure 6 shows an ex-
ample of two parents going through crossover. 

5.3.2. Mutation
When two offsprings are produced after crossover, 

they go through mutation. While crossover helps GA 
exploit the good solutions found so far, mutation 
makes sure that GA explores new solutions. In this 
work, mutation rate is the probability that one ele-
ment of a cell will be changed. 

5.3.3. Selection
Selection in GA corresponds to the criteria to se-

lect two parents from the population to produce new 
offsprings. In this paper, roulette wheel selection is 
adopted as our selection method. It is a fitness pro-
portionate selection method, in which fitted individuals 
are more likely to be chosen to produce new offsprings, 
since they have more potential to produce highly fitted 
individuals. 

5.3.4. Replacement
When new offsprings are produced, a good replacement 

strategy must be used to choose which individuals in 
the population are eliminated to make spots for the 
new individuals. A trivial strategy could be eliminating 
the least fit individuals in the population. However, this 
strategy will quickly expel diversity out of the population. 

Figure 6: Crossover and correction operations
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In this work, we follow [17] in assuming that parents 
are the most similar individuals to the new offsprings; 
and therefore, the four individuals, two parents and two 
offsprings, compete for insertion in the population. The 
best two out of the four individuals are inserted in the 
population in order to form the new generation.

5.3.5. Correction
When subsets of cells are exchanged during crossover 

to form new offsprings, it is likely that the new offspring 
could contain duplicated cells. The duplication does 
not necessarily mean that the two cells are exactly the 
same, but two cells define communication strategies for 
the same information instance and to the same recipients 
type, i.e., the first two elements of the cells are identical, 
such as; (2,1,5,3) and (2,1,3,1). If this occurs after 
crossover and mutation, one of the duplicated cells will 
be chosen randomly and deleted (see Figure 6).

6. Preliminary Experiments
In this section, we report results of preliminary testing 

of the proposed approach with simple goals. We evolved 
communication strategies with respect to two different 
performance goals/fitness functions: (1) total energy 
consumed, and (2) time to complete. 

In both fitness functions, individuals with lower 
fitness value are better, i.e. considered to be fitted. 
Carriers consume energy when they move, pick up gold, 
drop off gold, and communicate. Similarly, fighters 
consume energy when they move, shoot wumpus, and 
communicate. Depending on the application domain, 
each action can consume different amount of energy. 
In this work, we seek unbiased learning in which no 
preference is made between action and communication. 
Therefore, all actions including communication consume 
the same amount of energy. The fitness function of first 
performance goal is the total energy consumed by all 
agents, i.e., carriers and fighters, to finish the task. The 
second fitness function is the total number of time-steps 
required to complete the task. We chose the time to 
complete fitness function because we want to compare 
the best time performance that GA converges to when no 
communication restriction applied, i.e. communication is 
free as fitness function includes only time, with what we 
believe to be the best time performance of the system 
with the maximum (or full) communication. In addition, 
we would like to compare the performance of the system 
with the two learned strategies with respect to different 
performance metrics, and most importantly time and 
energy, to understand how the two metrics are related.

 

A number of GA parameters were assigned values 
(Table 3), which were empirically found to be effec-
tive. Our test domain was set to run until the agents 
finish the task, i.e., kill wumpuses and collect all the 
gold present in the environment, or when 2000 time-
steps pass by, whichever occurs first. We observed 
that if the agents could not finish the task in 1400 
time-steps, then they would not be able to finish it, 
and hence 2000 was set up as a maximum time. 

Minimum amount of communication is required 
to enable agents to finish the task. Since the only way 
that fighters can kill wumpuses is to get informa-
tion from carriers about the wumpuses’ locations, 
a complete communication strategy has to include 
a communication strategy for the ‘Wumpus Location’ 
information instance with fighters as the recipients’ 
type. No matter how good a communication strategy 
is with respect to the performance goal, without en-
abling agents to finish the task, the system will run 
for a long time and the strategy will receive a bad fit-
ness score.

