Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME9, N°3 2015

REAL-TIME OPERATING SYSTEMS FOR ROBOTIC APPLICATIONS: A COMPARATIVE
SURVEY

Submitted: 28" February 2015; accepted: 31" March 2015

Piotr Kmiecik, Grzegorz Granosik

DOI: 10.14313/JAMRIS_3-2015/20

Abstract:

Modern robotics brings up a variety of new challenges.
Industrial-only times are gone forever. Nowadays, by per-
forming many diversified services, robots turned out to
be a part of our everyday life. There is no doubt that they
should be able to interact with this new miscellaneous en-
vironment seamlessly.

Along with the number of requirements, the impor-
tance of software increases. While gaining more auton-
omy, besides standard motion control, a wide range of
cognitive tasks has to be executed simultaneously. It is
quite obvious that complex systems with a lot of indepen-
dent modules and many functions to perform need flexi-
ble and reliable software solutions.

This article takes a Real-Time Operating System as an
answer to the problems of the new generation robotics.
By comparing selected features, it provides an evalua-
tion of the most popular commercial and non-commercial
solutions. Paper describes the key characteristics that
should be taken into consideration during the design pro-
cess and presents several examples of their successful
robotic applications, including our own choices for decen-
tralized controllers.

Keywords: real-time operating system, survey

1. Introduction

Operating System in general, can be described as
the computer software that manages hardware re-
sources and provides an environment for executing
user applications. It implements various services such
as multitasking, time management, interrupt service
routines or device drivers, usually combined with sup-
port for many different platforms.

Real-Time Operating System (RTOS) is the similar
software, but especially designed to meet the prede-
termined time constraints.

Depending on the consequences of exceeding the
deadline they are divided into the following three cat-
egories: soft, firm and hard. The first two can be iden-
tified as best-effort systems doing their jobs just as
fast as they can. Whereas for the last category, it is the
worst-case that always matters - the consequences of
not meeting the deadline would be fatal.

Robots, with the motion control (requiring strict
time regime), navigation, obstacle avoidance and
safety issues should be perceived as hard real-time
systems and only those Operating Systems that pro-
vide such functionality should be an object of further
examination.

2. Why the Operating System?

In case of simple, single-flow applications with lim-
ited functionality it is usually reasonable to put ev-
erything into one infinite control loop. When it comes
to more complex solutions, where a lot of events and
multiple flows are considered, it is often better to use
some kind of operating system.

There are several reasons why to choose a market-
available operating system over writing everything for
scratch:

1) Productivity: Ready to use concepts increase the
ease of development. Integrated development en-
vironments, debug, simulation and analysis tools
are usually provided, which results in shorten-
ing the development cycle. The developer does no
longer have to concentrate on low level issues and
can put all the efforts into achieving his goals.

2) Efficiency: Well thought design paradigms such
as semaphores, queues or mutexes are already
on board. Everything is encapsulated with well-
defined interfaces, hence no time is wasted on rein-
venting patterns or algorithms, on which some-
one else had probably spent much more time and
which would probably end up less efficient after all.

3) Reliability: Based on the maturity of the projects
and a substantial number of users, it can be as-
sumed that they offer high quality piece of soft-
ware. Many bugs and feature flaws should have al-
ready been discovered and fixed.

4) Commercial/community support: In case of any in-
tegration issues there is a huge probability that
there is someone who has already encountered
and resolved the same problem or just has enough
knowledge to provide some help.

5) Third-party packages: In most cases, compatible
software coming from other vendors is available
as well. Incorporating it into a project can signifi-
cantly influence the speed of the development pro-
cess.

Switching to an operating system can also have its
weaknesses. One of the most frequently mentioned is
losing full control over all parts of the code. However,
keeping in mind advantages such as maintainability, it
still should be better to use it for larger applications.

3. Off-the-shelf RTOS

Currently, a wide range of free and proprietary
products is available on the market. Systems like
FreeRTOS, Nucleus, 0S-9, QNX Neutriono, RTAI,

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME9, N°3 2015

RTEMS, TI-RTOS, VxWorks are well-known, but do not
exhaust the list of all available solutions. Each RTOS is
tweaked for slightly different purposes and provides
a variety of functionalities - from simple scheduling
capabilities, through popular communications stacks,
up to some advanced features such as Symmetric and
Asymmetric Multiprocessing Support.

4. Selection

When it comes to picking up the most suitable
RTOS an incredibly large number of factors comes into
play. Sometimes it can be truly overwhelming. The
system should satisfy all the functional, temporal, de-
pendability and budget requirements.

Without any doubt, the choice will always be based
on the type and the amount of tasks to handle. It will
also depend on the available hardware and system ar-
chitecture.

