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sion of Sudoku game there are about 6.671×1021 valid 
grids and generally the problem has been proved by 
Lawler and Rinnooy [4] to be an NP-complete prob-
lem. Sudoku problems can be of different levels of dif-
ficulty, from easy to very difficult; some can be solved 
in a very short time, others not. A very difficult exam-
ple is shown in Fig. 2; results of tests conducted for 
a Sudoku problem of such difficulty are discussed in 
section 5.
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Fig. 2.1. A very bad example of a Sudoku puzzle
   
3. Ant Method

Ants search for the best solution to encountered 
problems. In order to find a such solution, ants com-
municate among themselves by means of a phero-
mone t. At the beginning of the General Ant Algo-
rithm, which is presented as algorithm 1, a maximal 
quantity of pheromone is deposited t(i) = tmax on all el-
ements i Î M. The set M is the set of elements i which 
can constitute a solution to the given optimisation 
problem. In the case of the Sudoku problem, set M 
is the set of all pairs: digit and position. The General 
Ant Algorithm consists of two main loops: the first is 
connected with the number of cycles, the second with 
the number of ants. Within each repetition of the first 
loop, all repetitions of the second loop have to be per-
formed. The best solution Sb found by all ants in one 
cycle is compared to the best solution Sbest found by 
ants in the previous cycle. In each cycle an evapora-
tion mechanism is also used: some of the pheromone 
evaporates at the rate r from all elements i Î M. In each 
cycle an additional quantity of pheromone dt is de-
posited on those elements i which constitute a solu-
tion Sb. When all loops have been done the best solu-
tion is obtained. At the beginning of each inner loop, 
a starting point is prepared for each ant. From this 
starting point each ant begins to create a solution to 
the optimisation problem and then while in the loop 
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1. Introduction
The Sudoku puzzle is a popular Japanese logical 

puzzle as well as a combinatorial optimisation 
problem [4] and an NP-complete problem [15]. Since 
the Sudoku is a very difficult problem, there are many 
heuristic methods used to solve it; such heuristic 
methods, based on human thinking, are described by 
Pillay [13]. Genetic algorithms for the Sudoku game 
were discussed by Mantere and Koljonen [7], as well 
as by Gold [2]. Algorithms based on bee colonies 
are presented by Pacurib et al. [12] and by Kaur 
and Goyal [3]. A simulated annealing procedure was 
shown by Lewis [5]. The ant algorithm was discussed 
by Mullaney [11]. Particle swarm optimisation 
algorithms are shown by McGerty [8], Moraglio et 
al. [9] and Moraglio and Togelius [10]. The Sudoku 
problem can be transformed into the SAT problem 
([6], [14]). The ant algorithm mentioned by Mullaney 
[11] enables discovery of an optimal solution for only 
20% of all investigated problem instances. The ant 
algorithm presented in this paper works for 100% of 
all investigated cases.

2. Sudoku Problem
The Sudoku puzzle consists of a 9×9 matrix di-

vided into nine 3×3 sub-grids. Rules for completing 
the Sudoku game are very simple: each 3×3 sub-grid 
should contain all 9 digits; each row and every col-
umn in a 9×9 matrix should contain all 9 digits. 

At the beginning of the game there are already 
a number of digits given within the 9×9 matrix. An 
example of an initial matrix is shown in Fig. 1. Empty 
cells should be filled with digits. Rules for complet-
ing the Sudoku puzzle should be observed. In each 
row and in each column, as well as each 3×3 sub-grid, 
there should be no repeated digits. In the 9×9 ver-
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each ant selects the next element j with probability 
p(j) and adds it to the solution set S. The probability 
p(j) can be expressed by the formula

  (3.1)

where tj is the quantity of pheromone deposited on 
element j, (1£j£max), max is the maximum number 
of available elements from which the selection can 
be made, nj is a heuristic, that is, the desirability of 
including element j in the solution set S.

This selection can be made only from set A, i.e. 
from those elements i which are available and which 
can constitute, at this moment of algorithm use, a so-
lution to the optimisation problem. When any element 
is added to the solution set S, not all elements from 
set A still satisfy constraints; thus, from the previous 
set A a new set A is created by including in this set 
A only those elements from the previous set A which 
satisfy constraints. In the case of the Sudoku problem, 
when an element i (representing a pair: digit and po-
sition) is included in set S, then, because a digit has 
been used, it cannot be used in any other cell in that 
column or row of the 9×9 grid nor in any other cell of 
the 3×3 sub-grid. Set A should be now updated so that 
all digit-position pairs which can no longer constitute 
a proper solution to the problem are removed from 
set A.

