
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 9, N° 2 2015

24

sion of Sudoku game there are about 6.671×1021 valid
grids and generally the problem has been proved by
Lawler and Rinnooy [4] to be an NP-complete prob-
lem. Sudoku problems can be of different levels of dif-
ficulty, from easy to very difficult; some can be solved
in a very short time, others not. A very difficult exam-
ple is shown in Fig. 2; results of tests conducted for
a Sudoku problem of such difficulty are discussed in
section 5.

 3 5

 1 8

2 5 4 1

3 6 4

 1 7 2

 8 7 4

7 8 4 5

 3

 9 6 2

Fig. 2.1. A very bad example of a Sudoku puzzle

3. Ant Method

Ants search for the best solution to encountered
problems. In order to find a such solution, ants com-
municate among themselves by means of a phero-
mone t. At the beginning of the General Ant Algo-
rithm, which is presented as algorithm 1, a maximal
quantity of pheromone is deposited t(i) = tmax on all el-
ements i Î M. The set M is the set of elements i which
can constitute a solution to the given optimisation
problem. In the case of the Sudoku problem, set M
is the set of all pairs: digit and position. The General
Ant Algorithm consists of two main loops: the first is
connected with the number of cycles, the second with
the number of ants. Within each repetition of the first
loop, all repetitions of the second loop have to be per-
formed. The best solution Sb found by all ants in one
cycle is compared to the best solution Sbest found by
ants in the previous cycle. In each cycle an evapora-
tion mechanism is also used: some of the pheromone
evaporates at the rate r from all elements i Î M. In each
cycle an additional quantity of pheromone dt is de-
posited on those elements i which constitute a solu-
tion Sb. When all loops have been done the best solu-
tion is obtained. At the beginning of each inner loop,
a starting point is prepared for each ant. From this
starting point each ant begins to create a solution to
the optimisation problem and then while in the loop

An Ant Algorithm for the Sudoku Problem

Krzysztof Schiff

Received: 10th December 2014; accepted 3rd February 2015

DOI: 10.14313/JAMRIS_2-2015/14

Abstract:
In this paper an ant algorithm for the Sudoku problem
is presented. This is the first ant algorithm enabling dis-
covery of an optimal solution to the Sudoku puzzle for
100% of investigated cases. The Sudoku is a one of many
combinatorial optimisation problems, as well as an NP-
complete problem, hence an ant algorithm which con-
structs an optimal solution as a meta-heuristic method is
important for this problem.

Keywords: swarm optimization, Sudoku puzzle

1. Introduction
The Sudoku puzzle is a popular Japanese logical

puzzle as well as a combinatorial optimisation
problem [4] and an NP-complete problem [15]. Since
the Sudoku is a very difficult problem, there are many
heuristic methods used to solve it; such heuristic
methods, based on human thinking, are described by
Pillay [13]. Genetic algorithms for the Sudoku game
were discussed by Mantere and Koljonen [7], as well
as by Gold [2]. Algorithms based on bee colonies
are presented by Pacurib et al. [12] and by Kaur
and Goyal [3]. A simulated annealing procedure was
shown by Lewis [5]. The ant algorithm was discussed
by Mullaney [11]. Particle swarm optimisation
algorithms are shown by McGerty [8], Moraglio et
al. [9] and Moraglio and Togelius [10]. The Sudoku
problem can be transformed into the SAT problem
([6], [14]). The ant algorithm mentioned by Mullaney
[11] enables discovery of an optimal solution for only
20% of all investigated problem instances. The ant
algorithm presented in this paper works for 100% of
all investigated cases.

2. Sudoku Problem
The Sudoku puzzle consists of a 9×9 matrix di-

vided into nine 3×3 sub-grids. Rules for completing
the Sudoku game are very simple: each 3×3 sub-grid
should contain all 9 digits; each row and every col-
umn in a 9×9 matrix should contain all 9 digits.