In the following sections we describe the funda-
mental characteristics of Real-Time Operating Sys-
tems, that are helpful when going through the
decision-making process. Table 1 provides a brief
overview of twelve popular RTOSes comparing their
most important features.

4.1. System Architecture

The vast majority of Real-Time Operating Systems
offer support for more than one platform architecture.
In general, ARM and x86 compatible processors are
the most popular solutions. Of course, there is also
many more like MIPS, PowerPC, SuperH or PIC. It is
important though, to select the RTOS that will be fully
compatible with the CPU type and family used for the
controller.

For various architectures, some useful functionali-
ties such as Floating Point Support or Memory Man-
agement Unit are also available. It is vital to decide
which of them could be suitable for the project and
check if the considered RTOS provides support for
them as well.

When dealing with advanced robotic systems,
there is a tendency to replace centralized controllers
with more distributed solutions. The system is no
longer running on a single computing unit that all
the sensors and actuators are connected to. Instead,
there’s a number of loosely coupled nodes connected
via real-time communication network. INtime Dis-
tributed RTOS is an example of a fully scalable solu-
tion. It provides fully pre-emptive scheduling along
with the ability to run multiple kernels on multi-core
CPUs. Some sort of support for distributed architec-
tures (e.g. transparent access to remote resources or
fault-tolerant clusters) can also be found in QNX Neu-
trino and many others.

4.2. Temporal Dependencies

Even though, some robots do not require hard
real-time system we refer our discussion to the most
demanding option. Therefore, time dependencies are
crucial and they should be estimated with the high-
est possible precision. The worst-case execution time
(WCET) and the worst-case administrative overhead

(WCAO) should be known a priori. It is also important
to have a proper documentation providing the number
of cycles per each system call.

Since the vast majority of systems use Rate Mono-
tonic Scheduling, the Rate Monotonic Analysis is the
most popular prediction method. For some RTOSes,
specialized profilers are available. RapiTime by Rapita
Systems Ltd. is an example of such tool that supports
VxWorks.

4.3. Multitasking

The ability to process multiple tasks is the most
fundamental feature of every operating system. Sev-
eral scheduling algorithms such as round-robin, first
in first out, shortest remaining time or the most pop-
ular fixed priority preemptive scheduling are com-
monly implemented. There are also several mecha-
nisms to realize inter-task communication that hap-
pens to be another integral part of multitasking. Some
examples are: events, message queues, semaphores,
mutexes etc. It is up to the designer to decide which
will fit the best.

It must be noted that most RTOSes are designed
to handle real-time as well as non-real-time tasks.
Not all scheduling algorithms will be appropriate for
real-time purposes. From the decision-making point
of view it will also be important to know the maximum
number of tasks and priority levels a system can han-
dle.

4.4. Resource Management

Resource management may be one of the most
beneficial features that comes with the operating sys-
tem. CPU architectures are usually well supported and
we can gain an easy access to extensions such as Mem-
ory Management Unit or Floating-point Unit. Device
drivers, communication stacks and file system support
are just other facilities. We can easily imagine our-
selves writing an 12C algorithm (even just for single
robotic project), but implementing our own TCP/IP
stack can cause a lot of trouble. Most of the products
will offer the same standard feature set. However, it
may happen that a less common component will de-
cide of our choice.

4.5. Dependability

Although, mainly robots working in hostile envi-
ronment (e.g., space, deep sea, radioactive) are seen
as the most reliable, but also those operating in more
friendly surroundings must follow control strictly. A
robot performing its household chores can cause a se-
rious damage or can even hurt somebody.

There are five basic features that define the qual-
ity of a fault-tolerant system [13]: reliability, main-
tainability, availability, safety and security. Most ven-
dors provide some mechanisms to enhance those fea-
tures. Some of them offer memory management, that
allows each process to run in its own protected space.
Nucleus can even restart a system when a critical
failure occurs. To provide security they incorporate
some cryptographic algorithms. In the age of cloud-
computing, where most robotic devices operate con-

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME9, N°3 2015

nected to a public network, this may be very signifi-
cant feature. Since dependability issues are vital, it is
always a good practice to check how we can benefit
from proper RTOS selection.

4.6. Development

More mature, particularly commercial products,
along with the compiler toolchains provide Integrated
Development Environments. In most cases, it is an
Eclipse plug-in, that implements some dedicated fea-
tures e.g., wizards, simulators, tracers or optimization
tools. Some of them like FreeRTOS can support various
IDEs depending on processor architecture.

Most RTOSes are written in C or C++ and those are
the commonly supported languages. However, some
systems are using ADA, Basic, Fortran, Pascal or even
Java.