4. Ant algorithm for the Sudoku Problem
All ants search for the optimal solution to the Su-

doku problem; they communicate among themselves 
by means of a pheromone, which is stored in a 3-di-
mension table t[][][]. The pheromone has been placed 
on a digit k in each cell of the 9×9 grid, which is rep-
resented by a table b[i][j] (line 1), so 3-dimensional 
table t[i][j][k] is used in order to store the amount of 
pheromone placed on each digit-position pair. If no 
digit has been entered into the 9×9 grid the set M will 
consist of all digit-position pairs; that is, it consists of 
all cells from 3-dimensional table t[][][]. At the begin-
ning, if some digits have been entered into the 9×9 

grid b[][], then set M does not consists of all cellules 
from 3-dimensional table t[][][]. Whenever any digit-
position pair is selected, some cellules from 3-dimen-
sional table t[][][] are no longer available for selection 
according to the rules. Set A now should be updated 
(lines 11‒15). After the first selection of a digit-posi-
tion pair, set A is obtained from set M; after the follow-
ing selection is made, a new set A is obtained from the 
previous set A. When a digit-position pair is selected, 
the position (i,j) is filled with a digit k: b[i][j]=k (lines 
22 or 29 or 39). Since each of the nine digits can be 
entered in only one cell in each row and in each col-
umn, two matrices are used: one for rows and one for 
columns, in order to prevent entry of the same digit 
twice in the same row digit_row[][] or in the same col-
umn digit_column[][]. These two tables, digit_row[][] 
and digit_column[][], are used to indicated these cells 
of 3-dimensional table t[][][], which are included in 
set A. By using these two 2-dimensional tables an up-
date of the set A is made after each selection of a digit-
position pair (lines 13,14). At the beginning of each 
session of ant work there are some digits placed in the 
9×9 grid, which is represented by matrix a[i][j]. The 
matrix b[i][j] is a work matrix, which each ant fills with 
digits during algorithm use (line 6). For each of the 
digits k in each 3×3 sub-grid, the number of positions 
in which this digit can be entered is calculated and 
this number is stored in places[i][j][k] (lines 16‒19). 
For each vacant in the 9×9 grid the number of digits 

which can be entered there is cal-
culated and stored in digits[i][j] 
(line 25‒27). Next, all dig-
its which can be entered in 
only one position in grid a[i][j] 
are entered into these positions 
(lines 21‒23); also, positions 
which can be filled with only one 
digit are thus filled (lines 28‒30). 
Of course, the same digit should 
not be entered twice in the same 
row, column or 3×3 sub-grid (line 
20). Afterwards, if there are no 
digits which can be entered only 
in one position and there is no 
position which can be filled with 
only one digit, there are digits 
which can be entered in more 
than one position and there are 
positions which can be filled with 

more than one digit. In such a situation it is necessary 
to make a selection of a pair: a digit and a position 
(lines 31‒40). In order to make a such selection, the 
heuristic pattern is proposed (line 31) 

 n[i][j][k] = (10 – places [i][j][k])(10 – digits [i][j]). (4.1)

and the probability p[i][j][k] of selecting a digit k to-
gether with a cell b[i][j] has to be calculated (lines 
32‒34). When all ants have finished their work, the 
best solution from their work, which is stored under 
the variable maxselected, is used in order to put an ad-
ditional quantity of pheromone dt = maxselected/81 
on each connection between a digit and a cell in the 

Algorithm 1. The General Ant Algorithm

for all i Î M: t(i) = tmax
for all cycles
    for all ants
        make a starting point 
        while (a solution S is not completed) do
       check which elements are available to be selected, add them to set A
       select the next element from the set A with probability p(j)
       add a selected element to S          
   save in the Sb the best solution which has been found by all ants in a 
cycle
   if Sb is better than Sbest then save Sb as Sbest : Sbest = Sb  
   for all i:  t(i) = t(i) + r* t
   dt = f (Sb)
   if  i Î Sb then t[i]= t(i) + dt
return Sbest 
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3-dimensional matrix t[][][] (lines 43‒49). This ad-
ditional quantity of pheromone dt is deposited in 
each cycle (line 49); in each cycle an evaporation 
mechanism r is used (line 47). In some cases the so-
lution to the problem is not obtained by the ants; in 
such cases the maximum number of digits entered 
into the 9×9 grid is remembered under the variable 
selected. Another variable can_select indicates that 
the next selection of a digit-position pair is possible 
and can be made. The ant algorithm succeeds when a 
solution has been found or after all cycles have been 
performed, with the best obtained solution stored in 
gmb[][] (lines 50‒52). The pseudo-code of the ant al-
gorithm is presented as algorithm 2.

