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Abstract:
The paper considers robustness aspects of adap ve con-
trol in applica on to sampled-data systems with pole-
placement controller subject to plant-model mismatch,
in the sense of mistuning to model parameters with re-
spect to their „true” values. The paper extends the re-
sults presented in author’s previouswork respec ng com-
parison of sampled-data and discrete- me control sys-
tems to experimental results obtained from the control
system of a servo drive. Firstly, the adap ve sampled-
data controller is introduced and is applied by means of
simula on, secondly, it is implemented in real- me con-
trol system to extend robust performance issues to real-
world control systems. Finally, the regions of robust per-
formance are shown on parameter surface, i.e. visualisa-
on of parameters� span forwhich there is no severe per-

formance degrada on in comparison to the best plant-
model matching, as a func on of sampling interval.

Keywords: adap ve control, robustness, sampled-data
systems, servo

1. Introduc on
Full knowledge of the plants allows one to de-

sign the control systems with parameters tuned us-
ing such laws as of Ziegler-Nichols for PID controllers.
The proper tuning enables the control system to op-
erate with high idelity, good performance. Neverthe-
less, when the plant is not fully known, i.e. when there
is amismatch between „true” plant parameters and its
model, or when plant parameters change in time, the
tuning to ixed parameters becomes ambiguous, giv-
ing rise the need of adaptive control, see e.g. [3].

In the situation, when the identi ication procedure
goes wrong, improper parameter estimates on the ba-
sis of certainty equivalence rule cause the controller
to mistune, and the performance of the system deteri-
orates. One can address this situation from robust per-
formance of adaptive control viewpoint, by checking,
having chosen certain acceptable performance level,
what parameter changes do not cause signi icant de-
terioration.

The paper addresses robustness issues for control
of LTI continuous-time plant with unknown structure
and parameters and sampled-data controller with
simulation results shown for the mathematical model
of the plant, as well as in the case of servo drive con-
trol.

Firstly, the plant description method is explained.
Secondly, the control and identi ication issues in

sampled-data systems are introduced. Furthermore,
a case study for pole-placement control is given and,
inally, the results concerning robustness issues in
adaptive control of real-world control system are de-
scribed.

For a discussion concerning new results in robust-
ness of adaptive control see, e.g. [2].

2. Pole-placement Control
In order to illustrate the issues presented in the

paper, the pole-placement control has been chosen,
which aims at designing a controller to place the poles
of a closed-loop system in prescribed locations for a
discretised model (with discrete-time controller and
discretised plant of known-structure) control system.
Such a controller can be written in RST form, and con-
trol signal [3]

ut =
(
1− R̂(q−1)

)
ut − Ŝ(q−1)yt + T̂ (q−1)rt , (1)

where rt is the reference signal to be tracked by yt.
Having omitted estimate symbols, controller poly-

nomials:

R(q−1) = 1 + r1q
−1 + · · ·+ rnB+d−1q

−nB−d+1 ,(2)
S(q−1) = s0 + s1q

−1 + · · ·+ snA−1q
−nA+1 . (3)

On the basis of the latter polynomials and A(q−1),
B(q−1)describing themodel of theplant, knownvalue
of d and characteristic polynomial

AM (q−1) = 1+ aM,1q
−1+ · · · + aM,nAM

q−nAM (4)

of the closed-loop system one can introduce a Dio-
phantine equation

A(q−1)R(q−1)+q−dB(q−1)S(q−1) = AM (q−1) , (5)

with
T (q−1) =

AM (1)

B(1)
. (6)

By solving the Diophantine equation, one can ob-
tain the controller polynomials, which, in turn, enable
one to compute current value of the control signal. The
discrete-time model of the closed-loop system

yt
rt

=
q−dB(q−1)T (q−1)

AM (q−1)
. (7)
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3. Experimental Setup
The experimental setup comprises DC motor

(voltage 12V, power 77W, torque 250mNm, speed
3 000 rpm, current 4.7A), tachogenerator and iner-
tia load (brass cylinder, weight 2 kg, diameter 66mm,
length 68mm), as shown in the Figure 1. The DC mo-
tor drives the inertia load and tachogenerator that is
connected directly to the DC motor, with voltage pro-
portional to the angular velocity y(t) = θ̇(t).