Licensing model should also be taken into consid-
eration. Freely available solutions are great, but with
respect to engineering costs, sometimes it is better to
pay to get more appropriate set of tools. If the pro-
prietary solution is chosen, it is important to know
what updates, services and support are included. The
source model should also be clarified. Advanced de-
bugging may require source code accessibility.

At the end of this check-list we would like to aware
reader about the vast number of ready-to-use starter
kits that can be employed in development of robotic
applications. Board Support Package (BSP) is a set
of software coming with the RTOS or from third-
party vendors, that should bring a bootloader, device
drivers, root file system and even a toolchain to it. Re-
view of hardware possibilities is out of the scope of
this paper, but since most RTOSes offer more than 50
BSPs it shouldn’t be a problem to find proper solution.

5. Successful Stories

Curiosity rover has successfully landed on Mars
on August 5, 2012. It’s an autonomous robotic device
built by NASA, which serves as a science laboratory
and is supposed to provide data and analysis within
eight mission objectives.

For critical tasks, e.g. landing sequence (EDL), an
absolute determinism was necessary. Hence, VxWorks
RTOS has been used to provide this functionality. Sys-
tem also supports many other tasks: communication,
ground operations control or data collection.

Wind River’s VxWorks is also used as an operat-
ing system for ASIMO, a humanoid robot developed
by Honda. Robot is capable of performing very wide
range of advanced tasks e.g., running, moving objects,
objects, sounds and facial recognition.

The usability of Nucleus RTOS is presented on a
simple self-balancing robot - Stella. It is a two-wheel
device build upon market-available components, that
benefits from kernel pre-integrated technologies such
as power management and Z-Stack as well as high
quality development environment.

The MITRE Centaur Robot is an autonomous ve-
hicle used for leader-follower experiments. It utilizes
RTEMS operating system for its safety-critical tasks.

Mobile robotics is not the only area of RTOS ap-
plication. Nowadays, real-time operating systems are
also present in many industrial devices and can be
found in products made by companies, such as ABB or
KUKA.

6. RobREX

RobREX is a research project aiming to produce
a set of technological tools that will facilitate the
development of autonomous Robots for Rescue and
Exploration. One of its objectives, being realized by the
Lodz University Technology, is to provide impedance
control to manipulators and grippers. The results are
to be presented with two demonstrators: a multi-
purpose six-axis industrial robot (Kawasaki FSO03N)
and especially designed 4 DOF manipulator, which
combines both pneumatic and electric propulsion sys-
tems.

In the first case, a low-level control of the robot is
handled by dedicated Kawasaki D70 controller. Main
limitations of this solution are: closed architecture and
access only to the position regulation. In order to pro-
vide impedance control we have created and external
feedback employing a 6 DOF force/torque sensor and
a stationary PC as shown in Fig. 1. For the second ap-
plication, the control is distributed among four con-
trollers - one for each joint, as shown in Fig. 2.

Since the impedance control requires processing
a lot of external data as well as extremely short and
predictable response times, all controllers had to be
equipped with real-time operating system.

Regarding hardware, the external controller for
Kawasaki robot is based on x86, while joint controllers
for hybrid manipulator utilize ARM architecture. To
simplify the development process, a solution that fits
both was desired.

Moreover, both control systems were designed as
distributed architectures. Some sort of communica-
tion between the nodes had to be provided - prefer-
ably CAN or real-time Ethernet.

Considering the research-oriented nature of the
project, it was not certain in which direction the ex-
periments would go in the future. Thus, the demand
for open, easily expandable architecture has arisen.

Based on the above-mentioned prerequisites,
Xenomai real-time linux framework has been chosen
for the project. It has the common history with RTAI
and provides real-time capabilities along with all the
facilities a standard Linux system can offer.

The decision was also influenced by the availability
of know-how and BSPs for selected electronics, as well
as quite mature robotic middleware such as ROS and
OROCOS, that were supposed to speed up the overall
integration process.

7. Concluding Remarks

The examples above prove that real-time operat-
ing systems are applicable for robotic purposes when-
ever absolutely deterministic behaviour is required. It
doesn’t matter whether they will serve their duties in

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME9, N°3 2015

Kawasaki FS003N

% D70 Controller

JR3 FIT Sensor

PC Linux Mint+Xenomai

upDP —

—— —

—

Analog signals |

& Customized JR3 PCI
linux driver

JR3 PClI card

Fig. 1. Kawasaki experimental setup

Analog/Digital inputs: force/torque,
position

Analog/Digital outputs:
pressure,current, speed

CAN Bus

BeagleBone Black

Fig. 2. 4 DOF manipulator experimental setup

very complex or very simple devices. In both cases,
RTOS can significantly simplify the design.