Figure 4.1. A pseudo-code of the elaborated ant algorithm

for all t[i][j][k]=1000 
 gmaxselected=0 
 for all cycles 
  maxselected=0 
  for all ants 
   for all b[i][j]=a[i][j] 
   selected=0 
   can_select=1 
   while(can_select) 
  { 
  for all a[i][j]≠0 
   digit=a[i][j] 
   digit_row[i][digit]=1 
   digit_column[j][digit]=1 
   selected=selected+1 
  for all digits m 
   for all positions in the 9×9 grid 
   into how many positions in the 3×3 sub-grid can this digit can be entered  
                   positions[i][j][m]=number of positions 
   when you can enter any digit into the 9×9 grid then can_select=0 
   when you can enter a digit k in only one position then  
    this digit has to be entered in this position: b[i][j]=k 
    selected=selected+1 
    this is repeated for all digits m 
  for all positions in the 9×9 grid 
   how many digits can be entered in one position 
   digits[i][j]=number of digits 
   when only one digit can be entered in one position  
                                                then enter this digit in this position: b[i][j]=k 
                                                selected=selected+1  
  for all w[i][j][k]=t[i][j][k]* (10-places[i][j][k]))(10-digits[i][j]) 
  sumw=0; 
  for all sumw = sumw + w[i][j][k] 
  for all p[i][j][k] = w[i][j][k]/sumw 
  p = rand() 
  sump=0; 
  for all sump=sump+p[i][j][k] 
     if (sump>p)   
                                                               place a digit k in a position b[i][j]: b[i][j]=k 
                                                               selected=selected+1 
  if (selected==81) can_select=0; 
  }//end_while(can_select) 
    if (selected>maxselected) 
   maxselected=selected 
   for all mb[i][j]=b[i][j] 
 dt = maxselect/81 
 for all t[i][j][k]= r * t[i][j][k] 
 for all mb[i][j]!=0  
                       k=mb[i][j] and t[i][j][k]=t[i][j][k]+dt 
 if (maxselect>gmaxselect) 
  gmaxselect=select 
  for all gmb[i][j]=mb[i][j] 

5. Results of Experiments
The elaborated ant algorithm was tested. This ant 

algorithm enabled discovery of a solution to the Su-
doku problem at the greatest level of difficulty only 
for an evaporation rate ranging from 0.995 to 0.999; 
outside this range, the algorithm does not arrive at 
the optimal solution to the Sudoku puzzle. Tests were 
conducted for a number of ants equal to 700. The 
number of cycles needed to obtain an optimal solu-
tion to the Sudoku puzzle depends on the evaporation 
rate. Results as average values from 20 measurements 
are shown in Table 5.1 and in Fig. 5.1.

Other tests were conducted for cases in which the 
number of ants varied and for a constant evaporation 
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rate, which was equal to 0.998. The number of cycles 
needed to obtain an optimal solution to the Sudoku 
problem decreased when the number of ants rose 
and was rather stable when the number of ants was 
greater than 700. Results, as average values from 20 
measurements, are shown in Table 5.2 and in Fig. 5.2. 
  
Table 5.1. Number of cycles in dependency of evapora-
tion rate

evaporation rate 0.999 0.998 0.997 0.996 0.995

number of cycles 241.7 188.8 215.8 219.5 203.8

Figure 5.1 Number of cycles in dependency of evapora-
tion rate

Table 5.2. Number of cycles in dependency of ant num-
bers

number of ants 900 800 700 600 500

number of cycles 201.4 174.3 188.8 248.1 358.9

Figure 5.2. Number of cycles in dependency of ant num-
bers

6. Conclusion

Problem cases were taken from www.websudoku.
com. Most people can solve a Sudoku puzzle in about 
30 minutes. The ant algorithm presented in this paper 
finds an optimal solution for many problem instanc-
es in milliseconds, but for some very difficult cases 
it took about 20‒25 minutes on a computer with an 
Intel Celeron CPU 1.7GHz and 256 MB RAM, though 
this is still faster than people can do. This new elabo-
rated ant algorithm enabled discovery of an optimal 
solution to all investigated cases, not only to some as 
in [11]. The elaborated algorithm was not compared 
to the Mullaney algorithm, since Mullaney provided 
neither computer code nor pseudo-code for the algo-
rithms in his paper.
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