Therefore, in efforts to speed up GA convergence, 
we decided to provide carriers with a default com-
munication strategy for communicating the “Wum-
pus Location” information instance to fighters. Hence, 
during learning, if the communication strategy being 
evaluated does not include a sub-strategy for commu-
nicating the “Wumpus Location” to fighters (referred 
to incomplete strategies), carriers will use their de-
fault strategy to enforce communicating this informa-
tion instance, along with strategy being evaluated, in 
order to allow agents finish the task. We emphasize 
that strategies in GA population will not be altered or 
modified; rather their fitness score reflect their com-
plete counterpart. Consequently, GA will be able to 
make use of good but incomplete strategies. During 
learning, if the communication strategy being evalu-
ated is complete, that is it includes a sub-strategy 
for communicating the “Wumpus Location” to fight-
ers, carriers will use the provided strategy for this 
information instance, rather than the default one. 
After multiple experiments, we determined that the 
communication strategy for the ‘Wumpus Location’ 
information instance that has minimum number of 
messages sent is ‘communicate every update of the 
information instance to fighters as P2P’. Although 
the used when strategy, i.e. every update, sends each 
wumpus observation in a separate message, we found 
out that delaying communication will make more car-
riers exposed to the wumpuses, and hence more mes-
sages for the same wumpus will be sent to fighters.

Figure 7 shows the evolution of time-minimal and 
energy-minimal communication strategies for the 
wumpus world domain. The GA termination condi-
tion is when a predetermined number of generations, 
g=100, pass by without improvement in the average 
population fitness. Our intuition is that as long as GA 
is able to improve the average fitness of the popula-
tion by performing crossover and mutation, it is likely 
that the so-far-best solution will be improved in a fu-
ture generation. 

The top line in the Figure shows the fitness value 
of the worst individual in the population of each gen-

GA Parameter Value

Population Size 30

Selection method Roulette Wheel Selection

Crossover type Random one-point

Crossover rate 0.95

Mutation rate 0.015

Table 3. GA parameters
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eration. The lines in the middle and bottom show the 
average fitness value and the best fitness in the popu-
lation of each generation, respectively. 

A somewhat surprising observation in both figures 
is that although all communication strategies include 
the minimum required communication for finishing 
the task, agents were still unable to finish the task us-
ing some communication strategies. This can be seen 
in Figure 7.b as the worst individual has fitness value 
of 2000 in the first generation, which is the maximum 
time the simulation can run. After some investigation 
of such communication strategies, we learned that 
some combinations of communication sub-strategies 
could prevent agents from finishing the task. 

An example of such strategies is when a carrier 
broadcasts the location of an observed wumpus to 
other carriers and communicates it to fighters using 
any strategy, but concurrently fighters do not commu-
nicate the news about killed wumpus. Therefore, the 
room that contained the wumpus will never be vis-
ited by carriers since they all were warned about it 
but never told about being a safe room.

Table 4 shows the evolved communication strat-
egies. Each row corresponds to the communication 
strategy of one information instance. The column to 
the left lists all information instances that we consid-
er, and for each we show the learned timing (when) 
and recipients (who) strategies for each recipient type 
of carriers and fighters, if applicable. Columns to the 
right correspond to the learned energy-minimal and 
time-minimal communication strategies.

It is clear that the time-minimal strategy commu-
nicates more information than the energy-minimal 
strategy. This is due to the fact that the fitness func-
tion for evolving the time-minimal strategy considers 
only the number of time-steps that the agents need 
to complete the task. Therefore, strategies that enable 
agents to complete the task faster are always favored 

no matter how much they cost. The time-minimal 
strategy communicates all information instances that 
the energy-minimal strategy communicates but to 
more receivers, as can be seen in IS2 and IS4. 

The energy-minimal strategy communicates the 
carriers’ goal room as P2P every five time-steps, but 
does not communicate carriers’ goal at all. Since ini-
tially all carriers have the ‘ExploreRoom’ goal and 
each carrier knows that others have this goal in their 
mental model, not communicating any update of the 
goal will make each carrier believe that others always 
have ‘ExploreRoom’ goal. A carrier will not explore 
a room that is currently explored by another carrier, 
hence, with this communication strategy, a carrier 
will never explore a room that is currently explored 
or even visited by another carrier to pick up gold. 
It is surprising that GA has enforced such behavior 
that was not originally implemented in carriers. We 
believe that the reason for evolving such strategy is 
because the world has 12 rooms but only 10 pieces of 
gold; hence each room is more likely to have a small 
number of gold, usually one, or empty. 

Bearing this mind, along with the fact that ex-
ploring a room takes time and energy, it is probably 
time and energy efficient to avoid exploring a room 
that others are exploring or picking gold from. More 
experiments with larger number of gold will be con-
ducted in the future to observe if such behavior will 
still evolve.