However, due to heterogeneity of all robotic solu-
tions, which results in the lack of standards, no oper-
ating system has yet dominated the market. That is the
reason, why selection of an appropriate product is not
a trivial process. Regardless of that, undertaking such
an effort can pay off well in the future development.
We hope that provided check-list of requirements and
the table of available tools will be helpful in your re-
search.

N°3 2015

VOLUME 9,

Journal of Automation, Mobile Robotics & Intelligent Systems

t103enby ‘096! :S19YIQ ‘VXd dXI O] :P[BISX ‘[[B :98X [[-DYVISeLIN :DYVdS

‘VH-HS ‘P-HS ‘€-HS :HI2dns xxxp,1/xx05d/xx0d/xx0zd/xx0Td DI10D ‘XX8DdIN/XX98/XXG8/XXZ8/XX L /XX¥ LI ‘0L6
XX8 ‘XX78 XX¥/ XX/ XX9 ‘007G XXG XXO0V¥ XXG0¥ XX I9mod ‘STX YIX dIX XXLLIA XXGGIA XXFGIA XXT]IA
XX6PXL ‘TAS XXXTNV INY XXX6IWY XXXE3I0DSTY ‘U030 ‘$9/ZESAIN ®AS b K07 XXXXDF :SAIN ‘WYvSuong
TEXIN'T ‘STV X31I0) ‘6Y X910)) ‘GY X9110) ‘TTINYV ‘6INUV ‘LINYV WUV BILIP[0D XXE09 ‘09089 ‘0¥089 ‘0£089 389
‘0£PdSIN *XSEEINY ‘DYINL'SENEZ NIV

!S0¥ 11eMOd ‘ZEYAY YAV ‘EIN-X910D) WYV NG-ZE ZEWLS TTINGY ‘LINIY NV

‘6ADY VS ‘DYVdS ‘11 SOIN IXO ‘ZEOIIN 921eT ‘00E/8H UL ORI SI19Y30

“%/€/7/T-HS :H19dNG XX8 KX}/ KX/ ‘KX9 KXG KX :09MOd ‘000%Y ‘000£Y :SAIN ‘INYV @IYPI0D XXEGIDI XXXGIDIN 389
‘e :98X {[[e :DdI19MOd XSZVXd ‘ZTL68SD XxX/dH 21807 sn.Lir) Awes-x 1T sdd ‘WYySuons YV ‘e 89

‘e :98X ‘ATH#98DdI ‘11l DDINOIdMOd XXS8DdIN

‘1 DDIN0IdMOd XXEQ/XXZ8DAIN ‘4002S/002S/TZTSIAIN XXSGDdIN “XxxXd OI10D ‘LOSTIN ‘€COFTIN ‘00ETIN ‘046 ‘0SL
‘09% ‘0¥¥/S0%odd :1amod (LOZLWMVY ‘026 WMV ‘00208 ‘008Z/1S£2/S2v dXI ‘042/0SZ VXd ‘216S/S06S/02H2
dVINO ‘S-[A9STTINYV ‘S-[H9Z6WYUV ‘S-A[9STTINYY dIN LAWYV ‘STV X9MO0) ‘BY X0M0) ‘GY X910) WYV
‘98X ‘VH-HS ‘b-HS ‘€-HS :HI2dns DdIamod F9SJIN ‘000ESAIN :SAIN ‘[BISX ‘WHVSU0NS NPV 21YP[0) 389

‘'YX ‘ZEO0OIN 20138 Yo ‘80S6IN ‘KXEBIIN ‘XZTSIH ‘ZTSIOH N8SdSA ‘ZTIHBY ‘@ZB[JOII SI3YIQ ‘[[B :98X ‘0% ‘SO
119MOd ‘Z€D1d ‘¥2D1d D1d ‘XOEFASIN :0EFdSIN ‘ZEUAY AV ‘0LSSIL ‘DPIL XXFINY XT-dVINO XSEWSZA ‘() ¥ IN-X310)
‘EIN-X91I0)) ‘TIN-X9110D) ‘QN-X3110)) ‘FY-X31I0)) ‘6Y-X9110)) ‘Y-X9110) ‘TTINYY ‘6INUV ‘LINIVY XSTIV INUV 3I3P[0D 389
‘esudny S0 'VH/¥/dSA-£/VZ-HS HIdnS 14 D110 dd0%%/0¥H/s0¥odd