The command input to the plant comes from input-
output card used by Matlab’s Real-Time Workshop
and Simulink in order to work in real-time. C-mex S-
functions have been used to implement the controller
actions and estimation scheme that has been down-
loaded to the FPGA board. The control voltage ea(t) is
limited to ±12V, and is presented in the paper in di-
mensionless form as |u(t)| ≤ 1.

The considered servo has nonlinear static charac-
teristic that has been compensatedby its inverse, lead-
ing to linear system equations (in the case of no satu-
ration), as derived below.

ia(t) LRa

ea(t)

T (t) θ(t)

J, cem(t)

Fig. 1. Diagram of experimental setup

The armature loop equation (Fig. 1) is

ea(t) = Raia(t) + L
dia(t)

dt
+ em(t) . (8)

Having assumed constant lux and electromagnetic
force proportional to the angular velocity,

em(t) = keθ̇(t) , (9)
and having performed the Laplace transform, the irst
equation can be put in a form

Ea(s) = RaIa(s) + sLIa(s) + skeΘ(s) =

= (Ra + sL)Ia(s) + kesΘ(s) . (10)
The DC motor with constant lux has the elec-

tromechanical torque proportional to the armature
current

T (t) = kT ia(t) . (11)
The sought linear model can be derived assuming

that static and kinetic frictions and saturation phe-
nomena are neglected – using d’Alembert rule we get

T (t) = Jθ̈(t) + cθ̇(t) . (12)
Combining the Laplace transform of the last two

equations the following holds
kT Ia(s) = (sJ + c)sΘ(s) . (13)

Using the equation includingEa(s), Ia(s) andΘ(s)

kTEa(s) = (sL+Ra)(sJ + c)sΘ(s) + kekT sΘ(s) =

= s ((sL+Ra)(sJ + c) + kekT )Θ(s) (14)

one can write the following expression:

Θ(s)

Ea(s)
=

kT
s ((sL+Ra)(sJ + c) + kekT )

=

kT
s (s2LJ + s(Lc+RaJ) +Rac+ kekT )

. (15)

Since we are interested in angular, not position,
control and armature inductance can be neglected, the
inal form of the „true” continuous-time model trans-
fer function becomes

G(s) =
kT

RaJs+Rac+ kekT
=

k

1 + sT
(16)

for

k =
kT

Rac+ kekT
, T =

RaJ

Rac+ kekT
. (17)

In the real system, one can approximate the above pa-
rameters based on, e.g., step response of a plant, as
k = 169.2, T = 1.066 s.

Having performed step-invariant transform

G(z) = (1− z−1)Z

{
L −1

{
G(s)

s

}∣∣∣∣
t:=tTS

}
, (18)

and substituting operator z with q, we can obtain
discrete-time CARMA transfer function where q is a
shift operator in time domain. In the considered case,

G(s) =
k

1 + sT
. (19)

the „true” discrete-time model can be derived accord-
ing to the formulae:

G(z) =
z−1k

(
1− exp−TS

T

)
1− z−1 exp−TS

T

, (20)

A(q−1) = 1− q−1 exp−
TS
T , (21)

B(q−1) = k
(
1− exp−

TS
T

)
, (22)

d = 1 . (23)

4. Structural Iden fica on Experiment
Because the information in sampled-data systems

is passed on in discrete-time instants only, the sam-
pling frequency is crucial for the performance of con-
trol system. As a convention, xt denotes a signal sam-
ple at time t (discrete-time value), and x(t) is a signal
value at time t. Letxt−1 denote aprevious sample from
instant t shifted by backwards TS .
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The considered sampled-data adaptive control
system can work well only when the model is correct.
Let us consider the AIC criterion [5], which for the in-
troduced CARMA model with nA = nB + 1 = n and
d = 1 is described as

AIC(n) = log σ2
n +

4n

N
. (24)

It has to be stressed that model structures no
other than CARMA have been taken into consider-
ation, based on the initial knowledge from linear
continuous-time plant model.

The symbolN in (24) is a number of collected sam-
ples, σ2

n is the prediction error variance computed for
parameter estimates θ̂N,n of n-th order model, i.e.

σ2
n =

N∑
t=n+1

ϵ2t , (25)

where:

ϵt = yt − φT
t,n

θ̂N,n , (26)
φ

t,n
= [−yt−1, . . . ,−yt−n, ut−1, . . . , ut−n]

T .(27)

The closed-loop system has been excited by a
pseudo-random signal with a unit amplitude, appro-
priate samples have been collected every TS = 0.1 s,
and the same initial values of estimates have been cho-
sen in the experiment equal to0.01 andN = 1000. The
presented results aremeanvalues from three identical
experiments.