At the beginning of the game there are already
a number of digits given within the 9×9 matrix. An
example of an initial matrix is shown in Fig. 1. Empty
cells should be filled with digits. Rules for complet-
ing the Sudoku puzzle should be observed. In each
row and in each column, as well as each 3×3 sub-grid,
there should be no repeated digits. In the 9×9 ver-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 9, N° 2 2015

Articles 25

each ant selects the next element j with probability
p(j) and adds it to the solution set S. The probability
p(j) can be expressed by the formula

 (3.1)

where tj is the quantity of pheromone deposited on
element j, (1£j£max), max is the maximum number
of available elements from which the selection can
be made, nj is a heuristic, that is, the desirability of
including element j in the solution set S.

This selection can be made only from set A, i.e.
from those elements i which are available and which
can constitute, at this moment of algorithm use, a so-
lution to the optimisation problem. When any element
is added to the solution set S, not all elements from
set A still satisfy constraints; thus, from the previous
set A a new set A is created by including in this set
A only those elements from the previous set A which
satisfy constraints. In the case of the Sudoku problem,
when an element i (representing a pair: digit and po-
sition) is included in set S, then, because a digit has
been used, it cannot be used in any other cell in that
column or row of the 9×9 grid nor in any other cell of
the 3×3 sub-grid. Set A should be now updated so that
all digit-position pairs which can no longer constitute
a proper solution to the problem are removed from
set A.

4. Ant algorithm for the Sudoku Problem
All ants search for the optimal solution to the Su-

doku problem; they communicate among themselves
by means of a pheromone, which is stored in a 3-di-
mension table t[][][]. The pheromone has been placed
on a digit k in each cell of the 9×9 grid, which is rep-
resented by a table b[i][j] (line 1), so 3-dimensional
table t[i][j][k] is used in order to store the amount of
pheromone placed on each digit-position pair. If no
digit has been entered into the 9×9 grid the set M will
consist of all digit-position pairs; that is, it consists of
all cells from 3-dimensional table t[][][]. At the begin-
ning, if some digits have been entered into the 9×9

grid b[][], then set M does not consists of all cellules
from 3-dimensional table t[][][]. Whenever any digit-
position pair is selected, some cellules from 3-dimen-
sional table t[][][] are no longer available for selection
according to the rules. Set A now should be updated
(lines 11‒15). After the first selection of a digit-posi-
tion pair, set A is obtained from set M; after the follow-
ing selection is made, a new set A is obtained from the
previous set A. When a digit-position pair is selected,
the position (i,j) is filled with a digit k: b[i][j]=k (lines
22 or 29 or 39). Since each of the nine digits can be
entered in only one cell in each row and in each col-
umn, two matrices are used: one for rows and one for
columns, in order to prevent entry of the same digit
twice in the same row digit_row[][] or in the same col-
umn digit_column[][]. These two tables, digit_row[][]
and digit_column[][], are used to indicated these cells
of 3-dimensional table t[][][], which are included in
set A. By using these two 2-dimensional tables an up-
date of the set A is made after each selection of a digit-
position pair (lines 13,14). At the beginning of each
session of ant work there are some digits placed in the
9×9 grid, which is represented by matrix a[i][j]. The
matrix b[i][j] is a work matrix, which each ant fills with
digits during algorithm use (line 6). For each of the
digits k in each 3×3 sub-grid, the number of positions
in which this digit can be entered is calculated and
this number is stored in places[i][j][k] (lines 16‒19).
For each vacant in the 9×9 grid the number of digits

which can be entered there is cal-
culated and stored in digits[i][j]
(line 25‒27). Next, all dig-
its which can be entered in
only one position in grid a[i][j]
are entered into these positions
(lines 21‒23); also, positions
which can be filled with only one
digit are thus filled (lines 28‒30).
Of course, the same digit should
not be entered twice in the same
row, column or 3×3 sub-grid (line
20). Afterwards, if there are no
digits which can be entered only
in one position and there is no
position which can be filled with
only one digit, there are digits
which can be entered in more
than one position and there are
positions which can be filled with

more than one digit. In such a situation it is necessary
to make a selection of a pair: a digit and a position
(lines 31‒40). In order to make a such selection, the
heuristic pattern is proposed (line 31)

 n[i][j][k] = (10 – places [i][j][k])(10 – digits [i][j]). (4.1)

and the probability p[i][j][k] of selecting a digit k to-
gether with a cell b[i][j] has to be calculated (lines
32‒34). When all ants have finished their work, the
best solution from their work, which is stored under
the variable maxselected, is used in order to put an ad-
ditional quantity of pheromone dt = maxselected/81
on each connection between a digit and a cell in the