XX8/00SDdIN ‘009/2W00S/Z24005/005/00£2 ‘€09 =10M0d NHTIN N L ‘PG MG ‘(dwrd) g3i¥ ‘(dwd) M PI/9MbZ e
YE 2€ 'SAIN ‘LINVS XLZVXd XTT-dVINO ‘LTZ9LIN ‘€OVIIAN ‘S-ZLISTT.LT ‘SEXIN'T AV IN-X9310) “pIN-X9310)) ‘EN-X9310)
‘Y-X91I0) ‘S-H9¥6/IN.LA-LOY6/L0¥6/S-[4926/WLI-L0Z6/INALL/LOYL/LOZL/SAZLILIT/SAZLISTT/SA[9ETTIND
‘NENVSLY ‘WVYST6.LY ‘ALSANYY ‘S-[H9Z6WUV ‘TTINYY ‘6INIV ‘LINYY XEWV XSEENVY XTIV LZZ6 WYV D13P[0) 389
WodX ‘TIN ‘W/01d/Al/1I1/11 WnRusd ‘Wnnuad ‘98x9 XA ‘£/93] ‘on(g 910) ‘U0I3[3)

‘WOIY ‘UOTYIV ‘98%/98€ 198X ‘ENOH'T :04VdS ‘080%/0%0%d/0T0Td OI10D ‘T#98/0%98IdI ‘III DDINVI3MOd XXS8DdIN
‘I 221N01dMOd 0928/S¥28/07Z8DdIN ‘DDINDIMOd 098/ 1Z8IdIN ¥xXbLIdIN 1709/9%09/%09/49£09/2£09/£09DdIN
‘046 ‘0SL ‘0¥¥/S0%2dd :19mod DSIY 0064/000L/09ZSINY 2302 ‘$9/ZESIN :SAIN ‘00208 9[8SX XSEJVINO ‘INYV

[[e :98%

‘budz ‘058A ‘@10011], ‘HIodng

‘8LTd ‘IISOIN ‘@ZB[qOOIN ‘ZTSIH ‘S/8H ‘€SdV “d0M8L :SI3YI0 [[e :98X ‘NEIXU/NZ9/009/00Z/00TXY XY ‘X0EPdSW
‘0EYdSIN “ZINZE/XINZE/+2/81D1d ‘DIdSP :DId XUullAX ‘0% ‘SOF 1omod ‘€2N ZEYAV “MAV ‘000¥IWX ‘000%/000TINX
‘0LSSINLL DVINL ‘6/LULS ‘TEINLS ‘SUB[[S ‘ZUOISNIIBWS ‘UOISNJLRWS ‘0ZA/6/L/YNVS ‘SWVS ‘Zd X8¥INY ‘S D0Sd
‘00£%/0002/0081/004T/00TTDdT Y SaULy ‘ENA ‘TEWAT ‘D0S A dU0pPA) ‘T6LY NIV ‘15080 :1S08 IYPI0D)89

SWASAS JOATY PUIM
SJUSWINISU] SBX3],
I9)ua) 9oedsolay UBULIdY

uonerodio) Yyo
WdVId

SUI9)SAS 918MPOS XNO

d'T 91emoIo1

WNLIDT

sorydedrn) 10jusiy

SYIOMXNUAT

SAsyua],

"p17 s19auIduy awl], [eay

[z2Z] sxtomxA
[21] SO14/SAS
[9°s] soaoy

[1] SWa.LY
[¥c] VLA

[61‘gT] ourunaN
XNO
[0z91] 6-SO

[¥2] 111-so/o"