Table 1 illustrates values of AIC criterion for
nmax = 5. The numbers in bold corresponds to esti-
mates of orders for models in CARMA structure that
minimize AIC criterion.

Tab. 1. AIC values

n 1 2 3 4 5
σ2
n 0.86 0.94 0.96 0.98 1.06

AIC(n) −0.12 −0.03 −0.01 0.03 0.08

The „true” order of a discrete-time model of the
plant can be described in the sense of a minimal value
ofAIC criterionbya irst-ordermodel, as obtainedpre-
viously, on the basis of theoretical derivations.

5. Experimental Results
5.1. Discrete- me Model of the Plant (Servo Drive)

If the block compensating the static nonlinearity of
the plant is attached in series between the controller
and the servo drive, then model of the „new” plant
(servo drive with inertia module), based on an open-
loop identi ication experiment, can be approximated
as irst-order transfer function given for TS = 0.1 s as

yt
ut

=
15.75q−1

1− 0.907q−1
, (28)

from which:

A(q−1) = 1− 0.907q−1 , B(q−1) = 15.75 (29)

and d = 1.
In the previousworks [1] the performance of adap-

tive sampled-data control has been investigated to-
gether with evaluation of the impact of sampling fre-
quency on the control performance. Since a dominat-
ing time constant of the plant is approx. 1 s, sampling
with at least 10 samples per dominating time constant
is a reasonable choice.

As it has been reported in [1], changing the sam-
pling frequency to two times faster then 10Hz im-
proves the area of robust stability (as well as robust
performance, in the sense of the span of estimates of k
and T for which the sampled-data system has perfor-
mance no worse than prescribed level) to a very mi-
nor percent. The conclusion has been that there is no
point in sampling faster, as with Shannon-Kotielnikov
frequency. This paper aims to check this for real-world
system related to the previously performed simula-
tions.

By combining parameter estimation algorithm
with pole-placement controller one can obtain
sampled-data-time adaptive control system as in
Figure 2.

In order to illustrate the performance of the sys-
tem the continuous-timeplant has been chosen as irs-
order inertia with gain and time constant as previ-
ously reported for the purpose of simulation, and in
the case of experiment, the servo drive with inertia
load has been used, together with static nonlinearity
compensator. It has been assumed, that controller has
the knowledge of the degrees of discrete-time model
polynomials, i.e. nA = 1, nB = 0 and d = 1. For such
as model, the controller has been chosen, with the
closed-loop dynamics as 0.1054

s+0.1054 (de ining AM (q−1)
for different sampling frequencies), TS = 0.1 s, ρ =
100, θ̂ 0 = 0.5θ, λ = 1.

As it can be seen in Figures 3a and b, having ob-
tained good estimates, the control signals generated
by the adaptive control law assure tracking the ref-
erence signal with chosen dynamics in both systems.
The pro iles of control signals are alike due to simi-
lar adaptation behaviour, as well as comparable track-
ing properties. The control performance of real-world
system can be estimated by means of simulation of
a sampled-data control system with continuous-time
plant model. Nevertheless, it has to be checked if the
information obtained from simulation is trustworthy
and how conservative this approximation is, what is
the main aim of the paper.

6. Robustness of Adap ve Sampled-data Con-
trol Against Model Uncertainty
Below the results of simulations of robustness

analysis of a fully discrete-time/sampled-data (sim-
ulated/experimental) systems are presented, with
pole-placement controller, against parametric uncer-
tainty of plant model. The simulations have been con-
ducted for different sample times TS = 0.05 s, TS =
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0.1 s, TS = 0.2 s and continuous-time plant

G(s) =
k

1 + sT
(30)

or a servo drive attached to the real-time controller.
In order to check the robust performance of adaptive
control, it has been assumed that parameters of the
above plant are accessible as k̂ = δkk, T̂ = δTT only
and available as the estimates â1, b̂0 of the discrete-
time model, according to the formula:

G(z) =
z−1k̂

(
1− exp−

TS
T̂

)
1− z−1 exp−

TS
T̂

, (31)

Â(q−1) = 1− q−1 exp−
TS
T̂ , (32)

B̂(q−1) = k̂
(
1− exp−

TS
T̂

)
, (33)

d = 1 , (34)

what should model imperfect action of identi ication
algorithm.