As expected, the time-minimal communication 
strategy includes strategies for communicating some 
useless information instances to the recipients (shad-
ed cells) such as sending locations of gold to fighters. 
Communicating such information only increases the 
number of messages sent, without affecting the re-
cipients’ behavior or the overall performance with 
respect to other metrics. Existence of such informa-
tion instances in the evolved strategy is expected be-

Figure 7. Evolution of (a) Energy-Minimal and (b) Time-Minimal communication strategies
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Information (what)
Energy-Minimal Communication Strategy Time-Minimal Communication Strategy

Time (when) Recipients (who) Time (when) Recipients (who)

Carrier’s goal (IS1)  / / Every update Carriers (Subset of 2)

Carrier’s goal room (IS2) Every 5 TS Carriers (P2P) Every 10 TS Carriers (Subset of 3)

Gold location (IS3) / /

Agent is inside a room 
and holds gold. Carriers (Subset of 3)

Every 5 TS Fighters (Broadcast)

Wumpus location (IS4) Every update Fighters (P2P) Every 10 TS Fighters (Subset of 2)

Empty room (IS5) Agent holds no gold Carriers (broadcast)
Every 3 TS Carriers (broadcast)

Every 7 TS Fighters (P2P)

Fighter’s goal (IS6) / /

Every 5 TS Carriers (P2P)

In hallway Fighters (Subset of 2)

Fighter’s goal room (IS7) / /

Every 3 TS Carriers (Subset of 2)

Every 4 TS Fighters (Subset of 2)

Safe room (IS8) / / Every 7 TS Carriers (Subset of 4)

Table 4. Evolved goal-oriented communication strategies

cause it complies with the fitness function that only 
considers time. Therefore, two strategies that allow 
completing the task with minimum time will have the 
same fitness value, even if one can achieve this with 
less communication.

Figure 8 compares the performances of the multi-
agent system with the two evolved communication 
strategies; MinTime and MinEnergy, as well as the 
minimum and maximum communication strategies, 
MinComm and MaxComm, respectively. This should 
give the big picture and enable us to see how the 
evolved strategies compare to the two communication 
extremes. As mentioned previously, minimum com-
munication strategy allows only communicating every 
update of the wumpus location to fighters as P2P, which 
is the strategy with minimum number of messages 
that enables agents to complete the task, while maxi-
mum communication strategy broadcasts every up-
date of all information instances to both agents’ types. 
The following performance metrics are considered:
	Energy: Measures the total energy consumed 

by all agents to finish the task. This performance 
metric can be used if the user needs the task to be 
completed with minimum energy cost.

	Time: Measures the number of time-steps needed 
to complete the task. The task is determined 
completed when the last gold piece in the 
environment is picked up. This metric can be used 
if the user needs the task to be completed as fast 
as possible.

	Moves: Measures the number of moves of all 
agents until the task is complete. A move is defined 
as changing position. This metric can be used 

if the user needs the task to be completed with 
minimum travel cost/distance.

	Messages: Measures the number of messages 
exchanged until the task is completed. 

	 Energy Variance: Measures the variance of n 
numbers; where n is the number of agents in the 
world. Each number represents the amount of 
energy consumed by one agent. This performance 
metric can be used if the user needs the task to 
be completed with minimum energy variance. 
The lower the variance the closer the amount of 
energy consumed across all agents.

	Load Variance: Load is the amount of work each 
agent has completed. In Multi-agent systems, it 
is important to distribute the load evenly among 
agents with no overloaded/idle agents. This 
performance metric can be used if the user needs 
the task to be completed with maximum load 
balance/minimum load variance. The lower the 
variance, the more balanced the load is across the 
agents. 
o	 Carriers Load Variance: Measures the 

variance of n numbers; where n is the number 
of carriers in the domain. Each number 
represents the amount of gold picked up by 
one carrier.

o	 Fighters Load Variance: Measures the 
variance of m numbers, where m is the number 
of fighters in the domain. Each number 
represents the number of wumpuses killed by 
one fighter.

	Work Duplication: Work duplication occurs when 
two agents target the same goal at the same time.
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Figure 8. System’s performance with different 
communication strategies
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o	 Carrier: Number of times two or more carriers 
explored a room at the same time and number 
of times a carrier fails to pick up gold because 
someone else has already collected it.

o	 Fighters: Number of times two or more 
fighters target the same wumpus.