[6°L] snspnN

[9z‘sz 01] SOxud]
[8Z 2] paanqrusiq
QWL NI

[sT] SOLg®91d

suriojed pajtoddng

JOpUuap

aweN

uosipdwo) swaisAs bunpiadp awil-|pay ‘T ‘qol

N°3 2015

VOLUME 9,

Journal of Automation, Mobile Robotics & Intelligent Systems

satoydewsas
dINS dINY uolsnpoxa [enjnw ‘sananb agessoul 9G7Z paMuun urqol-punod ‘eandwasaid ZS4Sd XISod SYIOMXA
dINS dINY saxoqreul ‘saxajnu ‘saroydewas 99 9¢ paseq Luiorid ‘eandwaaad V/N SOId/SAS
urqo. puno.t
V/N saloydewsas ‘SjuaAd T+I€vZ paywaIun ‘paseq Arorad ‘eandwaaad V/N S0aoy
Arord adwts
‘s11j aul[peap isaijres ‘Ayiorid
JNSIUIULI}dP ‘Sulnpayds
(Auswdopea s[eudis ‘saioydewas I9AISS YIpIMpUE(JUBISUOD AR
-op Jopun) JINS dINV ‘Sexeinwt ‘sonanb agessowr ‘sjuasd 9G7 pajuwun ‘paseq Arorad ‘eandwaaad ‘NOY.LI “XISOd SINALY
s[eusis ‘Arowaw paJteys ‘satoydewas
dNS dNIN ‘soxainwu ‘sodessawl ‘saxoqreul Z/1EnvT Z/1evT paseq Aytrorid ‘oanduead dT°€00T XISOd VLY
s[eudis ‘saioydewas
‘saxaynuu ‘sadessaw ‘sa[qerrea d1pelods ‘uiqo-punod
ddL dNS dNd dNY uonipuod ‘suonerado drwoje 9SGz pajuwiun ‘014 ‘paseq Ayurorid ‘9andwesid XIS0d ouLinNaN XNO
Arorad yoea
se[npouw ejep UuIyIm Surnpayds urqoa-punod
JosialddAY SIY dINV ‘sadid ‘steudis ‘saloydewas ‘sjuasd G7ZGG9 pajuwiun ‘friorad-paxy ‘eandwaaad XISOd 6-SO
saloydewss ‘Soxa) ulqoJl-punod
V/N -nw ‘sananb aZessowr ‘sgepy jusad pajyiwun pajiwiun ‘paseq Lr1o1ad ‘eanduwaaad XISOd 11-so/n
ang ‘1dvdiN 8dswdi ‘sjeudis ‘saxajnu ‘saxoq[rewt
pue QpMIA Jaao 3ds ‘sadid pue sananb a[qelrlea pue paxly aJoonnut
-wdl yum JS dINY ‘sSep) jusas ‘saloydewsas Fununod vZ0T paMuiun ‘paseq Ar1orid ‘eandweaid NOY.LI “XISOd snapnN
Xd4dv
S9[qELIBA UORIPUOD ‘SaXajnul urqol-punold T-£69 JINIYV ‘¥S/€S
‘sananb adessaw ‘sadid ‘sreudis ‘s1a ‘wnyuenb Auiond ‘014 4Sd £00Z-1°S00T
dNS -Yoos “Aiowdw pateys ‘saroydewas 9G7 payuwun ‘aandwoaaud-uou ‘eandwaaad XISOd ‘19V SOXUAT
2102
JdzioT
PUSFOH dINY 12USgOH ‘searoydewas ‘saxoqrewt 9G7 :payuiIun urqqoJ-punod ‘aandwaaid V/N pawnqrisiq awiNI[
suonedynou
‘satoydewas aals.Indal ‘sananb ‘soxay urgqqod-punod
V/N -nw ‘saroydewas Sununod/Areulq — payiwun pajyiwarun (priqdy ‘eaneradood ‘vandussid V/N INOAMEERE
S[@A9] Speaty Jo
21001 UONBITUNWIWOD YSE) J91U] Aionig Jaquinpy urmpayos spIepuels [dV QweN