Algorithm 1. The General Ant Algorithm

for all i Î M: t(i) = tmax
for all cycles
 for all ants
 make a starting point
 while (a solution S is not completed) do
 check which elements are available to be selected, add them to set A
 select the next element from the set A with probability p(j)
 add a selected element to S
 save in the Sb the best solution which has been found by all ants in a
cycle
 if Sb is better than Sbest then save Sb as Sbest : Sbest = Sb
 for all i: t(i) = t(i) + r* t
 dt = f (Sb)
 if i Î Sb then t[i]= t(i) + dt
return Sbest

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 9, N° 2 2015

Articles26

3-dimensional matrix t[][][] (lines 43‒49). This ad-
ditional quantity of pheromone dt is deposited in
each cycle (line 49); in each cycle an evaporation
mechanism r is used (line 47). In some cases the so-
lution to the problem is not obtained by the ants; in
such cases the maximum number of digits entered
into the 9×9 grid is remembered under the variable
selected. Another variable can_select indicates that
the next selection of a digit-position pair is possible
and can be made. The ant algorithm succeeds when a
solution has been found or after all cycles have been
performed, with the best obtained solution stored in
gmb[][] (lines 50‒52). The pseudo-code of the ant al-
gorithm is presented as algorithm 2.

Figure 4.1. A pseudo-code of the elaborated ant algorithm

for all t[i][j][k]=1000
 gmaxselected=0
 for all cycles
 maxselected=0
 for all ants
 for all b[i][j]=a[i][j]
 selected=0
 can_select=1
 while(can_select)
 {
 for all a[i][j]≠0
 digit=a[i][j]
 digit_row[i][digit]=1
 digit_column[j][digit]=1
 selected=selected+1
 for all digits m
 for all positions in the 9×9 grid
 into how many positions in the 3×3 sub-grid can this digit can be entered
 positions[i][j][m]=number of positions
 when you can enter any digit into the 9×9 grid then can_select=0
 when you can enter a digit k in only one position then
 this digit has to be entered in this position: b[i][j]=k
 selected=selected+1
 this is repeated for all digits m
 for all positions in the 9×9 grid
 how many digits can be entered in one position
 digits[i][j]=number of digits
 when only one digit can be entered in one position
 then enter this digit in this position: b[i][j]=k
 selected=selected+1
 for all w[i][j][k]=t[i][j][k]* (10-places[i][j][k]))(10-digits[i][j])
 sumw=0;
 for all sumw = sumw + w[i][j][k]
 for all p[i][j][k] = w[i][j][k]/sumw
 p = rand()
 sump=0;
 for all sump=sump+p[i][j][k]
 if (sump>p)
 place a digit k in a position b[i][j]: b[i][j]=k
 selected=selected+1
 if (selected==81) can_select=0;
 }//end_while(can_select)
 if (selected>maxselected)
 maxselected=selected
 for all mb[i][j]=b[i][j]
 dt = maxselect/81
 for all t[i][j][k]= r * t[i][j][k]
 for all mb[i][j]!=0
 k=mb[i][j] and t[i][j][k]=t[i][j][k]+dt
 if (maxselect>gmaxselect)
 gmaxselect=select
 for all gmb[i][j]=mb[i][j]

5. Results of Experiments
The elaborated ant algorithm was tested. This ant

algorithm enabled discovery of a solution to the Su-
doku problem at the greatest level of difficulty only
for an evaporation rate ranging from 0.995 to 0.999;
outside this range, the algorithm does not arrive at
the optimal solution to the Sudoku puzzle. Tests were
conducted for a number of ants equal to 700. The
number of cycles needed to obtain an optimal solu-
tion to the Sudoku puzzle depends on the evaporation
rate. Results as average values from 20 measurements
are shown in Table 5.1 and in Fig. 5.1.

Other tests were conducted for cases in which the
number of ants varied and for a constant evaporation

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 9, N° 2 2015

Articles 27

rate, which was equal to 0.998. The number of cycles
needed to obtain an optimal solution to the Sudoku
problem decreased when the number of ants rose
and was rather stable when the number of ants was
greater than 700. Results, as average values from 20
measurements, are shown in Table 5.2 and in Fig. 5.2.