For arbitrary chosen values δk i δT close to unity,
the true plant parameters k i T are accessible as ap-
proximate values, thus model is not fully matched to
the plant, what enables one to evaluate the impact of
δk and δT on the requirement of keeping high (close to
nominal) control performance in both simulated and
experimental environments.

In order to evaluate the span of δk and δT that
assures robust performance of the control system, a
performance index is introduced, computed for a cho-
sen simulation horizon (t1, t2) in which behaviour of
the closed-loop system is repeatable for periodic ref-
erence signal

J =
TS

t2 − t1 + 1

t2∑
t=t1

(rM,t − yt)
2 . (35)

The index J is computed as a sum-of-the-squares of
deviations of output signal from reference model re-
sponse to the same reference that is used to ind
AM (q−1).

For a span of δk and δT one can obtain perfor-
mance index surface as a function of (δk, δT ). By cut-
ting this plot at a certain level one stipulates an accept-
able tracking performance threshold, and lower val-
ues of J correspond to robust performance of the con-
trol system. In order to obtain comparable data, the
threshold level has been chosen as squared value of
acceptable steady-state tracking error for a square ref-
erence signal (i.e., 10% of reference amplitude). In the
case of experiment, the maximum speed was 170 rad

s ,
what gave threshold at 289.

The transfer function 0.1054
s+0.1054 has been chosen

as a continuous-time reference model, and AM (q−1)
equals 1 − 0.9487q−1 for TS = 0.05 s, 1 − 0.9q−1

for TS = 0.1 s and 1 − 0.81q−1 for TS = 0.2 s. In
order to compare responses of discrete-time refer-
ence model with pole-placement control system, the
nominator of discrete-time reference model is to be

modi ied as q−dB(q−1)T (q−1), i.e. to the values cor-
responding to the nominator of closed-loop transfer
function for δk = δT = 1.

In the case of a fully discrete-time system (thick
solid line, taken from [1]) the robust performance
region gets smaller at lower sampling frequencies.
Should the estimates of k and T (i.e. indirectly â1 and
b̂0 in the adaptive case) fall in the ellipsoid-like area,
the performance of the system degrades gracefully. It
can be seen, that the control system is more robust
against time constant mismatch that gain mismatch.
True values of plant are chosen as in the previous
section. Sampled-data system (thick dashed line) be-
haviour canbeapproximatedbybehaviourof discrete-
time control system but this approximation is conser-
vative for fast sampling.

Real-world sampled data system (controlling the
servo drive, thin solid line), including unmodeled dy-
namics, neglected phenomena and true plant, enables
one to obtain experimental data, to verify the accep-
tance of the results of prior studies. As it can be seen
fromFigure4a-c, the robust performancearea for such
a system is larger as it is suggested by its approxi-
mations. They tend to be too conservative, especially
in the case of fast sampling, and less conservative in
the case of violated sampling theorem conditions. The
experiment depicted in Figure 4a shows why adap-
tive control is usually successful when applied to real
plants at fast sampling. The area in which estimates
may fall is the largest in this case.

This what is surprising, is the fact that the area of
robust performance for higher sampling frequencies
is larger for sampled-data system than it is suggested
by the corresponding area for discrete-time system.
Oneof the reasonsmight be that discrete-time systems
are only approximation of real-world control systems.

7. Summary
As it has been presented in the paper, it is impor-

tant to conduct simulations of both discrete-time and
sampled-data systems in order to obtain any informa-
tion (or approximation) of the behaviour of sampled-
data systems with digital controllers. The latter is less
expensive than real-world experiment and easier to
perform. On the basis of the results presented, one can
say that for both adaptive and non-adaptive control
systems there is a good correspondence of results in
the time domain.

It has been also shown that adaptive control is ro-
bust against plant mismodeling in the sense of lack
of good information about its parameters. The pre-
sented results show that robust performance area ex-
pands when sampling frequency increases. The con-
troller can use larger number of samples, in which
tracking should be conducted with prescribed quality.
One can also easily drawconclusions concerningprop-
erties of the closed-loop systemwith digital controller
on the basis of simulation tests.
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Fig. 2. Sampled-data adap ve control system
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