N°3 2015

VOLUME 9,

Journal of Automation, Mobile Robotics & Intelligent Systems

ZVdM ‘VdM
‘XVINIM 194195 g3 ‘dIOA dYYUA ddN/dIL “ISS ‘HSS dINNS ddd

qsn ‘Sd:9nay, Dd0/NV) SAN ‘SAYH ‘SASOP LVN ‘A'TIN 99SDVIN ‘9Ad1/¥AdI 99sd1 ‘dNI dINDI dVH X1°Z08 ‘DE so4 sak SYIOMXA
I{IM ‘Sop
-UoIBM LY VN ‘IdS ‘1dSAS D21 ‘01dD DVINA Sdred ddn/ddL ‘9ad1/¥adl dLLH dDOHA So4 sok SO14/SAS
IIM ‘@11 d0edS
dES ‘zgzsd ‘olper TN ‘pOuUIAYIg V/N V/N soh ou S0aoy
01ds ‘1dS SAY ‘SAN ‘SAWITUIN dINNS “ISS ‘Qd.LLHS :suo-ppe
YSIQ yseld NSId WYY ‘V.LV ‘s92149(¥20[d LV ‘ZSAA[‘SAWT 994 {d.LAL dan/dDL ‘Addd ‘9Ad1/#Ad] dDI dLd dDHA dL00d So4 ou SWH.LY
dsn ‘Ter19s ‘TadN0D ‘NVD s[euanof ‘sy1as1al ‘g1x9 PULY dAN/dDL ‘9adl/¥AdI dWDI d¥V seh Auo ygouw VAR
SALN ‘S4H 01 4an ZdM ‘VdM
994317 ‘gSN ‘IdS ‘Tel43S ‘01ds ‘Dds YON ‘KNO 9110[‘09960SI dIM dAN/dIL dLS HSS “ISS dINNS ‘SO0 ‘LVN ddd-TIN ‘NV'TA ournnaN
‘ANVN DZI ‘AdH “DWIR ‘NVD ‘Yyroolanig ‘SAN LVA ‘23XT ‘SAID 771 ‘9AdI/HAd] 99Sdl ‘Surieyy dI ‘I dYNAd dYV ‘T1'208 Sso4 sok XNO
VOA
‘gsn ‘Terds ‘ISDS ‘VILYS ‘siayutid ‘yi)
-INDd ‘@-1Dd/X-1Dd/1Dd ‘Ieleted ‘swapow
‘snqpojy ‘qsodIw V@il ‘begT HIHI SAdend], ‘wasAs
‘4d1 ‘LvDIeuydg ‘[Dd¥edwod ‘Ny) ‘oipne 3L OUBIRY ‘SAN LVd dAN/dD.L dINNS dITSD/dI'TS ddd ‘9Ad1/HAd] 99SdI WLV ‘TT'208 S°4 sok 6-SO
(suorsuaxa (suorsumxa (NN
S0/01 e1a) yioozenig ‘snqpoN ‘NvD ‘dsn SA/01 e1a) Lvid (uotsuaixa dI-dD.L/D7 e1a) dI/dDL SeA -S0/D7) sok 11-so/o"
dldL ®upRL dan/ddL ‘uonel
-ngyuodoIny ssaIppy ss9[eIels dINS d.LNS “1SS duvd ‘Aoddd
999317 ‘TIM ‘dSN ‘LIvN ddd NLIAd ‘T013u0) uonsaduo) 4oL, ousy maN ‘ANN “A19400s1q
‘Pued yonoL ‘IdS ‘OIAS DWW/AS “Isid IoqudaN ‘LVN ‘TN ‘9Adl/¥Aadl ‘Surpuung, d1 ‘A)1/29SdI 419
VY ©-10d/X-10d/10d “dON ‘ANVN ‘dD1 -wasseay pue Suipremiod dI dWOI ‘9AdINDI/dINDI d.Ld ‘Uondal
‘071 ‘uadONV) ‘NV)D ‘yse[deieq qrooianjg SAA LVAA ‘HAVS SNOPNN -9 ssauppy 21ed1idnq ‘9ASNA/SNA dDHA d.L00d dyV X1'208 s°4 sok snapnN
3004 dL4L dLdL PURL dan/ddL
dINS dLWS ‘eques DdY dId dYVY 00qI9N HIXd ddd
qsn ‘L4vn ‘vIvS JSIP ‘2AddSO ‘€AdIN MTVIN ‘LVN ‘9AdI/¥AdI ‘NdA/AM1/29sdl
‘ISOS ‘ALd ‘VIDINDd ‘Useld ‘ddl ‘9aId ‘WHd VY ‘SAN ©[id 3sed xuk] ‘mjodi/mydi qWOI dIWDI dLd d99 dOHA ‘p-dod duv soh sak SOXUuAT
VOA
‘dSN ‘SODYAS ‘VLVS YSid WYY LANII0Yd
‘SNEIJ0Yd ‘[01u0) UOnOW ‘Sngpopy
‘2€Z-SY SINITIIMO ‘10d ‘Sng1au] ‘VIVI SOLY
‘0/1 dI/39NIeyId LyDIayd Y9N9IA painqLisiq
-9 ‘PN[ou0) ‘uddoNy) ‘90ejIaul-SY Zelvd ddn/doL ‘9adl/#AdI dDHA 4d9 s°4 sak QWILLNI
IdS pue DZI LvN (uo-ppe e1a) 1vid (suo-ppe e1a) 4an/dOL ‘9ad1/¥AdI ‘SNA dDHA dYV So4 ou SO.LY31
SJIDALIP 921A3(SWAISAS a1 gunjiomiaN Ndd NN sweN