Table 5.1. Number of cycles in dependency of evapora-
tion rate

evaporation rate 0.999 0.998 0.997 0.996 0.995

number of cycles 241.7 188.8 215.8 219.5 203.8

Figure 5.1 Number of cycles in dependency of evapora-
tion rate

Table 5.2. Number of cycles in dependency of ant num-
bers

number of ants 900 800 700 600 500

number of cycles 201.4 174.3 188.8 248.1 358.9

Figure 5.2. Number of cycles in dependency of ant num-
bers

6. Conclusion

Problem cases were taken from www.websudoku.
com. Most people can solve a Sudoku puzzle in about
30 minutes. The ant algorithm presented in this paper
finds an optimal solution for many problem instanc-
es in milliseconds, but for some very difficult cases
it took about 20‒25 minutes on a computer with an
Intel Celeron CPU 1.7GHz and 256 MB RAM, though
this is still faster than people can do. This new elabo-
rated ant algorithm enabled discovery of an optimal
solution to all investigated cases, not only to some as
in [11]. The elaborated algorithm was not compared
to the Mullaney algorithm, since Mullaney provided
neither computer code nor pseudo-code for the algo-
rithms in his paper.

AUTHOR
Krzysztof Schiff – Department of Automatic Control
and Information Technology, Faculty of Electrical and
Computer Engineering, Cracow University of Technol-
ogy, ul. Warszawska 24, 31-155 Kraków, Poland.
E-mail: kschiff@pk.edu.pl.

REFERENCES

[1] Boryczko U., Juszczuk P., “Solving The Sudoku
With Differential evolution”, Zeszyty Naukowe
Politechniki Białostockiej. Informatyka, no. 9,
2012, 5–16.

[2] Gold M., Using Genetic Algorithms to come up
with Sudoku Puzzles, 2005.

[3] Kaur A., Goyal S.,Survey on the Applications
of Bee Colony Optimization Techniques.
International Journal on Computer Science and
Engineering (IJCSE), 3, 8, 2011, 3037-3046.

[4] Lawler E. and Rinnooy K.A. (1985) The
Traveling Salesman Problem: A guided Tour of
Combinatorial Optimization.

[5] Lewis R. (2009) Metaheuristics can solve Sudoku
puzzles. Journal of Heuristics,13, 387-401.

[6] Lynce I. and Ouaknine J. (2006) Sudoku as a SAT
Problem, Proceedings of the 9th International
Symposium on Artificial Intelligence
and Mathematics.

[7] Mantere T. and Koljonen J. (2007) Solving,
Rating and Generating Sudoku Puzzles with GA
IEEE Congress on Evolutionary Computation,
1382-1389.

[8] McGerty S. (2009) Solving Sudoku Puzzles with
Particle Swarm Optimization – Final Report,
Macquarie University.

[9] Moraglio A. et al. (2007) Geometrical Particle
Swarm Optimization – Research Article, Journal
of Artificial Evolution and Applications, 2008.

[10] Moraglio A. and Togelius J. (2009) Geometrical
differential evolution, GECCO 2009, Genetic and
Evolutionary Computation Conference, 1705-
1712.

[11] Mullaney D., Using Ant Systems to solve Sudoku
Problems, University College Dublin, 2009.

[12] Pacurib, J. A. et al. (2009) Solving Sudoku
Puzzles using Improved Artificial Bee Colony
Algorithm. In: Proc. 4th Int. Conf. Innovative
Computing, Information and Control, 885-888.

[13] Pillay N. (2012) Finding Solutions to Sudoku
Puzzles Using Human Intuitive Heuristics,
Research Article — SACJ, 49, 25-34.

[14] Weber T. (2005) A SAT-based Sudoku solver,
12th International Conference on Logic for
Programming, Artificial Intelligence and
Reasoning, LPAR 2005, 11-15.

[15] Yato T. (2003) Complexity and Completeness
of Finding Another Solution and Application to
Puzzles, IEICE – Transactions on Fundamentals
of Electronic Communications and Computer
Science, 5, 1052-1060.