With maximum communication, agents have a full 
observation of the world, which allows them to coop-
erate maximally and make the best decisions. This be-
havior is reflected in minimum time, energy variance, 
and load variance, as shown in Figure 8, comparing to 
other strategies. However, the system did not perform 
the best with respect to energy, moves, and work du-
plication, which confirms the conclusion of previous 
studies that more communication does not guarantee 
better performance [19].

Energy-minimal communication strategy con-
sumes the minimum amount of energy, compared to 
other strategies, followed by time-minimal strategy, 
and then maximum communication strategy, while 
minimum communication strategy has the highest en-
ergy consumption. With only minimum communica-
tion, agents cooperate minimally, and hence each agent 
depends only on its own view of the world, which re-
sults in significantly longer time to complete the task, 
large number of moves, and high work duplication, en-
ergy variance, and load variance as can be seen in Fig-
ure 8. Comparing to other strategies, the system has the 
worst performance with the minimum communication 
strategy, with respect to all metrics except messages.

It is not surprising that the energy-minimal and 
time-minimal strategies have the same performance 
with respect to time (Figure 8.b). When GA evolves for 
minimum energy, it implicitly evolves for minimum 
time since more time always means more energy con-
sumption, but the opposite is not always true, thus 
the time-minimal strategy consumes more energy 
(Figure 8.a) due to more moves (Figure 8.c) and com-
munication (Figure 8.d).

Both time-minimal and energy-minimal strategies 
have the same performance with respect to time as 
the maximum communication strategy, which makes 
us believe that the GA was able to find the minimum 
time to complete the task, and hence optimal time-
minimal strategy. Moreover, the energy-minimal 
strategy has the second lowest number of messages 
after the minimum communication strategy. Yet, it 
improves the system performance significantly over 
minimum communication strategy with respect to all 
other metrics, including energy. In this case, GA was 
able to evolve a strategy that communicates only the 
right amount of important information that signifi-
cantly contributes to improving the performance goal.

However, the energy-minimal strategy does not 
offer the best performance with respect to energy 
variance and load variance, although it has the next 
best energy variance after maximum communication 
strategy. We believe that this is due to the fact that 
these two metrics conflicts with the goal (i.e. energy 
metric) since they require more messages to be com-
municated. For example, the energy-minimal strategy 
does not allow agents to communicate information 
about the state of the world (i.e. gold and safe rooms).

Agents with both maximum and time-minimal 
communication strategies share their goal and goal 
room, which helps carriers not to explore a room 
currently explored by another carrier, hence lower 
work duplication than minimum communication. 
However, agents with energy-minimal strategy 
share only their goal room, which makes agents not 
to explore a room currently explored or visited by 
another carrier to pick up gold. Therefore agents 
have the lowest work duplication amongst all strate-
gies.

 Furthermore, since the time-minimal strategy 
includes communicating more information about 
the state of the world (gold and safe rooms) over 
energy-minimal strategy. This results in the agents 
sharing the same belief about the state of the world, 
which provides all the agents the same opportunity 
to collect gold, as can be seen in the low load vari-
ance (almost as low as maximum communication).

7. Conclusion
We proposed a GA-based approach for learning 

an effective goal-oriented communication strategy in 
multi-agent systems. The usefulness of the proposed 
approach lies in the fact that it removes a significant 
designing load from system designers since they do 
not need prior knowledge about the connection be-
tween communicating an information instance and 
the system performance. The learned communica-
tion strategy is a comprehensive one that determines 
what, when, and to whom agents communicate. 

We ran preliminary experiments with two perfor-
mance goals; namely, total energy consumed and time 
to complete. The results obtained are quite promising 
and satisfactory, and indicate that the proposed ap-
proach has great potential. We observed that, on one 
hand, evolving an energy-minimal communication 
strategy implicitly minimizes the number of messages 
sent, time to complete, number of moves, and work 
duplication, because they all cost energy and any in-
crease in them increases total energy. On the other 
hand, evolving time-minimal strategy allows commu-
nicating more information, which enhances coopera-
tion that is reflected as low moves, load variance, and 
work duplication as the maximum communication 
strategy. 

There are numerous experiments that we are 
interested in running with variations of the perfor-
mance goal and task’s parameters. Next, we aim to 
examine our approach with other fitness functions 
and varying goals’ weights. Furthermore, there are 
multiple parameters that we wish to tune and study 
their effects on the evolved communication strategies, 
and hence the system’s performance. Most of these 
parameters are domain-dependent, as they meant to 
create variations of the same problem/task. Broadly 
speaking, we are interested in studying three types of 
parameters; action and communication costs, agents 
population, and task complexity.
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