N°3 2015

VOLUME 9,

Journal of Automation, Mobile Robotics & Intelligent Systems

Joridwo)
++) [au] aepdwio) AND
SI9WO0ISNd 10} [tz] dqryouaq Jaary puipy Jenidwo) qeiq
d[qe[ieAe - paso[d Areyoridord (g ueyy alowr -MIOAN paseq-osdi[dg JI9AIY PUIAM ‘UIBYD[00} (IND eAB[‘440 ‘D ‘epy SYIOMXA
youagapo) A1s21nos
[z1] ‘aar orpmis Jesodwio) Jdi ut pspnput 9HH
uado Areyorrdord (g ueyy alow 9po) paseq-asdipyg ‘@I ul papnpul ‘Areysridoad 9) SOI4/SAS
uado asg [dA11aqdsey V/N ureyd[003 (N9 adenduel A[quassy ‘++) ‘D S0aoy
1dD [z] uid LVND
usdo N paylpow (S ueyy alow -nid LD y¥m asdipy ‘ggn ‘DDH [ureyd[oor NOH ++) ‘D ‘Bpy SINA.LY
uado TdD NND V/N V/N 00D :ureys[ool (N9 0] VAR
(1] sopuaw S'L
paleys Areyorrdord gGgT ueyratow o XNO paseqasdipg gao ‘S Ly DD : ureyd [003 (NDH (Aeotrewe() eaef ‘++) D ourLnnaN XNO
paso Areyorrdoxd V/N H4d1 3meH ++)/D enn [edsed ‘Y104 “1090D D DISvd 6-S0
o1pnisga oy
‘doyssjiop pappaquiy
[ez] doueurioy1ad-ysiH AND LIdY
d[qe[IeAe 32.anos Areyorrdord (g ueyy arow ‘YyI Joruremapo) Japidwio) XY ‘Ureyd[ool [INH) 11-so/H
youagapo)
[8] A1921nog sgpappaquiy
pasop Areyoridord oz ueyralow JI0JUSJN paseq-asdipdy aan ‘++3/2 NNO ++) D ‘epy snapnN
[t1] I9)4dS ‘1001 Aysou I¥L
pasopd Areyorrdord g ueyy alow -twn paseq-asdipd gdH ‘€9 NND :UIBYI[003 (1ND ++) D ‘epy SOXUAT
0102/8002/5002
pasop Areyaradoad V/N olpnis [ensiA qgq] ut papnpur ‘Areyaradoad ++ 9 paINqLISIJ SWIIN]
Areyaradoad uvi
“1d9 ‘uonips ssaidxy 0102
uado NH paylpow [¥1] ¥ ompmig [ensip ‘esdipg JDD ureysool NND J SO.LYa31q
[opowt 82.1n0g ENIERG | sdsg sAdl siapidwon sadengue| Sutwweadoad QwieN

Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 9,

N°3 2015

ACKNOWLEDGEMENTS

Research was partially supported by the National Cen-
tre for Research and Development under grant No.
PBS1/A3/8/2012.

AUTHORS

Piotr Kmiecik* - Lodz University of Technology,
Instutute of Automatic Control, Stefanowskiego
18/22, Lodz, 90-924, e-mail: kmc-85@02.pl, www:
www.robotyka.p.lodz.pl.

Grzegorz Granosik - Lodz University of Technol-
ogy, Instutute of Automatic Control, Stefanowskiego
18/22, Lodz, 90-924, e-mail: granosik@p.lodz.pl,
www: www.robotyka.p.lodz.pl.

*Corresponding author

REFERENCES
[1] O. Corporation. “Rtems website”, feb 2015.
[2] O.Corporation. “Rtems website”, feb 2015.
[3] DIAPM. “Rtai user manual”, feb 2015.
[4] DIAPM. “Rtai website”, feb 2015.
[5] DLR. “Rodos overview”, feb 2015.
[6] DLR. “Rodos website”, feb 2015.

[7] M. Embedded. “Nucleus rtos datasheet”, feb
2015.

[8] M. Graphics. “Bsp list for nucleus”, feb 2015.
[9] M. Graphics. “Nucleus website”, feb 2015.

[10] L. Inc. “Lynxos rtos the world’s most powerful,
open-standards real-time os”, feb 2014.

[11] L.Inc. “Bsp list for lynxos rtos”, feb 2015.
[12] T.Instruments. “Sys/bios homepage”, feb 2015.

[13] H.Kopetz, Real-time systems: design principles for
distributed embedded applications, Springer Sci-
ence & Business Media, 2011.

[14] R.T. E.Ltd. “Bsp list for freertos”, feb 2015.
[15] R.T.E.Ltd. “Freertos website”, feb 2015.

[16] Microware. “Os-9 website”, feb 2015.

[17] QNX. “Bsp list for qnx”, feb 2015.

[18] QNX. “Qnx developers guide”, feb 2015.

[19] QNX. “Qnx website”, feb 2015.

[20] Radisys. “Os-9 datasheet”, feb 2015.

[21] W.Riber. “Bsp list for vxworks”, feb 2015.

[22] W. River. “Vxworks homepage”, feb 2015.

[23] M.E. Software. “Bsp list for uc/os-iii", feb 2015.
[24] M.E. Software. “uc/os-iii website”, feb 2015.
[25] L.S.Technologies. “Lynx rtos website”, feb 2015.

[26] L.S. Technologies. “Lynxos-178 certifiable rtos
for safety-critical computing”, feb 2015.

[27] tenAsys. “Intime distributed rtos preliminary”,
feb 2015.

[28] tenAsys. “Intime distributed rtos website”, feb
2015.

	Introduction
	Why the Operating System?
	Off-the-shelf RTOS
	Selection
	System Architecture
	Temporal Dependencies
	Multitasking
	Resource Management
	Dependability
	Development

	Successful Stories
	RobREx
	Concluding Remarks

